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Abstract: The steel strip is one of the essential raw materials in the machinery industry. Besides,7
the defects on the surface of the steel strip directly determine its performance. To achieve rapid8
and effective detection of surface defects on steel strips, a CP-YOLOv3-dense (classification9
priority YOLOv3 DenseNet) deep convolutional neural network was proposed in the present10
study. The model used YOLOv3 as the basic network, implemented priority classification on the11
target images, and then replaced the two residual network modules in the YOLOv3 network with12
two dense network modules. Therefore, the model can receive the multi-layer convolution13
features output by the dense connection block before making predictions, consequently enhancing14
the reuse and fusion of features. Finally, the six kinds of surface defects of steel strips were15
detected by the improved network model, and the results were compared with other deep16
learning networks. According to the results, the recognition precision of the CP-YOLOv3-dense17
network model is 85.7%, the recall rate is 82.3%, the mean average precision is 82.73%, and the18
detection time of each image is 9.68ms. The mean average precision is 6.65% higher than the19
original YOLO network and 10.6% higher than the DNN network. In addition, the detection speed20
is 1.77 times faster than the Faster RCNN network. The proposed CP-YOLOv3-dense network has21
stronger robustness and higher detection precision, which can be used for the identification of22
various steel strip surface defects.23
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1. Introduction26

Steel strip is an indispensable raw material in the machinery industry, and its quality is a key27
indicator determining its price. Due to the limitations of equipment and process conditions, the28
surface of the steel strip will inevitably have different forms and types of defects, and the size,29
number and distribution of the defects are various [1, 2]. For the diversity and complexity of steel30
strip surface defects, steel production companies in various countries attach great importance to31
surface quality inspection, and spend huge sums of money improving the level of detection32
technology.33

Traditional steel strip surface defect detection methods are mostly manual inspections, and the34
defects are used to classify and locate through the eyes and experience of workers [3]. The proposed35
method has poor real-time performance with high false detection rate. Even for the most highly36
trained and experienced workers, under their best working conditions, the detection rate of metal37
surface defects is only approximately 80%. Recently, with the development of machine learning,38
numerous scholars have applied this technology to different fields, including industrial inspection39
[4-6].40

A lot of scholars have proposed “deep learning + defect detection” methods, which have been41
applied to the classification and detection of surface defects on steel strips, having achieved42
satisfying results. Qiwu Luo et al. employed the selectively dominant local binary patterns (SDLBPs)43
algorithm to classify the surface defects of hot-rolled strips so as to obtain higher classification44
accuracy and time efficiency, yet they failed to achieve target defect detection [7]. X.L. Zhang and45
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other scholars proposed a sinusoidal phase grating projection method to detect the depth and1
surface profile of cracks in continuous slab casting, which is suitable for the detection of defects on2
the surface of the slab [8]. Additionally, the YOLO network has also been used to detect the surface3
defects of steel strips. However, the image datasets used in most studies are relatively simple. The4
network model is directly applied instead of improving the network based on the actual defects of5
the steel strips, causing that the applicability of the YOLO network is low [9]. In addition, some6
other deep learning network models have also been used in the field of steel strip surface defect7
detection, such as CNN [10-13], Pyramid Feature Fusion and Global Context Attention Network8
(PGA-Net) [14], and semi-supervised convolutional neural network [15, 16], generating a certain9
effect.10

In the present study, we take the images in the NEU-DET Dataset as the research object, and11
propose a CP-YOLOv3-dense deep convolutional neural network based on the characteristics of12
defects in the images. The innovation of our work lies in the following aspects. First, an improved13
YOLO network model is proposed, which uses dense network modules instead of residual network14
modules to enhance the multiplexing and fusion of features. Secondly, according to the15
characteristics of defect images in the database, the principle of classification priority is proposed,16
which not only solves the problem of a small number of training images, but also avoids the17
prediction of defect categories during the detection process, thereby improving the detection18
accuracy. Finally, a dense labeling method suitable for small surface defects of steel strips is19
proposed through comparative experiments. The experiment results demonstrate that the network20
based on CP-YOLOv3-dense is superior to the original YOLOv3 and other network in terms of21
precision and speed in detecting surface defects on steel strips.22

