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ABSTRACT: Radical polymerization of N-isopropylacrylamide (NIPAAm) in toluene at 

low temperatures, in the presence of fluorinated alcohols, produced heterotactic polymer 

comprising an alternating sequence of meso and racemo dyads. The heterotacticity 

reached 70% in triads when polymerization was carried out at –40°C using 

nonafluoro-tert-butanol as the added alcohol. NMR analysis revealed that formation of a 

1:1 complex of NIPAAm and fluorinated alcohol through C=O•••H-O hydrogen bonding 
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induces the heterotactic specificity. A mechanism for the heterotactic-specific 

polymerization is proposed. Examination of the phase transition behavior of aqueous 

solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase 

transition between the heating and cooling cycles depended on the average length of meso 

dyads in poly(NIPAAm). 
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INTRODUCTION 

Isotactic and syndiotactic polymers are representative stereoregular polymers that are 

composed of contiguous meso (m) and racemo (r) dyads. In principle, control of the 

configurational relationship between neighboring constitutional repeating units is 

sufficient for isotactic- and syndiotactic-specific polymerizations. Heterotactic polymer 

is another kind of stereoregular polymer that has an alternating sequence of m and r dyads. 

Formation of heterotactic polymer requires two different types of stereoregulation, m- 

and r-additions, to occur in an alternating manner. Thus the dyad configuration at the 

propagating chain end should affect the stereoselectivity of propagating species in 

heterotactic-specific polymerization as follows: m-ended radical prefers r-addition and 
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r-ended radical prefers m-addition (Scheme 1). Consequently, the formation of 

heterotactic polymer requires a higher level of stereoregulation than is the case for 

isotactic and syndiotactic polymers.1 

 

<Scheme 1> 

 

 Recently, we have reported stereospecific radical polymerization of 

N-alkylacrylamides by controlling the structures of hydrogen bonding-assisted 

complexes of the monomers with added reagents.2-7 N-Alkylacrylamides behaved as 

hydrogen donors in the presence of Lewis bases such as phosphoric acid derivatives2,3 or 

pyridine N-oxide derivatives4: syndiotactic or isotactic polymer was obtained through 1:1 

or 2:1 complex formation. Moreover, N-alkylacrylamides behaved as hydrogen donor 

and acceptor simultaneously with the addition of alkyl alcohols, and syndiotactic polymer 

was obtained through complex formation with cooperative hydrogen bonding.5 

 It is known that fluorinated alcohols (RfOHs) exhibit stereocontrolling power 

in radical polymerization of vinyl monomers such as vinyl esters,8 methacrylates9-11 and 

N-vinyl amides,12,13 through a hydrogen bonding interaction. Our investigation of the 

effect of fluorinated alcohols on the stereospecificity of NIPAAm polymerization6 

showed that heterotactic polymer was obtained by adding fluorinated alcohols to reaction 

mixtures for radical polymerization of N-isopropylacrylamide (NIPAAm). In the present 

study we have investigated in detail the heterotactic-specific radical polymerization of 

NIPAAm, and the structure of the complex between NIPAAm and fluorinated alcohols, to 
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understand the mechanism of the stereoregulation. 

The phase transition behavior of aqueous solutions of poly(NIPAAm) has been 

extensively studied.14-16 It was reported recently that isotactic poly(NIPAAm) exhibited a 

lower phase transition temperature than the atactic polymer.17,18 We have also reported 

that increase in syndiotacticity of poly(NIPAAm) increased both the phase transition 

temperature and the cooperativity of phase transition, and reduced the hysteresis between 

heating and cooling cycles.5(a) Thus in the present study the phase transition behavior of 

heterotactic poly(NIPAAm) was investigated and significant insight was obtained into the 

relationship between the phase transition behavior and the stereoregularity of 

poly(NIPAAm). 

 

 

Experimental 

Materials 

NIPAAm (Tokyo Kasei Kogyo Co.) was recrystallized from hexane-toluene mixture. 

