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Abstract
Background: Lysophosphatidic acid (LPA), a prototypic 
member of a large family of lysophospholipids, has been re-
cently shown to play a role in immune responses to respira-
tory diseases. The involvement of LPA in allergic airway in-
flammation has been reported, but the mechanism remains 
unclear. Object: We analyzed the biological activity of LPA in 
vitro and in vivo and investigated its role in allergic inflam-
mation in mice using an LPA receptor 2 (LPA2) antagonist. 
Methods: We used a murine model with acute allergic in-
flammation, in which mice are sensitized and challenged 
with house dust mite, and analyzed airway hyperresponsive-
ness (AHR), pathological findings, Th2 cytokines, and IL-33 in 
bronchoalveolar lavage fluid (BALF) and lung homogenates. 
The effect of LPA on Th2 differentiation and cytokine pro-
duction was examined in vitro using naive CD4+ T cells iso-
lated from splenocytes. We also investigated in vivo the ef-
fects of LPA on intranasal administration in mice. Results: 
The LPA2 antagonist suppressed the increase of AHR, the 

number of total cells, and eosinophils in BALF and lung tis-
sue. It also decreased the production of IL-13 in BALF and 
IL-33 and CCL2 in the lung. LPA promoted Th2 cell differen-
tiation and IL-13 production by Th2 cells in vitro. Nasal ad-
ministration of LPA significantly increased the number of to-
tal cells and IL-13 in BALF via regulating the production of 
IL-33 and CCL-2-derived infiltrating macrophages. Conclu-
sion: These findings suggest that LPA plays an important 
role in allergic airway inflammation and that the blockade of 
LPA2 might have therapeutic potential for bronchial asthma.

© 2020 S. Karger AG, Basel

Introduction

Lysophosphatidic acid (LPA) is one of the lysophos-
pholipids found mainly in blood plasma. LPA is derived 
from the hydrolysis of phosphatidylcholine, which is pro-
duced in liver by autotaxin (ATX). Lysophospholipids 
such as lysophosphatidylcholine and lysophosphatidyl-
ethanolamine, which are generated by activated platelets, 
are also a source of LPA [1–4]. LPA mediates a variety of 
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biological responses, including cell proliferation, smooth 
muscle contraction, platelet aggregation, neurite retrac-
tion, and cell motility [1–3].

A previous report showed that LPA may be related to 
the pathogenic process of several respiratory inflamma-
tory diseases. LPA levels were increased in bronchoalveo-
lar lavage fluid (BALF) [5] and exhaled breath condensate 
of patients with idiopathic pulmonary fibrosis [6]. More-
over, previous reports have shown that LPA plays an im-
portant role in immune responses. It has been reported 
that LPA enhanced IL-13 gene expression in T cells in 
vitro [7]. LPA and eotaxin induced chemotaxis and the 
Ca flux response of Th2 cells [8]. LPA and ATX were im-
plicated in lymphocyte trafficking and the regulation of 
lymphocyte entry into lymph nodes by producing high 
local concentrations of LPA in the high endothelial ve-
nules of lymph nodes [9, 10]. Furthermore, LPA was 
shown to activate other immune cells such as neutrophils, 
mast cells, and macrophages [11]. In the airway structur-
al cells, LPA stimulated IL-8 production in human bron-
chial epithelial cells by activating p38 MAP kinase and 
JNK [12]. LPA enhanced the contraction of airway 
smooth muscles [13]. These findings led to our hypoth-
esis that LPA may be related to the exacerbation of allergic 
lung inflammation. Previous reports as described below 
support our hypothesis. LPA in BALF in bronchial asth-
ma patients was significantly increased after allergen 
challenge [1, 14]. In vivo studies with guinea pigs showed 
that inhalation of LPA increased the numbers of total 
cells, neutrophils, and eosinophils in the BALF [15].

There are 6 receptors LPA1–LPA6, which are high-
affinity G-protein-coupled receptors [1–3]. Experimental 
mice administered an LPA1 antagonist [16] or mice defi-
cient in LPA1 were found to have strong protection from 
lung fibrosis and mortality [5]. Similarly, LPA2 deficien-
cy also protected against bleomycin-induced lung injury 
and fibrosis [17]. Some reports showed that LPA/LPA re-
ceptors were also related to pathogenesis in arterial scle-
rosis and rheumatoid arthritis [18, 19]. The siRNAs of 
LPA1–3 were effective in reducing IL-8 production in 
bronchial epithelial cells in vitro [12]. In bronchial asth-
ma, LPA2+/− mice exposed to Schistosoma mansoni eggs 
had a significant reduction in Th2-dominant airway in-
flammatory responses [20]. Importantly, LPA1–4 are ex-
pressed on bronchial epithelium in the order of LPA2 > 
LPA4 > LPA1 ≥ LPA3 in mouse tracheal epithelial cells 
[20]. LPA2 mRNA is highly expressed in the lungs of mice 
[20]. According to these previous reports, LPA1–3 may 
have efficacy as a target molecule for controlling respira-
tory disease, and, in particular, LPA2 antagonists may be 