The rest of this paper is organized as follows. Section II summarizes the related works. Section23
III introduces the methods and principles involved in the experiment. The experimental results and24
some related discussions are presented in Section IV. Finally, Section V concludes our paper.25

2. Related Works26

2.1. Image Target Detection based on Deep Learning27

Computer-based image processing consists of three levels, respectively, classification,28
detection and segmentation. The task of target detection is to find all the targets of interest in the29
image and obtain the category information and location information of this target. Because various30
types of objects have different appearances, shapes, and postures together with the interference of31
lighting, occlusion and other factors during imaging, target detection has always been the most32
challenging problem in the field of machine vision.33

The traditional target detection method uses a sliding window frame to decompose a picture34
into millions of sub-windows at different positions and different scales. For each window, a35
classifier is used to determine whether the target object is included, and a specific method needs to36
be designed according to the characteristics of the target to be detected. For example, Harr feature37
and Adaboosting classifier are used for face detection [17, 18]. HOG (histogram of gradients) and38
Support Vector Machine are used for pedestrian detection [19-21]. These methods have poor39
versatility with low detection accuracy and speed.40

The deep learning model has gradually become a hot research direction for image target41
detection due to its powerful representation ability, coupled with the accumulation of data volume42
and the progress of computing power [22]. Initially, image target detection based on deep learning43
has an accuracy that cannot be achieved by traditional methods, greatly improving the accuracy of44
the detection results and enabling target detection to be put into practical applications. Secondly,45
the deep learning algorithm is extremely versatile. The same algorithm model can be used to detect46
multiple targets, and the features obtained by deep learning have a very strong migration ability,47
which greatly broadens the detection range of the model [23]. From the classic CNN convolutional48
neural network to the more state-of-the-art object detectors, such as RFBNet [24], CenterNet 25] and49
CornerNet [26], the detection accuracy and speed of deep learning models continue to increase.50
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Currently, image target detection based on deep learning has been applied to all walks of life.1
Face detection is more common in people [27], which can be used not only for smartphones and2
mobile payments, but also for tracking fugitives [28]. Additionally, target detection can monitor the3
growth of crops in the agricultural field and detect diseases and insect pests in time [29, 30]. In the4
industrial field, it can be used to detect surface defects and equipment abnormalities [31]. In the5
medical field, it can be used for medical diagnosis [32, 33]. In the commercial field, it can be used6
for coin identification, invoice testing [34], etc.7

2.2. Application of Deep Learning in Surface Defect Detection of Steel Strips8

In recent years, the deep learning algorithms represented by convolutional neural networks9
have been extensively used in the field of industrial defect detection, such as the detection of10
surface defects on glass [35, 36] and cloth [37, 38]. Similarly, the deep learning has gradually11
replaced traditional machine vision methods, which has become the mainstream algorithm for12
surface defect detection of steel strips. Based on the different structures of deep learning models,13
they can be divided into two categories, respectively, two-stage detection algorithm and one-stage14
detection algorithm. Figure 1 presents a comparison of the structure of the two detection15
algorithms.16

The two-stage detection algorithm divides the detection problem into two stages, which first17
generates region proposals, and then classifies the region proposals (generally, location refinement18
is also required). The typical representative of this type of algorithm is the R-CNN algorithm, such19
as R-CNN, Fast R-CNN and Faster R-CNN. At present, scholars have conducted a lot of research on20
the detection of surface defects of steel strips based on the two-stage detection algorithm, having21
achieved considerable results. Qirui Ren et al. [10] used the Faster R-CNN model to detect the22
surface defects of the steel strips, and made certain improvements to the Faster R-CNN model. First,23
the convolutional layer used for feature extraction in Faster R-CNN is replaced by deep separable24
convolution. Then, the center loss is added to the original loss function, thereby increasing the25
network operating speed and improving the ability of distinguishing different defects. When26
Weiyang Lin [39] et al. conducted the surface defect detection of hot-rolled steel, the feature maps27
were generated by RCNN model based on ResNet 50. Their experimental results demonstrated that28
the detection method based on deep learning is more effective than the traditional method and can29
detect the surface defects of the steel strips more accurately. Kangyu Li [40] and Rubo Wei [41]30
employed improved Faster R-CNN to detect surface defects on steel strips, and improved detection31
accuracy by adopting multi-scale feature fusion or introducing weighted regions of interest.32