Toluene was purified by washing with sulfuric acid, water and 5% aqueous NaOH, then 

fractional distillation. Tri-n-butylborane (n-Bu3B) as a tetrahydrofuran (THF) solution 

(1.0 M), 2,2,2-trifluoroethanol (1) (Aldrich Chemical Co.), 

1,1,1,3,3,3-hexafluoro-2-propanol (2) (supplied by DAIKIN INDUSTRIES Ltd.), 

nonafluoro-tert-butanol (3) (Tokyo Kasei Kogyo Co.), and 

2,2,3,3,4,4,5,5-octafluoro-1-pentanol (PenOH-F8, supplied by DAIKIN INDUSTRIES 

Ltd) were used without further purification. 
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Polymerization 

A typical polymerization procedure was as follows. NIPAAm (0.314 g, 2.8 mmol) and 1 

(1.120 g, 11.2 mmol) were dissolved in toluene to prepare 5 mL solution. Four milliliters 

of the solution was transferred to a glass ampoule and cooled to –40°C. Polymerization 

was initiated by adding n-Bu3B solution (0.22 mL) to the monomer solution.19 Monomer, 

polymer or both were precipitated during the polymerization in the presence of 

fluorinated alcohols. Reaction was terminated after 24 h by adding a small amount of a 

solution of 2,6-di-t-butyl-4-methylphenol in THF at the polymerization temperature. The 

reaction mixture was poured into a large amount of diethyl ether, and the precipitated 

polymer collected by filtration or centrifugation then dried in vacuo. The polymer yield 

was determined gravimetrically.  

 

Measurements 

1H and 13C NMR spectra were obtained using an EX-400 or ECX-400 spectrometer 

(JEOL Ltd.) operated at 400 MHz for 1H and 100 MHz for 13C. Molecular weights and 

molecular weight distributions of the polymers were determined by size exclusion 

chromatography (SEC); the chromatograph was calibrated with standard polystyrene 

samples. SEC was performed with an HLC 8220 chromatograph (Tosoh Co.) equipped 

with TSK gel columns (SuperHM-M and SuperHM-H, both 6.5 mm IDx150 mm long; 

Tosoh Co.). Dimethylformamide containing LiBr (10 mmol L-1) was used as eluent at 

40°C with flow rate 0.35 mL min-1. The polymer concentration was 1.0 mg mL-1. The 
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transmittance of an aqueous solution of poly(NIPAAm) (0.1 w/v%) was monitored at 500 

nm as a function of temperature using a UV/VIS spectrophotometer (V-550, JASCO Co.) 

equipped with a Peltier thermostatted single cell holder (ETC-505, JASCO Co.). The 

temperature was varied at 0.5°C min-1. The cloud point (Tc) was taken as the temperature 

at which the transmittance was 50% in the heating and cooling cycles. 

 

NMR evaluation of stereoregularity of poly(NIPAAm) at triad level 

The dyad tacticity of the polymer obtained was determined from 1H NMR signals from 

the methylene groups in the main chain, measured in deuterated dimethyl sulfoxide 

(DMSO-d6) at 150°C. As reported previously,6 the signals due to the main-chain methine 

carbons of poly(NIPAAm) measured in DMSO-d6 at 100°C split into three broad peaks, 

but triad tacticity could not be determined accurately because of low resolution of the 

resonances. For that reason we conducted 13C NMR measurement in various solvents to 

evaluate the tacticity at triad level.  

Figure 1 displays expanded scale NMR spectra of the methine carbons of 

poly(NIPAAm). Use of CD3OD as a solvent or as a component of a mixed solvent 

improved the resolution even at 55°C (Figure 1(b) and 1(c)), although the signal due to 

the methine carbons of the isopropyl side groups overlapped with the splittings due to the 

in-chain methine carbons. This suggested that a protic solvent is suitable for determining 

the triad tacticity of poly(NIPAAm), and DMSO-d6:D2O (90:10 wt%) was used as a 

mixed solvent at 100°C, giving well-resolved splitting without signal overlap (Figure 

1(d)). However, the solubility of poly(NIPAAm) was drastically reduced, probably 
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because of co-nonsolvency.20,21 PenOH-F8 was added as a third component22, improving 

the solubility of poly(NIPAAm) and well-resolved splitting was observed (Figure 1(e)). 