attractive agents for suppressing LPA receptor function 
in bronchial asthma. However, there are no reports de-
scribing the effects of LPA2 antagonists in bronchial asth-
ma.

H2L5186303 ((Z,Z)-4,4′-[1,3-phenylenebis(oxy-4,1-
phenyleneimino)]bis[4-oxo-2-butenoic acid]) is a selec-
tive LPA2 receptor antagonist (IC50 = 9 nM), which does 
not inhibit LPA1 and LPA3 receptors, as they need much 
higher concentrations to inhibit them (IC50 = 27,354 and 
4,504 nM, respectively) (Cayman Chemicals, Dallas, TX, 
USA). H2L5186303 prevented intercellular gap formation 
in endothelial cells and suppressed atherosclerosis [4]. 
The ATX/LPA axis contributes to tumor cell progression 
including fibrosarcoma and breast cancer in vitro, and 
H2L5186303 inhibited tumor cell proliferation [21, 22].

In this report, we investigated if LPA contributes to al-
lergic airway inflammation and showed that it promotes 
the differentiation of Th2 cells, leading to the induction 
of allergic inflammation. Moreover, we showed that an 
antagonist of LPA2 was effective in suppressing these re-
sponses.

Materials and Methods

Detailed methods are described in the online supplementary 
material (see www.karger.com/doi/10.1159/000509804 for all on-
line suppl. material).

Antigen and Agent Preparation
House dust mite antigen (Dermatophagoides pteronyssinus, 

Dp) was purchased from Cosmo Bio (Tokyo, Japan). Endotoxin 
removal solution (Sigma-Aldrich Japan, Tokyo, Japan) was used 
to reduce the endotoxin concentration. After removal, Dp endo-
toxin levels were under 0.5 IU/mg.

LPA was purchased from Santa Cruz Biotechnology (Dallas, 
TX, USA). It was dissolved in normal saline at the concentration 
described in each experiment. The potent and selective LPA2 re-
ceptor antagonist, H2L5186303 (Z,Z)-4,4′-[1,3-phenylenebis(oxy-
4,1-phenyleneimino)]bis[4-oxo-2-butenoic acid] was purchased 
from R&D Systems, Inc. (Minneapolis, MN, USA). It was dis-
solved in DMSO to 100 mM. IL-33 was purchased from R&D Sys-
tems, Inc.

Mouse Experimental Protocols
Five-week-old female BALB/c mice were purchased from 

CLEA Japan, Inc. (Tokyo, Japan). Mice were maintained in the 
animal facility of Tokushima University under specific pathogen-
free conditions, according to the guidelines and approval of the 
ethics committee of our university [23].

We used 2 different models. In the first protocol, we generated 
acute allergic inflammation model with LPA2 antagonist treat-
ment (Fig. 1a). On days 0 and 7, mice were sensitized by intraper-
itoneal injections of 10 μg of Dp dissolved in 500 μL saline and 
mixed with 1 mg of alum (Sigma-Aldrich Japan, Tokyo, Japan), 
and all mice were then challenged intranasally with 10 μg (10 μL) 
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of Dp in 60 μL saline every other day, 3 days per week, from day 14 
to 25. LPA2 antagonist (10 μg/mouse) was administered intrana-
sally into Dp-challenged mice 30 min before Dp challenge. Mice 
were euthanized on day 26.

The second model was an LPA intranasal administration mod-
el, which investigated the inflammatory effects of LPA on bron-
chial allergic inflammation. All mice were challenged intranasally 
with 10, 50, and 100 μg (in 10 μL) of LPA in 60 μL saline on days 
0, 2, 4, 6, and 8. Mice were euthanized on day 9 (Fig. 5a).

