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Abstract 
Alteration of protein O-glycosylation in various human cancers including breast cancer is well known, but 
molecular roles of their aberrant glycosylations on cancer have not been fully understood. We previously reported 

critical roles of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6 or GalNAc-T6) that was upregulated in a 

great majority of breast cancer tissues. Here we further report O-glycosylation of estrogen receptor alpha (ER-α) by  

GALNT6 and the significant role of its nuclear localization in breast cancer cells. Knockdown of GALNT6 expression 

in two breast cancer cell lines, T47D and MCF7, in which both ER-α and GALNT6 were highly expressed, by small 
interfering RNA  could significantly attenuate expression of ER-α. Immunocytochemical analysis clearly 

demonstrated the drastic decrease of ER-α protein in the nucleus of these cancer cells. Accordingly, the 

downstream genes of the ER-α pathway such as MYC, CCND1, and CTSD were significantly downregulated. We 

confirmed GALNT6-dependent ER-α O-glycosylation and identified O-glycosylation of S573 in an F domain of ER-α 

by GALNT6 through LC-MS/MS analysis. We also obtained evidences showing that the glycosylation of ER-α at 
S573 by GALNT6 is essential for protein stability and nuclear localization of ER-α in breast cancer cells. 
Furthermore, we designed cell membrane–permeable peptides including the O-glycosylation site and found a 

significant decrease of the cell viability of breast cancer cells by treatment of these peptides in a GALNT6 

expression–dependent manner. Our study suggests that targeting the GALNT6 enzymatic activity as well as the 

GALNT6/ER-α interaction could be a promising therapeutic approach to ER-α–positive breast cancer patients. 
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troduction 
reast cancer is one of the major malignancies affecting women across 
e world. A total of 266,120 women are estimated to be diagnosed 
east cancer and 40,920 women would die of breast cancer in the 
nited States in 2018 [1]. Approximately 70% of breast cancers 
press/overexpress or have somatic mutations in an estrogen 
ceptor-alpha (ER-α) gene, which plays critical roles in development 
d progression of breast cancer. Inhibitors of an estrogen/ER-α 
gnaling pathway such as selective ER-α modulators (e.g., tamoxifen 
d raloxifene), ER-α downregulators (e.g., fulvestrant), and 
omatase inhibitors (AIs) have been used for hormone receptor– 
sitive breast cancer and significantly improved the prognosis breast 
ncer patients [2–4]. However, these treatment modalities often 
come ineffective because of the intrinsic and acquired endocrine 
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sistance [5,6]. Hence, development of novel molecular-targeted 
ugs for breast cancer to overcome endocrine resistance with higher 
ficacy and low risk of adverse reactions is crucial to further improve 
inical outcome of breast cancer patients. 
Polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6) is an 
zyme which mediates the mucin-type O-glycosylation and has been 
ported to be aberrantly expressed in many types of human cancer 
–9]. GALNT6 expression level was much higher in breast cancers 
mpared to other cancer types [10], especially in the estrogen 
ceptor (ER)–positive breast cancer tissues [11]. We previously 
ported upregulation of GALNT6 in a great majority of breast 
ncers and demonstrated its critical roles in breast cancer through 
crease of cellular adhesion ability and disruption of mammary 
inar morphogenesis [12,13]. We also found its upregulation in 
ncreatic cancer cells, in which GALNT6 could cause a cadherin 
itch (from E-cadherin to P-cadherin) affecting cellular adhesion to 
e underlying matrix [14]. High GALNT6 expression was also 
ported to be correlated with an increased risk of recurrence, lymph 
de metastasis, and chemoresistance in ovarian cancer [15]. It was 
so shown that GALNT6 was highly upregulated in colon 
enocarcinomas compared with adjacent colon tissues, implying 
s important role in colon carcinogenesis [8]. GALNT6 was 
entified as an independent prognostic factor for the poor prognosis 
 gastric cancer patients; high GALNT6 was significantly associated 
ith the low expression levels of E-cadherin as well as the high 
pression levels of MMP9 in gastric cancer tissues [16]. 
Here we demonstrate a possibility of ER-α as a novel substrate of 
ALNT6 and an essential role of GALNT6-mediated O­
ycosylation for the nuclear localization of ER-α in breast cancer 
lls. We also show that cell membrane–permeable peptides including 
e O-glycosylation site of ER-α inhibit the interaction of ER-α/ 
ALNT6, alter cellular phenotypes, and cause the cell death. Our 
ta suggest that targeting the GALNT6 enzymatic activity as well as 
e GALNT6/ER-α interaction could be a promising therapeutic 
proach to ER-positive breast cancers. 
W