The r dyad tacticity calculated from the triad tacticity via the equation (r = rr+mr/2) 

agreed well with the r dyad tacticity determined by 1H NMR. Thus we chose that mixed 

solvent as the solvent for NMR analysis of poly(NIPAAm) to determine the tacticity at 

triad level. 

 

<Figure 1> 

 

RESULTS AND DISCUSSION 

Radical Polymerization of NIPAAm in the Presence of Fluorinated Alcohols 

Radical polymerization of NIPAAm was carried out in toluene at low temperatures in the 

presence of fluorinated alcohols (1-3), to investigate the effect of polymerization 

temperature on the heterotactic specificity (Table 1). Polymers were obtained in moderate 

yields, although polymerization below –40°C in the presence of 3 was not achieved due 

to the insolubility of the monomer. The addition of fluorinated alcohols tended to increase 

the number average molecular weights of the polymers obtained. A similar tendency was 

observed for NIPAAm polymerization in the presence of alkyl alcohols; in that case 

significant syndiotactic specificity was induced.5(a)  

 

<Table 1> 
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Triad tacticity distribution of the polymer obtained was determined using 13C 

NMR signals from the main-chain methine carbons. The heterotacticity of 

poly(NIPAAm) prepared in the presence of 3 gradually increased with decrease in the 

polymerization temperature, whereas very little temperature dependence was observed 

for polymerization in the presence of 1 or 2. Fluorinated alcohol 3 induced the highest 

heterotactic specificity, up to 70 % by lowering the temperature to –40°C (Figure 1(f)), 

among the alcohols examined. To the best of our knowledge, the extent of heterotacticity 

was the highest so far reported for radically prepared homopolymers. 

 NIPAAm polymerization at –40°C was carried out with different amounts of 

1-3. Significant induction of heterotactic specificity required excess amounts of 2 or 3, 

whereas the heterotacticity gradually increased with the added amount of 1 (Figure 2).  

 

<Figure 2> 

 

Hydrogen Bonding Interaction between NIPAAm and Fluorinated Alcohols  

To confirm the involvement of a hydrogen bonding interaction in stereocontrol of 

NIPAAm polymerization, we conducted an NMR analysis of a mixture of NIPAAm and 3, 

in which the concentration of NIPAAm was kept at 0.2 mol L–1, in toluene-d8 at 0°C. 

Some signals, in particular those due to –NH and –OH groups, significantly shifted with 

changes in the added amount of 3. Even without NIPAAm monomer, the chemical shift of 

the –OH proton of 3 varied with the concentration, because the alcohol self-associated 

through a hydrogen bonding interaction. Thus the differences in the chemical shift of the 
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–OH proton of 3 [∆δ(-OH)] between the signals of the sample and 3 alone, at 

corresponding concentrations, were plotted against the [3]0/[NIPAAm]0 ratio, as shown 

in Figure 3. Figure 3 also displays the changes in the chemical shifts of the –NH proton of 

NIPAAm [∆δ(-NH)] and of the C=O carbon of NIPAAm [∆δ(C=O)], respectively, versus 

the [3]0/[NIPAAm]0 ratio. The –OH signal of 3 showed a downfield shift from mixing 

with NIPAAm, regardless of the concentration of 3. The signal from the C=O carbon of 

NIPAAm also exhibited a downfield shift with increase in the added amount of 3. These 

results indicate that NIPAAm and 3 form a C=O•••H-O hydrogen bond as in the case of 

NIPAAm and non-fluorinated alkyl alcohols.5(a) 

 

<Figure 3> 

 

 The signal due to the –NH proton of NIPAAm showed an upfield shift with 

increasing concentration of 3. This contrasts with the result in the NIPAAm/alkyl alcohol 

system where a downfield shift was observed in the presence of excess alkyl alcohol.5(a) 

Taking into account NIPAAm self-association through a hydrogen bonding interaction, it 

is concluded that NIPAAm monomer behaved only as a proton acceptor, probably 

because the basicities of the oxygen atoms of fluorinated alcohols are much lower than 

those of alkyl alcohols. 