The one-stage detection algorithm does not require the region proposal stage, directly33
generating the category probability and position coordinate value of the object. Therefore, the34
detection speed of one-stage detection algorithm is faster, and the typical algorithms include YOLO35
and SSD. Due to the relatively short development time of the one-stage detection algorithm, few36
related studies have used it to detect surface defects on steel strips, so it is still in the preliminary37
exploration stage. Jiangyun Li [9] earlier attempted to use the YOLO network model for surface38
defect detection of steel strips, and the YOLO network used was composed of 27 convolutional39
layers to achieve end-to-end surface defect detection of steel strips. Renjie Tang [42] et al. employed40
two detection algorithms, respectively, Faster R-CNN and YOLO, to merge type-related variables41
into the Generator, and then proposed a GANs model for steel strips defect detection. However,42
they did not conduct in-depth research on the role of the YOLO network. Reference [39] gave up43
this type of algorithm directly, because YOLO and SSD networks are challenging in detecting small44
defects. Therefore, on the premise of ensuring the detection accuracy, it is urgently necessary to45
carry out related research on the one-stage detection algorithm to further improve the detection46
speed of the surface defects of the steel strip.47

48
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Figure 1. Comparison of the structure of the two detection algorithms; (a) One-stage detection5
algorithm; (b) Two-stage detection algorithm.6

3. Methodology7

3.1. The Classification Priority YOLOv3 Network8

The YOLO network model was first proposed in 2016 [43, 44]. Its later version, YOLOv3 [45], is9
not only faster in detection, but also is more suitable for small target detection. The YOLO network10
covers twenty-four convolutional layers, four maximum pooling layers, and two fully connected11
layers. The convolutional layer is used to extract image features, the maximum pooling layer is12
adopted to reduce image pixels, and the fully connected layer is employed to predict image13
categories and locations. YOLO uses the features of the entire image to predict the bounding box14
and classify the targets within the box, indicating that the YOLO network can use the full15
information existing in the image to achieve target defect classification and position detection.16

Figure 2 shows a YOLO network model for surface defect detection of steel strip. Obviously,17
the input image of this model is divided into S × S grids. If a target object falls into one of the grids18
in the image, the grid is responsible for predicting this object. Each grid predicts B bounding boxes,19
and each predicted bounding box contains 5 parameters (x, y, w, h, confidence). (x, y) is the20
coordinate of the bounding box relative to the center of the grid cell boundary, (w, h) represents the21
length and width of the bounding box relative to the entire image, and the confidence denotes the22
confidence score of each bounding box. The confidence score reflects the probability that the23
bounding box contains the target defect and the case where the bounding box coincides with the24
ground truth box (intersection-over-union, IoU). That is, the confidence includes two parts: one is25
the probability Pr(object) of whether the grid contains the target object, and the other is the26
accuracy of the bounding box (IoU). If there is a target defect in the bounding box, Pr(object) = 1,27
and the confidence score is equal to the IoU value. If there is no target object in the bounding box,28
Pr(object) = 0, and the confidence score is 0. IoU is the ratio of the intersection and union of the29
bounding box and the ground truth box. The calculation formula is:30

IoU =
�gt ∩ �bd
�gt ∪ �bd

(1)

where, bgt represents the ground truth box and bdb represents the bounding box.31
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When there are C defects in the image, the conditional probability of the C classes is1
Pr(Classi/object), which indicates the probability that the grid contains the target object and the2
object belongs to the i-th class object. The calculation formula is presented as follows:3

Pr Class�/Objet ∗ Pr Object ∗ IoUpred
truth = Pr (Class�) ∗ IoUpred

truth (2)

Due to the particularity that there is only one type of defect in a single image, we propose a4
classification priority YOLOv3 network model. Based on the principle of classification priority, we5
first classify the surface defects of the steel strips. The image dataset used in our experiment6
contains a total of 1,800 images and thus it is not extremely large. If we train the classification model7
from scratch, it often gets poor results and takes considerable time. Therefore, we first pre-train the8
convolutional network (ConvNet) on the Imagenet dataset, and then replace and retrain the9
classifier on the newly constructed steel strip surface defect dataset, and fine-tune the weight of the10
pre-trained network by continuing backpropagation [46]. Since the dataset used in our experiment11
is small and different from the original ImageNet dataset, we chose to train a linear classifier. The12
best model was saved for the classification of steel strip surface defects. Therefore, through the13
principle of classification priority, the prediction of the defect category can be omitted. Thus, the14
defect probability calculation can be corrected as:15