IL-33 was administered intranasally, using the same protocol 
as for the LPA intranasal administration model, as a positive 
control model in order to investigate the innate lymphoid cells 
(ILC) 2. All mice were challenged intranasally with 500 ng of IL-
33 in 70 μL saline on days 0, 2, 4, 6, and 8, and were euthanized 
on day 9. Each experiment was performed using 5–6 mice per 
group.
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Fig. 1. Assessment of airway resistance and PC200 after Dp chal-
lenge. a Protocols for LPA2 antagonist treatment model. b The 
concentration of LPA in BALF in mouse model. LPA concentra-
tion was measured by ELISA. Data are expressed as means ± SE 
and are representative of 2 independent experiments. White bar: 
control (n = 7). Black bar: Dp/DMSO (n = 8). Shaded bar: Dp/
LPA2 antagonist (n = 7). c Assessment of airway resistance after 
Dp challenge and LPA2 antagonist treatment. d The value of 

PC200 assessed by airway hypersensitivity following Dp challenge 
and LPA2 antagonist treatment. Data are expressed as means ± SE 
of 6 mice and are representative of 3 independent experiments.  
*p < 0.05 compared with NS/DMSO mice. †p < 0.05 compared with 
Dp/DMSO mice. Dp, Dermatophagoides pteronyssinus; LPA, lyso-
phosphatidic acid; LPA2, LPA receptor 2; BALF, bronchoalveolar 
lavage fluid.
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Plethysmography
Lung resistance (RL) was measured by restrained whole-body 

plethysmography (Buxco Electronics, Troy, NY, USA). The pro-
vocative concentration of Mch that caused a 200% increase in RL, 
PC200, was calculated by linear interpolation of the dose-response 
curves [24].

Histopathology and Immunohistochemistry
The lung tissue was fixed in 10% formalin and embedded in 

paraffin. Three-micrometer-thick sections were stained with Luna 
and periodic acid-Schiff (PAS). A BZ-9000 microscope (KEY-
ENCE, Itasca, IL, USA) was used for images and ImageJ software 
was used for the morphological analysis.

Immunohistochemistry was performed using anti-mouse 
CD68 (Abcam, Cambridge, UK). An OLYMPUS BX61 micro-
scope was used for images and Image J software (National Institute 
of Health) was used for morphological analysis. Hot spots of 
CD68-positive cells at 20 fields were counted and averaged out.

Enzyme-Linked Immunosorbent Assays
Cytokines, LPA, and LPA receptors were determined using 

commercial ELISA kits according to the manufacturer’s instruc-
tions. ELISA kits and their sensitivities were as follows: IL-5, IL-
13, IL-33, and CCL2 (R&D Systems, Inc., Minneapolis, MN, 
USA) with sensitivities of 7, 1.5, 14.3, and 7.58 pg/mL, respec-
tively; LPA (Cloud-Clone Corp., Katy, TX, USA) with a sensitiv-
ity of <52.7 ng/mL; and LPA1 and LPA2 (MyBioSource, Inc., San 
Diego, CA, USA) with sensitivities of <0.098 and 0.1 ng/mL, re-
spectively.

Isolation and Stimulation of Naive T Cell Harvest
Spleens were harvested from mouse and were homogenized by 

passage through stainless steel mesh. Cells were suspended in Red 
Blood Cell Lysing Buffer, Hybri-MaxTM (Sigma-Aldrich Japan, To-
kyo, Japan). Next, naive CD4+ T cells were isolated from the cell 
suspensions using auto-MACS (Miltenyi Biotec K.K., Bergisch 
Gladbach, Germany) with Naive CD4+ T Cell Isolation Kits (Milt-
enyi Biotec K.K.) according to the manufacturer’s instructions. 
Naive T cells were plated in 48-well cell culture plates at a final 
concentration of 1 × 106 cells/well using TexMACS Medium with 
CytoBox, Th2 Cell Kit (Miltenyi Biotec K.K.). Then, T cells were 
incubated with beads coated with CD3/CD28 antibody (T Cell Ac-
tivation Expansion kit; Miltenyi Biotec K.K), LPA, LPA1 antago-
nists, and LPA2 antagonists for 24 h to evaluate LPA and its an-
tagonist effect on Th2 differentiation. T cells were collected after 
LPA, LPA1 antagonist, and LPA2 antagonist stimulation and were 
used in flow cytometry studies. Supernatants were also harvested 
and stored at −80°C for the measurement of cytokines.