 To investigate the stoichiometry of the NIPAAm-3 complex, 1H NMR analysis 

was carried out on solutions with [NIPAAm]0+[3]0=0.25 mol L–1 in toluene-d8 at 0°C. 

Figure 4(a) shows changes in the chemical shift of the methine proton in the vinyl group 
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(=CH) of NIPAAm resulting from variation of the initial proportion of NIPAAm. The 

plots roughly obeyed a quadratic equation. The stoichiometry of the complex was 

evaluated by Job’s method (Figure 4(b)) via eq. (1):23 

 

where δ(=CH) and δ(=CH)f are the chemical shifts of the sample mixture and NIPAAm 

alone, respectively. As mentioned above, δ(=CH)f also varies with [NIPAAm]0 owing to 

its self-association. Thus the chemical shift of NIPAAm alone at the corresponding 

concentration was equated to δ(=CH)f (Figure 4(a)). The chemical shift for the saturated 

mixture, δ(=CH)c, was calculated from the intercept of a quadratic fit to the data in Figure 

4(a), since the saturation value should be independent of NIPAAm concentration. The 

maximum observed at an initial proportion of NIPAAm=0.5 (Figure 4(b)), indicates that 

NIPAAm and 3 formed a 1:1 complex through C=O•••H-O hydrogen bonding. 

 

<Figure 4> 

 

 The equilibrium constant (K) of the NIPAAm-3 complex was determined from 

the changes in the 1H NMR chemical shift of the methine proton of NIPAAm. Figure 5 

shows the relationship between the change in the chemical shift and the [3]0/[NIPAAm]0 

ratio at constant [NIPAAm]0 (5.0x10–2 mol L–1) in toluene-d8 at several temperatures. K 

was determined from the data in Figure 5 by nonlinear least squares fitting of the data to 

eq (2): 24 
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where ∆δ and ∆δ’ are the changes in the chemical shift of =CH of NIPAAm for the given 

solution and a saturated solution, respectively (Table 2). 25 

A van’t Hoff plot for the K values obtained is shown in Figure 6. The enthalpy 

(∆H) and entropy (∆S) for complex formation were evaluated as –16.6±1.4 kJ mol–1 and 

–12.8±4.3 J mol–1 K–1, respectively, from eq (3): 

ln K = (3)
∆S

R

∆H

RT  

where R is the gas constant and T is absolute temperature. The K values at temperatures 

below 25°C were calculated on the assumption that ∆H was constant. 

 

<Table 2> 

<Figure 5> 

<Figure 6> 

 

 Application of the K values for the polymerization conditions gives the values 

shown in Table 2 for the degree of association (α) of NIPAAm. When an equimolar 

amount of 3 was added, 4% of NIPAAm was uncomplexed even at –40°C. However, 

NIPAAm formed the complex quantitatively in the presence of excess amounts of 3. This 

result corresponds with the polymerization result that excess amounts of 3 were required 

to induce significant heterotactic specificity (cf. Figure 2).27 
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Proposed Mechanism for Heterotactic-specific Radical Polymerization of NIPAAm 

Induced by Fluorinated Alcohols 

The formation of heterotactic polymer requires alternating stereoselection of the 

propagating radical, that is, r-addition to m-ended radical and m-addition to r-ended 

radical. The stereochemical process of the heterotactic-specific polymerization can thus 

be characterized by two parameters; the probability of r-addition to m-ended radical 

(Pm/r) and that of m-addition to r-ended radical (Pr/m) in first-order Markovian statistics.  

Figure 7 shows a plot of the two parameters for NIPAAm polymerization at 

–40°C in the presence of different amounts of RfOH. Pm/r values gradually increased with 

increase in the [RfOH]0/[NIPAAm]0 ratio, except for 2. In particular, Pm/r reached 0.81 

with addition of a fourfold amount of 3. On the other hand, the changes in Pr/m values 

appear smaller compared with Pm/r. However, Pr/m values decreased at 

[RfOH]0/[NIPAAm]0=1 and increased in the presence of excess amounts of RfOH, 

except for 1. In particular, Pr/m varied from 0.42 to 0.61 with increasing amount of 3. 