Pr (Class�/Object) ∗ Pr (Object) ∗ IoUpred
truth = IoUpred

truth (3)

Compared with the traditional YOLO network, since the defect categories have been16
prioritized, the YOLO network does not need to predict the probability Pr(Classi) of the defect17
category. In addition, the value of Pr(Classi) belongs to [0, 1]. Thus, the defect detection accuracy of18
the improved YOLO model is higher.19

20
Figure 2. The YOLO network model for surface defect detection of steel strips.21

After obtaining the confidence score of each bounding box, we set a threshold to remove the22
bounding boxes with low scores, and perform NMS (non-maximum suppression) processing on the23
remaining bounding boxes with high scores so as to achieve the final detection result.24

In our experiment, each picture is divided into 7 × 7 grids, and each grid will predict 625
bounding boxes. After priority classification, there are only one type of defects in the image.26
Therefore, our final prediction is a S × S × (B × 5 + C) = 7 × 7 × (6 × 5 + 1) tensor.27

3.2. Design of CP-YOLOv3-Dense Network28
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DenseNet was proposed by Gao Huang [47] et al. in 2017. From the perspective of features,1
through feature reuse and bypass settings, it not only greatly reduces the amount of network2
parameters, but also alleviates the gradient vanishing problem to a certain extent. Consequently, we3
combine the YOLO network with DenseNet to propose a new type of CP-YOLOv3-dense network4
structure. The DenseNet network structure contains 3 dense convolutional blocks, where each5
dense convolutional block contains 4 convolutional layers. In each dense convolutional block, each6
convolutional layer can obtain the output of all previous convolutional layers as input. Besides,7
adjacent convolutional layers are connected by a convolutional layer and a pooling layer. In the8
dense convolutional blocks:9

�� = H� �0, �1,⋯, �n−1 (� = 1, 2, 3, 4) (4)

where, x0 denotes the input feature map of the module, xn represents the output of the n-th10
layer, x0, x1,⋯, xn−1 stands for the stitching of x0, x1,⋯, xn−1 and Hn is a function for processing11
stitched feature maps. H( ) indicates the connection between BN-ReLU-Conv (1, 1) and12
BN-ReLU-Conv (3, 3).13

Figure 3 presents the CP-YOLOv3-dense network structure proposed in the present study for14
the detection of surface defects of steel strips, and the detailed network parameter settings are15
shown in Figure 4 [48]. The basic network is the YOLOv3 network, and DenseNet is used to replace16
the original transmission layer with lower resolution. Therefore, the model can receive the17
multi-layer convolutional features output by densely connected blocks before making predictions,18
thereby enhancing the reuse and fusion of features.19

The first impression of the term “dense connection” is that it greatly increases the amount of20
network parameters and calculations, but in fact it is not the case. On the contrary, DenseNet is21
more efficient than other networks. DenseNet reuses image features through dense connections,22
which reduces the amount of computation on each layer of the network. In addition, DenseNet23
does not need to re-learn redundant feature maps, and the operation of dimensional stitching24
brings rich feature information, resulting that many feature maps can be obtained with less25
convolution. Therefore, DenseNet has much less parameters than ResNet convolutional network.26
The output of each layer of DenseNet will be superimposed on the input of the next layer. In order27
to avoid a sudden increase in the number of channels, the number of convolutional output channels28
of each layer of DenseNet is designed to be very small. Finally, the parameter amount of DenseNet29
in 40 layers is only 1M. After replacing the last three fully connected layers with global pooling30
layers, the parameters amount of convolutional network VGG-11 with only 10 layers could reache31
9M. Therefore, the improved YOLO network model proposed by us has fewer parameters and32
lower space complexity. However, due to the channel superposition, the improved YOLO network33
needs to read memory frequently, which slows the training and prediction speed, resulting in a34
higher time complexity of the model.35