Isolation and Analysis of ILC2s
ILC2s were collected from 5 murine spleens and 5 murine pairs 

of lungs. Lungs were minced and digested with DNase I (Roche, 
Branford, CT, USA) and collagenase I (Roche) for 1 h at 37°C to 
obtain single cell suspensions. Spleens were minced to obtain sple-
nocytes. After mashing through 100-μm cell strainers, the cells 
were incubated with anti-CD16/CD32 to block Fc receptors before 
antibody staining. The cells were stained with antibodies for lin-
eage markers (CD3, CD45R, CD11b, TER-119, and Gr-1), CD127, 
CD25, CD117/c-kit, and Sca-1. ILC2s were identified as Lin−Sca-
1+c-Kit+CD127+CD25+ cells and isolated on a Sony LE-SH800 cell 

sorter (Sony Biotechnology Inc., San Jose, CA, USA) with a 100-
μm sorting chip.

The isolated ILC2s were cultured at a concentration of 2,500 
cells per well in 96-well round bottom plates using base medium. 
In order to evaluate the production of IL-13, the cells were incu-
bated with IL-2 (20 ng/mL) and IL-7 (20 ng/mL) and stimulated 
with LPA (1 nM), IL-33 (100 ng/mL), and LPA (1 nM) + IL-33 (100 
ng/mL) for 4 days. The supernatant was harvested and stored at 
−80°C.

Flow Cytometric Analysis
T cells and ILC2 cells were incubated with anti-CD16/CD32 to 

block Fc receptors before staining and were stained with the anti-
bodies described online suppl. material. Th2 cells were sorted and 
analyzed on an LE-SH800BC cell sorter (Sony Japan, Tokyo, Japan; 
online suppl. Fig. 1). The numbers of ILC2 were analyzed with BD 
LSRFortessa (BD Biosciences, San Diego, CA, USA).

Statistical Analysis
Experimental results were expressed as mean ± SE. Experimen-

tal groups were compared using 1-way ANOVA. If statistical sig-
nificance was identified by ANOVA, a Tukey post hoc test was 
used to correct for multiple comparisons. Statistical analyses were 
performed using GraphPad PRISM software (5.01; GraphPad 
Software, Inc., LA Jolla, CA, USA). p values <0.05 were considered 
significant.

Results

LPA Increase in Allergic Inflammation and  
Inhibition of Airway Hyperresponsiveness by an  
LPA2 Antagonist
First, we examined if LPA is elevated in the lungs of our 

allergic inflammation model. The value of LPA in the BALF 
of Dp/DMSO was significantly increased compared to con-
trol/DMSO mice (Fig. 1b). LPA2 antagonist H2L5186303 
treatment did not affect the LPA level in the BALF (Fig. 1b). 
To examine the effects of H2L5186303 on airway hyperre-
sponsiveness (AHR) in the model, we assessed lung resis-
tance (RL) and AHR using PC200 by restrained plethys-
mography. Repeated-measures 2-way ANOVA showed 
that the curves for all groups were significantly different. 
The value of RL over 25 mg/mL of methacholine in Dp/
DMSO mice was greater than in NS/DMSO mice. 
H2L5186303 significantly reduced airway resistance in Dp/
LPA2A mice compared to that in Dp/DMSO mice over 
12.5 mg/mL of Mch (Fig. 1c). Regarding PC200, the AHR 
of Dp/DMSO mice was significantly decreased compared 
to that of NS/DMSO mice (Fig. 1d). However, the AHR of 
Dp/LPA2A mice was significantly restored compared to 
that of Dp/DMSO mice (Fig. 1d). These findings suggest 
that administration of an LPA2 antagonist improved AHR 
in an allergic inflammation mouse model.
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Inhibition of Allergic Inflammation by an LPA2 
Antagonist
In the LUNA-stained lung sections, eosinophils had 

infiltrated in Dp/DMSO mice following Dp challenge, al-
though they were decreased when the mice were treated 
with H2L5186303 (Dp/LPA2A) (Fig. 2a). The number of 
infiltrating eosinophils under the subepithelium in-
creased in Dp/DMSO mice compared to NS/DMSO mice 
(Fig. 2b). Treatment with H2L5186303 significantly de-
creased the numbers of infiltrating eosinophils (Fig. 2b). 
The PAS staining also showed mucous metaplasia in air-

way epithelial cells in Dp/DMSO mice (Fig. 2a), and the 
PAS-positive cells were decreased by treatment with 
H2L5186303 (Fig.  2a). The percentage of PAS-positive 
area in Dp/DMSO mice was increased compared to that 
in Dp/LPA2A mice (Fig. 2c).

Inhibition of Inflammatory Cell Infiltration and 
Cytokine Production by an LPA2 Antagonist
We next assessed airway inflammation using BALF. 