These results suggest that the addition of fluorinated alcohols should induce syndiotactic 

specificity in principle. However, the stereoselectivity of r-ended radical tends to be 

inverted in the presence of excess amounts of fluorinated alcohols, leading to induction of 

heterotactic specificity. In other words, m-addition to r-ended radical is identified as the 

key step for heterotactic specificity. Thus we propose the following mechanism for the 

polymerization. 
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<Figure 7> 

 

 First, NIPAAm forms the 1:1 complex with the added fluorinated alcohol. 

When the complexed NIPAAm undergoes a propagating reaction, the fluorinated alcohol 

binding to the NIPAAm monomer remains at the newly formed propagating chain end. 

The single bond near the propagating chain end of the r-ended radicals rotates to reduce 

the repulsion of fluorine atoms in fluorinated alcohols bound to the amide groups at the 

antepenultimate and chain-end monomeric units (Scheme 2). The conformationally 

rotated radicals can react with a new incoming monomer via two possible pathways: 

pathway a should form an r dyad and pathway b should form an m dyad. However, the 

amide group at the penultimate monomeric unit bound to RfOH limits the approach via 

pathway a by the next incoming monomer, so that r-ended radical favors m-addition via 

pathway b.  

 

<Scheme 2> 

 

 In the m-ended radicals, the single bond at the second dyad from the end rotates 

to reduce the repulsion of fluorine atoms in RfOHs bound to the amide groups at the 

antepenultimate and penultimate monomeric units (Scheme 3). These conformationally 

rotated radicals also can undergo the next propagating reaction via two possible pathways. 

However, amide groups not only at the penultimate monomeric unit but also at the 

antepenultimate monomeric unit sterically prevent the radicals from propagating via 
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pathway b so that m-ended radical favors r-addition via pathway a. As a result, 

m-addition to r-ended radicals and r-addition to m-ended radicals both take place in an 

alternating manner, resulting in the formation of heterotactic stereosequences. 

 

<Scheme 3> 

 

Phase Transition Behavior of Aqueous Solution of Heterotactic Poly(NIPAAm) 

We previously reported5(a) significant effects of increase in the dyad syndiotacticity on the 

phase transition behavior of aqueous solutions of poly(NIPAAm), as follows: (1) the 

phase transition temperature increased slightly; (2) the phase transition behavior was 

sharpened; (3) hysteresis between the heating and cooling cycles was reduced. In the 

present study, we obtained heterotactic polymer composed of an alternating 

stereosequence of m and r dyads. Thus we investigated the phase transition behavior of 

heterotactic poly(NIPAAm) to examine the effect of stereoregularity at triad level. 

Figures 8 and 9 display the temperature dependences of the transmittance of 

aqueous solutions of poly(NIPAAm) with r dyad content 50% (C, D in Table 3) or 58% 

(F, G, H in Table 3) in heating and cooling cycles. In the heating cycle (Figures 8(a) and 

9(a)), Tc of each series of polymers was observed within 1.0°C, although the triad 

tacticity distributions of the polymers were quite different. Figure 10 shows the 

relationship between Tc(heating) and the r dyad content of poly(NIPAAm). The data for 

poly(NIPAAm)s with r dyads of 41 % to 71 % (A, B, E, I in Table 3) are also plotted. The 

observed value of Tc(heating) gradually increased with increase in r dyad content, 
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although the temperature dependence changed at around r=50 %. These results indicate 

that the phase transition temperature of poly(NIPAAm) solution in the heating cycle was 

determined by the r dyad content of the polymer examined. In addition, the phase 

transition behavior of heterotactic polymer was further sharpened as compared with the 

syndiotactic polymer (Figure 9). Similar tendencies were observed more clearly in the 

cooling cycles (Figures 8(b) and 9(b)).  