In our experiment, The input images are adjusted to 512 × 512 pixels, and the 32 × 32 and 16 ×36
16 downsampling layers in the original YOLO network are replaced by DenseNet. For example, in37
second layer combination of the DenseNet, which replaces the 16 × 16 down-sampling layer, the 64038
channel feature maps are spliced by the feature map x0 and the output feature map x, that is, [x0, x1]39
used as the input of H2. H2 performs BN operation and activation function ReLU nonlinear40
mapping on [x0, x1], and uses 256 1 × 1 convolution kernels to generate 256 feature maps. After41
performing BN and ReLU operations, 128 3 × 3 convolution kernels are used for convolution.42
Finally, the x2 with 128 feature maps is output. After that, x2 and [x0, x1] are spliced into 768 channel43
feature maps [x0, x, x2], which are used as the input of H3. Similarly, H3 also outputs 128 channel44
feature maps x3, and so on.45
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1

Figure 3. The improved YOLOv3 network structure proposed in this paper.2

3

Figure 4. The parameters comparison between the improved and the original YOLOv3 network.4

3.3. The Evaluation Indicators of Network Performance5

The target defect detection results can be divided into 4 categories, respectively, true positive6
(TP), false positive (FP), true negative (TN), and false negative (FN) [49-51]. The confusion matrix of7
the detection results is shown in Table 1.8

Table 1. Confusion matrix for evaluation.9

Labeled Predicted Confusion matrix
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Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

The calculation formula for precision and recall is as follows:1

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Precision is generally used to evaluate the global accuracy of the model, reflecting the2
proportion of true positive samples among the predicted positive samples determined by the3
classifier. The recall rate reflects the proportion of true positive samples among the labeled positive4
samples.5

It is further possible to obtain the parameter F1 score so as to evaluate the performance of the6
network model:7

F1 =
2 × P × R
P + R

(7)

With the recall as the horizontal axis and the precision as the vertical axis, a precision-recall8
(P-R) curve can be drawn. Average precision (AP) is the area under the P-R curve. Generally, the9
better a classifier, the higher the AP score. Mean average precision (mAP) is the mean score of10
multiple categories of APs, which can be obtained by the following calculation formula：11

mAP =
1
�

�=1

�

P� ∙� R� × 100% (8)

Due to the priority classification, the detection target just has one type of defect, so the AP and12
mAP are equal in our experiment.13

When training the model, the activation function used is the Leaky ReLU function. Compared14
with the traditional ReLU function, the first half of the Leaky ReLU function is set to 0.01x instead15
of 0, which not only inherits the advantages of the ReLU function, but also does not cause Dead16
ReLU problems (Dead ReLU problem means that some neurons may never be activated, and the17
corresponding parameters can never be updated). The specific function is expressed as follows:18

� � = �, if � > 0
0Ǥ1�, otherwise

(9)

where, x represents the output of the convolution layer.19
The detection model uses the sum of mean square error as a loss function to optimize model20

parameters, that is, the sum of mean square error of the S × S × (B × 5 + C) dimensional vector21
output by the network and the corresponding S × S × (B × 5 + C) dimensional vector of the real22
image. Since the priority classification has been performed, the classification error can be omitted.23
Finally, the error formula can be expressed as:24

��݋� =
�=0

S2

coordError + IoUError� (10)

where, coordError indicates the coordinate error between the prediction data and the25
calibration data, and IoUError denotes the IoU error.26

Because different types of errors contribute different values to the loss scores, λcoord = 5 is27
used to correct the coordError when calculating the loss score. When calculating the IOU error, the28
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contribution of the IoU error to the network loss is different between the bounding box containing1
the target defect and the bounding box containing no target defect. If the same weight is used, when2
calculating the network parameter gradient, the confidence score of the bounding box that does not3
contain the object is approximately 0. Additionally, the influence of the confidence error of the4
bounding box that contains the object is enlarged in disguise. Therefore, λnooobj = 0.5 is used to5
correct the IoUError. The revised loss score calculation formula is presented as follows:6

��݋� = �coord
�=0

S2

�=0

B

��, �
��݋ �� − ��� 2 + �� − �� � 2��

+ �coord
�=0

S2

�=0

B

��, �
��݋ �� − �� �

2
+ �� − �� �

2

��

+
�=0

S2

�=0

B

��, �
��݋ �� − ���

2
+ ��݋݋��

�=0

S2

�=0

B

��, �
��݋݋� �� − ���

2
����

(11)