BALF was collected and cell classifications were per-
formed as described in the Materials and Methods. The 
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total cell counts in the BALF in Dp/DMSO mice were sig-
nificantly higher than those in Dp/LPA2A mice (Fig. 3a). 
In particular, eosinophils increased in Dp/DMSO mice 
compared to those in NS/DMSO mice (Fig. 3a). On the 
other hand, treatment with H2L5186303 significantly de-
creased the numbers of eosinophils in Dp/LPA2A mice, 
as compared with Dp/DMSO mice (Fig. 3a).

The levels of Th2 cytokines, including IL-5 and IL-13, 
in Dp/DMSO mice were higher than those in control/
DMSO mice; administration of H2L5186303 significant-
ly decreased the production of these interleukins (Fig. 3b, 
c). We also examined IL-33 in lung homogenates, as it 
was not detected in the BALF. The value of IL-33 in the 

lung of Dp/DMSO was significantly increased compared 
to that of NS/DMSO mice (Fig.  3d). Treatment with 
H2L5186303 significantly decreased IL-33 production in 
Dp/LPA2A mice (Fig. 3d). The value of CCL2 in the lungs 
of Dp/DMSO was significantly increased compared to 
that of NS/DMSO mice, and administration of 
H2L5186303 significantly decreased CCL2 production 
(Fig. 3e).

Effect of LPA on the Differentiation of Naive T Cells 
into Th2 Cells
Previous reports demonstrated that blocking ATX ac-

tivity or knockdown of the LPA2 receptor in mice pro-

*
*

DMSO
LPA2A – + – +

NS Dp

+ – + –
0

5

10

15

BA
LF

 IL
-5

, p
g/

m
L *

*

DMSO
LPA2A – + – +

NS Dp

+ – + –

BA
LF

 IL
-1

3,
 p

g/
m

L

0

50

100

150

200
*

DMSO
LPA2A – + – +

NS Dp

+ – + –

*
*

*

0

20

40

60

80

100

Lu
ng

  I
L-

33
, n

g/
m

L

DMSO
LPA2A – + – +

NS Dp

+ – + –

*
*

*

0

200

400

600

800

1,000

Lu
ng

  C
CL

2,
 p

g/
m

L

TC Mp Lym Eo Neu
0

100

200

300

400

ND NDND ND ND ND

*
*

*
*

* *
*

*
N

um
be

r o
f B

AL
F 

ce
lls

, ×
10

4  c
el

ls

■ NS/DMSO
■ NS/LPA2A
■ Derp/DMSO
■ Derp/LPA2A

a

b c d e

Fig. 3. Analyses of cell classification and cytokines in BALF.  
a BALF cell analysis. Cytokine levels in mouse BALF (b, c) and 
lung homogenates (d, e). IL-5 (b), IL-13 (c), IL-33 (d), and CCL2 
(e) were measured by ELISA. Data are expressed as means ± SE of 
6 mice, and are representative of 3 independent experiments. *p < 
0.05. White bars: control (n = 6) and dotted bars: NS/LPA2 an-

tagonist (n = 6). Black bars: Dp/DMSO (n = 6). Shaded bars: Dp/
LPA2 antagonist (n = 6). BALF, bronchoalveolar lavage fluid; TC, 
total cells; Mp, macrophage; Lym, lymphocytes; Eo, eosinophils; 
Neu, neutrophils; Dp, Dermatophagoides pteronyssinus; LPA2, ly-
sophosphatidic acid receptor 2.

D
ow

nl
oa

de
d 

by
: Y

. N
is

hi
ok

a 
- 

58
89

41
21

1.
13

2.
84

.1
34

 -
 8

/2
7/

20
20

 7
:5

8:
35

 A
M



Lysophosphatidic Acid Induces Allergic 
Inflammation

7Int Arch Allergy Immunol
DOI: 10.1159/000509804

duced a marked attenuation of Th2 cytokines and allergic 
lung inflammation [1]. Thus, we examined the expression 
of LPA receptors on naive T cells, and LPA2 receptors 
were more highly expressed on T cells compared to ex-
pression of LPA1 (LPA1 vs. LPA2 = 2.1 ± 0.17 vs. 3.3 ± 
0.33, respectively; online suppl. Table 1). Therefore, we 