 

<Figure 8> 

<Figure 9> 

<Figure 10> 

 

The hysteresis between the heating and cooling cycles in the phase transition of 

heterotactic polymer was significantly reduced, compared with atactic polymer and even 

syndiotactic polymer. This result indicates that the phase transition behavior of 

poly(NIPAAm) solution in the cooling cycle depended not on the dyad tacticity but on the 

triad tacticity distributions of the polymer examined. Figure 11 displays the differences in 

the values of Tc between the heating and cooling cycles (∆Tc) versus the average length 

of m dyad, nm, or r dyad, nr, calculated from the triad distributions.28 ∆Tc tended to 

increase with increase in nm, whereas no clear dependence was observed with nr. Thus it 

is assumed that contiguous m dyads impeded the re-dissolution process of 

poly(NIPAAm), probably because of cooperative hydrogen bonding interactions between 

the amide groups in isotactic sequences.29 
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<Figure 11> 

 

CONCLUSIONS 

Heterotactic polymer was successfully synthesized by radical polymerization of 

NIPAAm in the presence of fluorinated alcohols. The heterotacticity reached 70% with 

the addition of nonafluoro-tert-butanol at –40°C, which to the best of our knowledge is 

the highest heterotacticity so far reported for radically prepared polymers. NMR analysis 

revealed that NIPAAm forms a 1:1 complex with fluorinated alcohols through 

C=O•••H-O hydrogen bonding. Based on the complex structure, a mechanism for the 

heterotactic-specific radical polymerization is proposed. The effect of stereoregularity on 

the phase transition behavior of poly(NIPAAm) solution was also examined. It appears 

that the hysteresis between the heating and cooling cycles depends on the average length 

of m dyad. It should be noted that that effect was found only after the preparation of 

heterotactic poly(NIPAAm). Further work is now under way to examine the effect of 

N-substituent on the stereospecificity of radical polymerization of N-alkylacrylamides in 

the presence of fluorinated alcohols, and on the phase transition behavior of the resulting 

polymers. 
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 28.  (a) Randall, J. C. Macromolecules 1978, 11, 592-597. (b) Xu, J.; Yang, Y.; Feng, 

L.; Kong, X.; Yang, S. J Appl Polym Sci 1996, 62, 727-731. 

 29. Koyama, M.; Hirano, T.; Ohno, K.; Katsumoto, Y. J Phys Chem B 2008, 112, 

10854-10860. 
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Table 1.  Radical Polymerization of NIPAAm in Toluene at Low Temperatures for 24 h in the Absence or Presence of 
Fluorinated Alcoholsa 

Added [Alcohol]0 Temp. Yield r Dyad/%b Triad tacticity/%c r Dyad/%d Mn
e Mw

e 
Alcohol mol L-1 °C % Obsd. mm mr rr Calcd. x10–4 Mn 

None 
None 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 

0.0 
0.0 
2.0 
2.0 
0.5 
1.0 
2.0 
2.0 
2.0 
2.0 
2.0 
0.5 
1.0 
2.0 
2.0 
2.0 
2.0 
2.0 
0.5 
1.0 
2.0 

0 
–40 

0 
–20 
–40 
–40 
–40 
–60 
–80 

0 
–20 
–40 
–40 
–40 
–60 
–80 

0 
–20 
–40 
–40 
–40 

92 
89 
85 
77 
96 
94 
96 
53 
60 

>99 
>99 

96 
87 
93 
84 
81 
75 
66 
96 

>99 
86 

53 
54 
58 
58 
58 
58 
58 
58 
58 
50 
49 
53 
49 
50 
48 
47 
57 
59 
56 
61 
58 

20 
23 
18 
15 
18 
14 
12 
11 
14 
21 
21 
26 
26 
22 
22 
28 
12 
9 

16 
9 
8 

53 
52 
59 
58 
55 
57 
60 
62 
57 
59 
58 
49 
53 
59 
59 
55 
67 
69 
50 
66 
70 

27 
25 
23 
27 
27 
29 
28 
27 
29 
20 
21 
25 
21 
19 
19 
17 
21 
22 
34 
25 
22 

53 
51 
52.5 
56 
54.5 
57.5 
58 
58 
57.5 
49.5 
50 
50.5 
47.5 
48.5 
48.5 
44.5 
54.5 
56.5 
59 
58 
57 