Where, xi, yi, wi, hi are the parameter values of the ground truth box; x�i, y�i, w� i, h� i are the7
parameter values of the bounding box; S is the number of divided meshes; B is the number of8
bounding boxes predicted for each grid; �i, j

obj determines whether the j-th bounding box of the i-th9
grid contains the target defect; Ci is the confidence score of the ground truth box of the target defect,10
C�i is the confidence score of the bounding box of the target defect; �i, j

noobj indicates that the j-th11
bounding box of the i-th grid contains no target defects.12

In the experiment, we use the average test time of an image to characterize the detection rate of13
the model. The calculation formula is as follows:14

� = �=1
� ���
�

(12)

where, t is the average detection time, T is the detection time of each image, and N is the total15
number of images to be detected.16

The detection time depends on both of the complexity of the neural network and the number17
of bounding boxes generated in the detection process. The difference in the detection rate of18
different defects is caused by the unequal number of ground truth boxes.19

4. Experiments and Discussions20

The configuration of the hardware and software platforms used in our experiment is presented21
as follows: GPU is NVIDIA Corporation GP102 [TITAN X], operating system is Ubuntu, and the22
deep learning framework is DarkNet.23

4.1. Selection of Image Dataset24

The dataset is the foundation of image processing based on deep learning. In the current25
experiment, we chose an open source dataset whose name is NEU-DET Dataset [52]. This dataset26
contains 6 types of hot-rolled steel strip defects, including crazing (Cr), inclusion (In), patches (Pa),27
pitted surface (PS), rolled-in scales (RS), and scratches (Sc). Each defect has 300 images, and each28
image contains one type of defects mentioned above. Defects in the image are labeled by the29
LabelImg software, saving as annotation files in XML format. The steel strip defects in the image are30
marked with a rectangular frame called ground truth box. Additionally, the coordinate information31
of the ground truth box is recorded in the annotation files. The entire dataset contains over 500032
ground truth boxes. Figure 5 presents the examples of annotated defect images in the NEU-DET33
dataset.34

35
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Cr In Pa PS RS Sc

Figure 5. Examples of annotated defect images in the NEU-DET dataset.1

4.2. Test Results of Surface Defects Detection of Steel Strips2

The surface defects images of the steel strips were trained by the CP-YOLOv3-dense network3
proposed in the current work. During the training process, an asynchronous stochastic gradient4
descent with a momentum term of 0.9 is used, the initial learning rate of the weight is 0.001 and the5
attenuation coefficient is set to 0.0005. More training samples were generated by adjusting the6
saturation, exposure and overall tone. The final test results are shown in Table 2, and the7
visualization of part of the defect image detection results can be found in Figure 6.8

Table 2. The detection results of different types of defects.9

Parameters Defect types Average
valueCrazing Inclusion Patches Pitted

Surface
Rolled-in
Scale

Scratches

mAP/% 71.4 82.4 91.9 82.8 77.7 90.2 82.73
P 0.725 0.912 0.976 0.821 0.763 0.942 0.857
R 0.703 0.875 0.921 0.793 0.751 0.892 0.823
F1 0.714 0.893 0.948 0.807 0.757 0.916 0.839
t/ms 14.35 7.57 12.98 5.89 9.81 7.48 9.68

10

Figure 6. Visualization of part of the defect image detection results11
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Figue 7 is the change curve of the loss function during the training process. Obviously, the loss1
value drops rapidly during the first 30 epochs, indicating that the model is quickly fitting. Then, the2
loss value gradually decreases with the number of epochs, and tends to 0. When the number of3
epochs is 200, the loss value has been basically unchanged and divided into 3 gradients. The loss4
function of the defect Pa converges the best, and the corresponding loss value is less than 0.05.5

Figure 8 shows a curve that the mean average precision of six kinds of defect detection changes6
with the number of epochs. Obviously, the mean average precision increases rapidly with the7
number of epochs, and then tends to remain stable. With the defect Pa as an example, when the8
number of epochs is 186, the mean average precision reaches the maximum value of 91.9%.9
Therefore, the weight parameters of 186 iterations are selected as the optimal model parameters.10