hypothesized that the LPA/LPA2 axis may have a syner-
gistic effect on Th2 differentiation. To clarify this, under 
Th2-inducible conditions, we assessed T cell differentia-
tion by stimulation with LPA in vitro and assessed the 
inhibitory effect of the LPA2 antagonist. As shown in Fig-
ure 4a, IL-13 production in T cells stimulated by 1 nM of 
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LPA tended to increase compared to unstimulated T cells. 
Although T cell activation using beads coated with CD3/
CD28 antibodies (CD3/28) increased IL-13 production in 
T cells, IL-13 production was significantly increased in T 
cells co-stimulated with anti-CD3/28 and 1 nM of LPA 
compared to those stimulated with anti-CD3/28 alone 
(Fig. 4a). By flow cytometry, the percentage of IL-5+IL-13+ 
T cells (Th2 cells) incubated with anti-CD3/28 and 1 nm 
of LPA was increased compared to T cells incubated in 
both medium and with anti-CD3/28 (Fig. 4b). The LPA2 
antagonist H2L5186303 significantly decreased IL-13 
production in a dose-dependent manner (Fig. 4c). On the 
other hand, the LPA1 antagonist, AM095, did not affect 
IL-13 production (online suppl. Fig. 3). These findings 
suggest that LPA may have a synergistic effect on the dif-

ferentiation of naive T cells into Th2 cells. In addition, the 
main functional receptor impacting the differentiation of 
Th2 cells may be LPA2.

LPA Induces IL-33 Production
We showed that abundant IL-33 production in Dp/

DMSO mice was decreased by LPA2 antagonist treat-
ment (Fig. 3d), leading us to consider that LPA contrib-
utes to IL-33 production directly. To clarify this, we ex-
amined the BAL cytology and histopathology of the ex-
perimental group administered LPA (Fig. 5a). As shown 
in Figure 5b, the numbers of total cells and macro-
phages were increased in an LPA dose-dependent fash-
ion (10, 50, and 100 μg) compared to the control group. 
LPA administration induced a significant increase in 
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the levels of IL-13 in the BALF in a dose-dependent 
manner compared with those of control mice, but did 
not affect IL-5 production (Fig. 5c, d). As shown in Fig-
ure 5e, nasal administration of LPA significantly in-
creased IL-33 in lung homogenate (Fig. 5e). Similarly, 
IL-33 in lung homogenate correlated with IL-13 in 
BALF (R = 0.5910 and p = 0.0048), indicating that IL-33 
increased by LPA stimulated the production of IL-13 in 
BALF (Fig. 5f). These findings indicated that LPA also 
contributed to the induction of bronchial allergic in-
flammation through IL-33 production as well as Th2 
differentiation.

LPA Contributes to IL-33 Production by Limiting the 
Infiltration of Macrophages
IL-33 was produced by bronchial epithelial cells, mast 

cells, and macrophages by various stimuli [25]. There-
fore, we next examined the cellular sources of IL-33 pro-
duction in mice that received intranasally administered 
LPA. Initially, we examined bronchial epithelial cells, but 
the production of IL-33 was not detected in bronchial 
cells stimulated with LPA (data not shown). Therefore, 
we focused on macrophages as the source of IL-33. CD68-
positive cells (macrophages) infiltrated following LPA 
stimulation (Fig. 6a). The number of CD68-positive cells 
in the LPA groups was increased in a dose-dependent 
manner (Fig.  6b). In addition, the number of macro-
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Fig. 6. Macrophage infiltration and IL-33 production in LPA in-
tranasal administration. a Histopathology (HE and CD68) in the 
lungs. Original magnification in all figures, ×100. Scale bars in all 
figures, 100 μm. b The number of CD68 positive cells (macro-
phages). Data are expressed as means ± SE of 6 mice and are rep-
resentative of 3 independent experiments. *p < 0.05 compared with 
control group. †p < 0.05 compared 100 μg of LPA treatment. White 
bars: control (n = 6). Black bar: LPA treatment group. c Correla-

tion between macrophages and lung homogenate IL-33. x axis: 
macrophage (CD68+ cells). y axis: lung IL-33. d Levels of CCL2 in 
mouse lung homogenates. Cytokines were measured by ELISA. 
Data are expressed as means ± SE of 6 mice and are representative 
of 2 independent experiments. *p < 0.05 compared with control 
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phages showed a correlation with IL-33 in lung homog-
enate (r = 0.6326 and p = 0.0002), indicating that macro-
phages may play a role in the increase of IL-33 in lungs 
stimulated with LPA (Fig. 6c). In addition, we examined 
the influence of macrophage infiltration to the site of al-
lergic inflammation through LPA2. As shown in online 
suppl. Table 1, LPA receptors were detected in BAL cells, 
but the levels of LPA1 were higher than those of LPA2 in 
BAL cells. CCL2 production increased in an LPA dose-
dependent manner (Fig.  6d), and administration of an 
LPA2 antagonist affected CCL2 production in lungs with 
allergic inflammation (Fig.  3e). These findings suggest 
that LPA induced CCL2 production, which resulted in 
macrophage infiltration and the IL-33 production. More-
over, these findings also suggest that the LPA2 antagonist 
suppressed the CCL2-derived macrophage infiltration.