4.54 
2.72 
2.66 
3.34 
4.00 
3.90 
4.29 
6.39 

11.52 
5.60 
5.17 
5.37 
5.13 
5.01 
5.48 
4.42 
4.53 
7.75 
5.64 
8.33 
7.21 

2.0 
1.8 
1.6 
1.5 
1.7 
1.7 
1.4 
3.1 
3.2 
1.3 
1.4 
1.7 
2.1 
1.3 
1.6 
1.7 
1.4 
1.3 
1.8 
2.0 
3.1 

a. [NIPAAm]0=0.5 mol L-1, [n-Bu3B]0=5.0x10–2 mol L-1, [fluorinated alcohol]0=2.0 mol L-1. 
b. Determined from 1H NMR signals due to the main-chain methylene groups, measured in DMSO-d6 at 150°C. 
c. Determined from 13C NMR signals due to the main-chain methine groups, measured in mixed solvent 
(DMSO-d6:D2O:PenOH-F8=75:10:15 wt%) at 100°C. 
d. Calculated from the triad tacticities with the equation: r=mr/2+rr. 
e. Determined by SEC (polystyrene standards). 
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Table 2.  Equilibrium constants (K) for the interaction between NIPAAm and 3, and degree of association 
(α) in the polymerization systema 

Temperature 
°C 

K 
L mol-1 

 αb 

3 = 1 equiv. 2 equiv. 4 equiv. 
60 
40 
25 
0 

–20 
–40 

87.5 
122 
177 

(321)c 
(572)c 

(1126)c 

 0.86 0.98 0.99 
 0.88 0.98 0.99 
 0.90 0.99 1.00 
 0.92 0.99 1.00 
 0.94 1.00 1.00 
 0.96 1.00 1.00 

a. NMR conditions: [NIPAAm]0=5.0×10–2 mol L-1, in toluene-d8. 
b. Calculated with [NIPAAm]0=0.5 mol L-1. 
c. Calculated from van’t Hoff relationship. 
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Table 3.  Poly(NIPAAm) Samples in Phase Transition Experiments 
Sample r Dyad/%a Triad tacticity/%b r Dyad/%c nm

d n r
d Tc(heating) 

°C 

∆Tc
e 

°C 
Mn

f Mw
f 

Code Obsd. mm mr rr Calcd. x10–4 Mn 
Ag 
Bh 
Ci 
D 
E 
Fj 
G 
H 
Ik 

41 
45 
50 
50 
54 
58 
58 
58 
71 

39 
34 
29 
22 
23 
14 
12 
8 
8 

38 
43 
41 
59 
52 
50 
60 
70 
44 

23 
23 
30 
19 
25 
36 
28 
22 
48 

42 
44.5 
50.5 
48.5 
51 
61 
58 
57 
70 

3.05 
2.58 
2.41 
1.75 
1.88 
1.56 
1.40 
1.23 
1.36 

2.21 
2.07 
2.46 
1.64 
1.96 
2.44 
1.93 
1.63 
3.18 

24.7 
28.3 
33.0 
33.3 
33.5 
34.0 
34.6 
34.4 
35.9 

- 
9.7 
7.7 
2.8 
2.8 
2.6 
1.3 
1.1 
1.5 

1.55 
1.86 
2.56 
5.01 
2.72 
6.74 
4.29 
7.21 
8.87 

1.5 
1.4 
1.3 
2.1 
1.8 
1.3 
1.4 
3.1 
1.5 

a. Determined from 1H NMR signals due to the main-chain methylene groups, measured in DMSO-d6 at 150°C. 
b. Determined from 13C NMR signals due to the main-chain methine groups, measured in mixed solvent 
DMSO-d6:D2O:PenOH-F8=75:10:15 wt%) at 100°C. 
c. Calculated from the triad tacticities with the equation: r=mr/2+rr. 
d. Calculated from the triad tacticities with the following equations: nm=(mm+mr/2)/(mr/2), n r=(rr+mr/2)/(mr/2).27 
e. ∆Tc=Tc(heating)–Tc(cooling). 
f. Determined by SEC (polystyrene standards). 
g. Prepared in CHCl3 at –60°C ([NIPAAm]0=1.0 mol L-1, [3,5-dimethylpyridine N-oxide]0=0.75 mol L-1).4(b) 
h. Prepared in CHCl3 at –60°C ([NIPAAm]0=1.0 mol L-1, [3,5-dimethylpyridine N-oxide]0=0.5 mol L-1).4(b) 
i. Prepared in CHCl3 at –40°C ([NIPAAm]0=1.0 mol L-1, [2,6-dimethylpyridine N-oxide]0=1.0 mol L-1).4(b) 
j. Prepared in toluene at –40°C ([NIPAAm]0=0.5 mol L-1, [3Me3PenOH]0=0.25 mol L-1).5(a) 
k. Prepared in toluene at –60°C ([NIPAAm]0=0.5 mol L-1, [3Me3PenOH]0=2.0 mol L-1).5(a) 
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Figure 1. Expanded 13C NMR spectra of the methine carbons of poly(NIPAAm) prepared 