Although our experiment results are reasonable and have been able to meet the detection11
requirements of steel strips, there is still an opportunity to further improve the performance of our12
model. Especially for defects Cr and PS, the detection accuracy is not high enough. It can be13
observed that the defect Cr is small and narrow, showing a linear shape. However, when the image14
features are extracted by convolutional networks, the filters used are squares with a size of S×S,15
which will result in loss of features and a decrease in detection accuracy. At present, the model16
proposed in current work realizes the reuse and fusion of features. Next, we will consider17
improving the feature extraction methods, such as simultaneous sample and feature selection [53],18
using linear discriminant analysis [54], etc., to further improve the performance of our model. The19
problem of lower detection accuracy of defect PS is mainly caused by labeling errors. The defects in20
the image cluster together, and the dividing lines between different defects are difficult to21
distinguish, resulting in a large gap between the bounding boxes and the ground truth boxes. In the22
future work, We will use auxiliary annotation tools and cross-checking algorithm to improve the23
accuracy of data annotation, avoid large errors caused by manual annotation, and thus improve the24
accuracy and availability of the annotation data.25

26

Figure 7. The change curves of loss value.27

28

Figure 8. The change curves of mean average precision.29
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4.3. Comparison Experiment of Different Models1

To verify the effectiveness of the proposed model, it is compared with other deep learning2
models. We employ classic object detectors (Faster RCNN and DNN), more state-of-the-art object3
detectors (Centernet and YOLOv4) and the original YOLOv3 network to detect the surface defects4
of the steel strips in the dataset, and compare the detection results with the methods proposed in5
the present study, as shown in Table 3. According to the mean average precision of the six defect6
detections, the CP-YOLOv3-dense network model we proposed is 6.65% higher than the original7
YOLOv3 network and 10.6% higher than the DNN network used in reference [55], and it is slightly8
higher than the state-of-the-art object detectors. The detection speed is slightly lower than the9
original YOLO network. This lies that the improved network needs to read memory frequently due10
to channel superposition, which slows down the model training and prediction speed.11

According to the different shape of defects, the six types of defects in the dataset can be12
divided into two categories, namely planar defects and linear defects. An image of defect Patches13
(planar defects) and an image of defect Crazing (linear defects) were selected randomly from the14
detection results of various models in Table 3, which are shown in Figure 9. The classic object15
detector has a large number of missed detections, and the detection accuracy is low. The16
state-of-the-art object detectors are effective in detecting planar defects, but when detecting linear17
defects, the detection accuracy is much lower than our proposed method. This is because the linear18
defect is small and has a long and narrow shape, thus it is easy to cause feature loss during the19
convolution process. The CP-YOLOv3-dense network proposed by us uses the output of each layer20
as the input of the next layer to realize the multiplexing and fusion of features, which is more21
suitable for the detection of linear defects.22

Table 3. Comparison of detection results of different deep learning networks.23

Methods Network mAP/ % F1 t/ms
Faster RCNN VGG16 73.12 0.698 17. 14
DNN [55] ResNet34 74.80
Centernet DLA34 82.01 0.850 12.43
YOLOv4 DarkNet 80.86 0.817 7.85
YOLOv3 DarkNet 77.57 0.754 8.95

Our method DarkNet+DenseNet 82.73 0.839 9.68
24

Faster RCNN DNN

Centernet YOLOv4
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YOLOv3 Our method

Figure 9. The comparison of defect pa detection results using different deep learning networks.1

4.4. Improvement of Cluster based on Images in Dataset2

YOLO network improves the performance of target detection by introducing anchor box as a3
priori box [49]. Additionally, it is conducive to the learning of the neural network by selecting a4
suitable a priori frame, thereby improving the accuracy of steel strips defect detection. Therefore,5
we use K-means algorithm to cluster the target frame of the dataset in the process of detection. We6
define the following distance function through IoU.7

� box, centroid = 1 − IoU box, centroid (13)

where, centroid represents the center of the cluster, box represents the sample, IOU (box,8
centroid) represents the intersection ratio of the cluster center box and the cluster box.9