LPA Does Not Affect ILC2 Infiltration and Activation
As shown in online suppl. Figure 2a and b, the number 

of ILC2 was increased in acute allergic inflammation 
model, and it was suppressed by LPA2 antagonist. ILC2 
were increased significantly by IL-33, not by LPA in nasal 
administration model (online suppl. Fig. 2a, b). In in vitro 
experiments, the value of IL-13 was significantly in-
creased in the supernatants of ILC2 stimulated by IL-33, 
but it was not increased following LPA stimulation (on-
line suppl. Fig. 2c).

Discussion

In the present study, we demonstrated that LPA played 
a role in allergic inflammation via differentiating Th2 
cells and activating macrophages. In addition, LPA2 re-
ceptor blockade can have a potential therapeutic effect on 
bronchial asthma, and we hypothesized that inhibition of 
the LPA receptor by a receptor antagonist could control 
the exacerbation of asthma. We confirmed that LPA2 an-
tagonist administration suppressed allergic inflamma-
tion, including the total number of cells, eosinophil infil-
tration, and increased Th2 cytokines in BALF in our asth-
ma model. This suggests that LPA2 antagonists are 
effective therapeutic modalities in our acute allergic in-
flammation model.

Our data clearly show that LPA promoted Th2 differ-
entiation synergistically with Th2 cytokines in vitro, 
probably through the LPA2 receptor. Previous reports 
showed that LPA and the related lysophospholipids had 
various synergistic effects, including apoptosis, cell mi-
gration of T cells, and cytokine synthesis [26–28]. LPA1-

3 receptors are expressed in T cells [7, 8]. Rubenfeld et al. 
[7] reported that LPA stimulation increased IL-13 pro-
duction following CD3 and CD28 stimulation of CD4+ T 
cells harvested from human peripheral blood and that 
LPA activated the IL-13 promoter via regulatory elements 
contained within the proximal 312 bp, which were dis-
tinct from GATA-3. In the present findings, we also dem-
onstrated a similar result for CD4+ T cells harvested from 
mouse spleen by flow cytometry. Moreover, we showed 
that the increase in IL-13 production by LPA stimulation 
was inhibited by LPA2 antagonist treatment in an allergic 
inflammation model. These findings suggest that the 
LPA/LPA2 axis may be important for the Th2-driven in-
flammation seen in acute allergic inflammation.

Recently, regarding Th2 skewing, it is well known that 
IL-33 induces the ILC2 to produce Th2 cytokines, includ-
ing IL-5 and IL-13 [29, 30]. Recent studies have shown 
that Th2-high late-onset asthma was severe and less ef-
fected by inhaled corticosteroids, indicating that the main 
causal factor of this phenotype was not Th2 cells but the 
innate lymphoid response, including ILC2 [31]. Other 
studies have reported that lipid mediators such as LTD4 
and PGD2 activated ILC2 directly and not via IL-33 and 
IL-25 [32, 33]. These findings suggest that LPA may con-
tribute to the refractory nature of asthma, as our data also 
showed that an LPA2 antagonist controlled IL-33 pro-
duction. Hence, with reference to the previous report and 
our findings, we considered the possibility that LPA acti-
vates ILC2 directly and investigated the effect of LPA2 on 
ILC2, as described above. In in vivo experiments, the 
number of ILC2 was increased in the acute allergic mod-
el we employed, and their number was markedly in-
creased by IL-33 nasal administration. However, it in-
creased very little following LPA nasal administration. 
Moreover, in in vitro experiment, the level of the Th2 cy-
tokine IL-13 was significantly increased by IL-33 stimula-
tion, but it was not significantly increased by LPA stimu-
lation. These results suggest that LPA does not affect ILC2 
directly but exacerbates allergic bronchial inflammation 
by promoting Th2 differentiation and IL-33 production.