at –40°C in the absence of fluorinated alcohols, as measured in (a) DMSO-d6 at 100°C, 

(b) CD3OD at 55°C, (c) DMSO-d6:CD3OD (1:1 vol/vol) at 55°C, (d) DMSO-d6:D2O 

(90:10 wt%) at 100°C, and (e) DMSO-d6:D2O:PenOH-F8 (75:10:15 wt%) at 100°C, and 

(f) poly(NIPAAm) with mr=70%, as measured in DMSO-d6:D2O:PenOH-F8 (75:10:15 

wt%) at 100°C. 
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Figure 2. Relationship between the [RfOH]0/[NIPAAm]0 ratio and mr triad content of 
poly(NIPAAm) prepared in toluene at –40°C in the presence of fluorinated alcohols. 



 25 

 

 
Figure 3. 1H NMR chemical shift difference of the –OH protons of 3 between the sample 

mixture and 3 alone at corresponding concentrations ( ), changes in 1H NMR chemical 

shift of the –NH protons ( ), and changes in 13C NMR chemical shift of the C=O carbons 

( ) of NIPAAm monomer, resulting from variation of the [3]0/[NIPAAm]0 ratio. 
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Figure 4. Job’s plots for the association of NIPAAm with 3 in toluene-d8 at 0°C evaluated 

from the changes in the =CH chemical shifts of NIPAAm in the presence of 3 ( ) 

([NIPAAm]0+[3]0=0.25 mol L–1). ( ) denotes chemical shift of NIPAAm alone at the 
corresponding concentration. 
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Figure 5. Changes in the chemical shifts of the =CH protons of NIPAAm in toluene-d8 at 

various temperatures resulting from variation of the [3]0/[NIPAAm]0 ratio. 
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Figure 6. van’t Hoff plot for 1:1 complex formation between NIPAAm and 3 in 
toluene-d8. 
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Figure 7. Dependence of probabilities of r-addition to m-ended radicals (Pm/r) and of 

m-addition to r-ended radicals (Pr/m) on the [RfOH]0/[NIPAAm]0 ratio. 
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Figure 8. Temperature dependence of the transmittance at 500 nm of the aqueous 

solution of poly(NIPAAm) with r=50% with different triad tacticity distributions [(+): C 

in Table 3, ( ): D in Table 3] in (a) heating and (b) cooling cycles. (0.1 w/v%, heating and 

cooling rates=0.5°C min-1).  
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Figure 9. Temperature dependence of the transmittance at 500 nm of the aqueous 

solution of poly(NIPAAm) with r=58% with different triad tacticity distributions [(x): F 

in Table 3, ( ): G in Table 3, ( ): H in Table 3] in (a) heating and (b) cooling cycles. (0.1 

w/v%, heating and cooling rates=0.5°C min-1).  
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Figure 10. Relationship between Tc(heating) and the r dyad content of poly(NIPAAm) 
(0.1 w/v%, heating rate=0.5°C min-1). 
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Figure 11. Relationship of ∆Tc to the average length of (a) m dyad (nm) or (b) r dyad (nr) 
in poly(NIPAAm).  
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Scheme 1. Favored stereoselections in the propagating reaction by m-ended or r-ended 

radicals in heterotactic-specific polymerization. 
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Scheme 2. Proposed mechanism for m-addition to r-ended radicals. 
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Scheme 3. Proposed mechanism for r-addition to m-ended radicals. 
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