ba
T
hu
G
m
an
(1
ra
C
le
(1
T

Id
A

H
pC
48
ta
m
w

aterials and Methods 

ell Culture 
Human cancer cell lines T47D, MCF7, SKBR3, HCC1937, and 
eLa were purchased from American Type Culture Collection and 
ltured according to provider's protocols. Three HeLa cell–derived 
ll lines stably expressing HA-tagged wild-type GALNT6 protein 
eLa-GALNT6-WT) or HA-tagged enzyme-dead H271D­
bstituted GALNT6 protein (HeLa-GALNT6-H271D) and the 
lls transfected with an empty vector (HeLa-Mock) were established 
 previously described [12], and these cells were cultured in the 
edium containing 0.8 mg/ml of G418 (Geneticin). Transfection of 
asmids in the study was performed by using FuGENE 6 reagents 
oche) according to the manufacturer's protocols. Estradiol was 
rchased from Sigma-Aldrich, USA. 

reening of Novel O-Glycosylation Substrates Induced by GALNT6 
For screening a candidate O-glycosylation substrate(s) of GALNT6, 
e performed in vivo metabolic labeling of O-glycosylated proteins using 
alNAz (tetraacetylated N-azidoacetylgalactosamine), which is an azide-
beled sugar for O-glycans [17]. After 72 hours of treatment with 50 μM 
 GalNAz, total proteins were extracted from HeLa cells stably expressing 
ock, GALNT6-WT, or GALNT6-H271D by using CelLytic M 
agent (Sigma-Aldrich) with 1% of Protease Inhibitor Cocktail Set III 
albiochem). The O-glycosylated proteins containing GalNAz were co­
njugated with biotin by Click-iT reaction buffer kit (Invitrogen) and 
en were immunoprecipitated with NeutrAvidin beads (Thermo 
sher). After on-beads Lys-C/Trypsin digestion, eluted O-glycosylated 
oteins were analyzed by tandem mass spectrometry (MS/MS) analysis 
hich performed beta-elimination reaction to remove O-glycans and 
ultaneously substitute originally-glycosylated Ser/Thr to [Ser-1Da] / 
hr-1Da] (-OH N -NH2). 

ALNT6 Knockdown by Small Interfering RNA (siRNA) 
We used siRNA (Sigma-Aldrich) for GALNT6 knockdown and 
C001 Mission siRNA Universal Negative Control (Sigma-Aldrich) 
 control. Briefly, GALNT6-siRNA or control siRNA was 
ansfected into cells by using Lipofectamine RNAiMAX Reagent 
nvitrogen) according to the manufacturer's protocols. Seventy-two 
urs later, cells were collected for further analysis. The target 
quences of siRNA are 5′-GAGAAAUCCUUCGGUGACA-3′ for 
-GALNT6 as previously described [12,14]. 

eal-Time Reverse Transcription Polymerase Chain Reaction 
T-PCR) 
Total RNA was extracted from cells using RNeasy Mini Kit 
iagen) according to the manufacturer's instructions. Total RNA 

 μg) was reversely transcribed using SuperScript III First-Strand 
nthesis System (Invitrogen) to generate cDNA. Aliquots of cDNA 
mples were quantified by the real-time RT-PCR method (qPCR). 
he qPCR was performed using primers listed below using the ViiA 7 
stem (Life Technologies). The expression levels of target genes were 
rmalized with that of GAPDH. The PCR primers were as shown: 
ALNT6 (Hs00926629_m1), ESR1 (Hs00174860_m1), MYC 
s00153408_m1), CCND1  (Hs00765553_m1), CTSD 
s00157205_m1), and GAPDH (Hs02758991_g1) TaqMan 
ene Expression Assays (Thermo Fisher Scientific). 

estern Blot 
Western blot was performed as described previously [14]. Protein 
nds were visualized by ECL detection reagents (GE Healthcare). 
he primary antibodies used in this study were as follows: anti­
man ER-α monoclonal antibody (1:400, Santa Cruz), anti-human 
ALNT6 polyclonal antibody (1:500, Sigma-Aldrich), anti-Flag M2 
onoclonal antibody (1:1000, Sigma-Aldrich), anti-HA monoclonal 
tibody (1:1000, Roche), and anti–β-actin monoclonal antibody 
:10,000, Sigma-Aldrich). The secondary antibodies were goat anti-
bbit or anti-mouse IgG-HRP antibodies (1:10,000-1:30,000, Santa 
ruz). For the detection of O-glycosylated proteins, we performed 
ctin blotting using biotinylated Vicia villosa agglutinin (VVA) lectin 
:1000, Vector Laboratories) and Streptavidin-HRP (1:10,000, 
hermo Scientific). 