Secondly, we demonstrated that the synergistic Th2 
responses due to IL-33 stimulation were involved in LPA, 
probably through the activation of macrophages, as an-
other important mechanism. LPA administration led to 
IL-33 augmentation in the supernatants of lung homog-
enates, which correlated with our findings of IL-13 in 
BALF in our LPA mouse model (Fig. 5d, e). At first, we 
hypothesized that LPA stimulated bronchial epithelial 
cells to produce IL-33; however, IL-33 was not detected 
in the media supernatants of cultured BEAS-2B cells 
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stimulated by LPA (data not shown). Therefore, we fo-
cused attention on macrophages because IL-33 derived 
from macrophages induced IL-13 production by ILC2 
and increased airway hypersensitivity in influenza-infect-
ed mice [34]. Several studies have reported that macro-
phages produce IL-33 [35, 36]. In the present findings, 
since the number of macrophages correlated with IL-33 
in the lungs, it is likely that LPA may elicit macrophage-
derived IL-33 production, leading to an increase in IL-13 
production in the lungs in our mouse model of allergic 
inflammation.

Based on this, we wondered if the migration of macro-
phage we observed was due to a direct effect of LPA. First, 
we hypothesized that LPA affected macrophages directly 
and made them produce IL-33. However, since the level 
of LPA1 was higher than that of LPA2 on macrophages in 
BALF cells (online suppl. Table 1), we thought that LPA1 
was probably more important for macrophages. A previ-
ous report also showed that LPA1 was important for mac-
rophage infiltration, supporting our conclusion [16]. 
Next, in order to investigate LPA2’s relationship with 
macrophages, we focused our attention on CCL2, which 
is a chemokine of monocytes, macrophages, and T lym-
phocytes and is an activator of monocytes/macrophages 
[37]. In in vivo experiments, CCL2 production was in-
creased in an LPA dose-dependent manner (Fig. 6d), and 
administration of an LPA2 antagonist affected CCL2 pro-
duction in lungs with allergic inflammation (Fig.  3e). 
These findings suggest that LPA induced CCL2 produc-
tion, leading to the infiltration of macrophages and IL-33 
production. Moreover, these findings also suggest that an 
LPA2 antagonist suppressed the CCL2-elicited macro-
phage infiltration. Several previous reports showed that 
LPA induced the expression of CCL2 (MCP-1) in human 
aortic smooth muscle cells and vascular endothelial cells 
[38, 39]. Based on this, our present findings suggest that 
the increase in CCL2 induced by LPA leads to macro-
phage migration and activation and increased production 
of IL-33. Furthermore, an LPA2 antagonist suppressed 
the increase of CCL2, leading us to conclude that LPA2 
plays a critical role in macrophage activation in inflamed 
lungs.

Interestingly, although we demonstrated that the LPA/
LPA2 axis worsened allergic inflammation and that an 
LPA2 antagonist decreased disease, there are several re-
ports that showed the opposite result. For example, an 
LPA2 agonist suppressed allergic eosinophilic bronchial 
inflammation [40]. Emo et al. [41] reported that LPA2 de-
ficiency led to worse asthmatic symptoms. Thus, the effect 
of LPA receptor inhibition for the management of asthma 

is still controversial. The causes of these differences re-
main unknown. It is likely that the differences may be af-
fected by the models based on the kind of antigen expo-
sure, gene manipulation, and the timing of administration 
of the LPA2 antagonist. Emo et al. [41] reported that LPA2 
suppressed allergic inflammation via DC. On the other 
hand, we demonstrated that LPA mainly acts on Th2 dif-
ferentiation and macrophage infiltration, exacerbating 
IL-13/IL-33-mediated allergic inflammation. We could 
potentially explain that the difference in target cells led to 
the differential effect of LPA. Meanwhile, Knowlden et al. 
[40] reported that an LPA2 “agonist” suppressed allergic 
inflammation via IL-4, IL-5, and IL-10 production. In 
contrast, we also demonstrated that the “antagonist” sup-
pressed IL-5 and IL-13 production by suppressing Th2 
differentiation and IL-33 production. Interestingly, both 
the LPA2 “agonist” and the “antagonist” suppressed the 
allergic inflammation via the LPA2 receptor; nevertheless, 
the target cells or molecular mechanisms may be different. 
From this point of view, we consider the LPA/LPA2 axis 
plays an important role in the suppression of allergic in-
flammation. Further examination is necessary in order to 
clarify the molecular mechanism.

In summary, we demonstrated that LPA was impor-
tant for exacerbating allergic inflammation via T cell and 
macrophage activation in an allergic inflammation mod-
el. Moreover, LPA2 antagonist treatment decreased Th2 
differentiation and production of IL-33 in the lungs, sug-
gesting that management of LPA could be a therapeutic 
candidate for severe asthma. Further investigation will be 
required to clarify the role of LPA in airway remodeling 
in chronic asthma.
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