Figure 10 shows the clustering experiment results of different steel strip surface defect datasets,10
revealing the relationship between K value and distance. Considering the influence of K value on11
the model parameters, K = 6 was selected in our experiment. At this time, the shape of the anchor12
box generated by clustering is more in consistence with the shape of defects in NEU-DET dataset.13
The ratio of the length and width of the anchor box is obtained through clustering, and then14
multiplied by the resized picture size. Finally, the anchor parameters in our experiment are15
obtained which can be found in Table 4.16

17

Figure 10. The relationship between K value and IoU.18

Table 4. The setting of anchor parameters.19

Defect names Avg IoU Anchor parameters
Crazing 0.7757 [56, 161], [47, 112], [94, 434], [38, 82], [69, 273], [31, 60]
Inclusion 0.7720 [29, 62], [47, 103], [67, 221], [87, 420], [38, 78], [51, 147]
Patches 0.7379 [136, 165], [89, 129], [125, 275], [132, 94], [181, 311], [69, 64]

Pitted Surface 0.8053 [71, 76], [286, 421], [434, 436], [106, 390], [185, 430], [123, 159]
Rolled-in Scale 0.7456 [109, 150], [246, 221], [154, 165], [224, 125], [147, 293], [103, 78]
Scratches 0.7128 [33, 395], [441, 62], [35, 154], [60, 441], [90, 441], [197, 35]
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4.5. The Effect of the Ground Truth Box on the Detection Results1

The image dataset used in our experiment is the NEU-DET Dataset. During the experiment, a2
very strange phenomenon occurred. During the training process using the CP-YOLOv3-dense3
network, the mAP of the defect Crazing will not increase with the increase of epochs, and it will4
always oscillate back and forth between the value of 0.1 and 0.3, which can be found in Figure 11.5
We observed the morphology of defect Crazing, finding that this defect’s shape was small and6
densely distributed. The original images in NEU-DET Dataset are labeled with larger ground truth7
boxes. Each box contains several smaller Crazing defects, and this labeling method is unreasonable.8
We relabeled the images containing Crazing defects, and smaller ground truth boxes were selected.9
Each box contains only one defect, and then the CP-YOLOv3-dense network is used to train the10
relabeled dataset. The mAP value improved steadily. Under the CP-YOLOv3-dense network, the11
mAP of the original defect Crazing detection is 0.353 and the detection time is 7.67ms. The mAP of12
the relabeled defect Crazing detection is 0.714, and the detection time is 14.35ms. In the end, the13
detection accuracy was improved by 102.27%, and the detection speed was decreased by 87.1% due14
to the increase of bounding boxes. Figure 12 shows the comparison of the detection results of defect15
Crazing.16

17

Figure 11. The mAP of defect Crazing changes with epochs.18

Relabel

Original

label

Figure 12. Comparison of detection results of defect Crazing with different labels.19

5. Conclusions20
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(1) We propose a CP-YOLO-dense network for the detection of surface defects on steel strips.1
Through performing priority classification, the improved YOLO network does not need to predict2
the probability of the defect category, thereby improving the detection accuracy. Secondly,3
DenseNet is used to replace the original transmission layer with lower resolution. Therefore, the4
model can receive multi-layer convolutional features output by densely connected blocks before5
making predictions, consequently enhancing feature multiplexing and fusion. The results6
demonstrate that the recognition precision of the CP-YOLOv3-dense network model is 85.7%, the7
recall rate is 82.3%, the mean average precision is 82.73%, and the detection time of each image is8
9.68ms, which are superior to other deep learning networks9

(2) The K-means clustering algorithm is used to perform cluster analysis on the images in the10
NEU-DET dataset to find an appropriate size of anchor box. The results demonstrate that when K =11
6, the shape of the anchor box generated by clustering is more in line with the appearance of defects12
in the NEU-DET dataset. Through testing the CP-YOLO-dense network model detection speed, we13
found that the detection speed of the improved network is 1.77 times faster than Faster RCNN14
network.15

(3) This study refines annotation for images containing defect Crazing. The mAP curve of the16
relabeled dataset steadily rises during training, and the average detection precision is improved by17
102.27% under the CP-YOLOv3-dense network.18

(4) Currently, the model proposed by us realizes the reuse and fusion of features, but there is19
still an opportunity to further improve its performance. In future work, we will consider further20
improving the detection accuracy by changing the feature extraction methods.21
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