entification of an O-Glycosylation Site(s) of ER-α by MS 
nalysis 
For identification of an O-glycosylation site(s) on ER-α protein, 
eLa-GALNT6 stable cells (WT) were transfected with 
AGGSn3FC-ER-α expression vector [18,19] and collected after 
 hours of incubation. Cells were lysed with lysis buffer, and Flag-
gged ER-α protein was immunoprecipitated with anti-Flag 
onoclonal antibody and Protein A/G agarose (Invitrogen). After 
ashing with the lysis buffer five times, immunocomplexes were 
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aded to an SDS-PAGE gel, and protein bands were visualized by 
oomassie stains (Bio-Rad) according to the manufacturer's 
struction. The protein band located at the 66 kDa (where ER-α 
cated) was excised with a clean, sharp scalpel. The excised ER-α 
nd was reduced in 10 mM Tris (2-carboxyethyl) phosphine 
igma-Aldrich) with 50 mM ammonium bicarbonate (Sigma-
ldrich) for 30 minutes at 37°C and alkylated in 50 mM 
doacetamide (Sigma-Aldrich) with 50 mM ammonium bicarbonate 
r 45 minutes in the dark at 25°C. Trypsin/Lys-C (Promega) 
lution was added and incubated at 37°C for 12 hours. The resulting 
ptides were extracted from gel fragments and further incubated 
ith 20% ammonia aqueous solution at 45°C for 12 hours in order 
r β-elimination of O-glycans, resulting in substitution of -OH 
sidues on originally glycosylated Ser/Thr to -NH2. Following 
idification of samples (pH = 3.5), peptides were desalted by Oasis 
LB cartridge (Waters). Then peptides were analyzed with Orbitrap 
usion Lumos mass spectrometer (Thermo Scientific) combined with 
ltiMate 3000 RSLC nano-flow HPLC system (Thermo Scientific) 
ith HCD MS/MS mode. The MS/MS spectra were searched against 
omo sapiens protein sequence database in SwissProt using Mascot 
arch engine in Proteome Discoverer 2.2 software (Thermo 
ientific), in which peptide identification filters were set at “false 
scovery rate b 1%” and “Mascot expectation value b 0.05.” 
arbamidomethylation of Cys was set for a fixed modification. 
xidation of Met and β-elimination of Ser/Thr (−0.984016 Da) 
ere set for variable modifications. 

munocytochemistry 
Immunocytochemistry was performed as previously described 
4]. For siRNA knockdown, at 72 hours after adding siRNA, the 
lls were fixed. For cell-permeable peptide treatment, at 24 hours 
ter seeding of cells, peptides were added and then incubated for 1 or 
hours (1 hour for T47D cells and 2 hours for MCF7 cells), and 
en the cells were fixed. The primary antibodies used in 
munocytochemical analysis included anti-human GALNT6 poly-
onal antibody (1:500, Sigma-Aldrich), anti–ER-α antibody (1:400, 
nta Cruz), and Alexa Fluor Phalloidin 594 (1:40, Thermofisher 
ientific).The secondary antibodies were Alexa Fluor 488 anti-
ouse IgG antibodies (1:1000, Life Technologies) and Alexa Fluor 
4 anti-Rabbit IgG antibodies (1:1000, Life Technologies). Finally, 
lls were stained with 4′,6-diamidino-2-phenylindole (DAPI; Vector 
aboratories) and examined by TCS SP5 Confocal Laser Scanning 
icroscope (Leica Microsystems). 
ce
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eptide Design and Synthesis 
We used two peptides synthesized by Genscript, USA. The 
ino acid sequences corresponded to a part of ER-α including 
e O-glycosylation site; wild-type peptide, 11R-GGG­
ATAGSTSSHS, and a substituted peptide at the glycosylation 
te: 11R-GGG- LATAGPTSSHS. The peptides had a purity of 
95%. 

ell Viability Analyses 
For methyl thiazolyl tetrazolium (MTT) assay, breast cancer cells 
ere seeded into 24-well plates (BD Falcon) at a density of 2-5 × 104 

lls per well at day 0, and 24 hours after seeding of cells, we added 
mM each of the peptide and then examined the cell viability 
hours after the peptide addition. We used the Cell Counting Kit-8 
ojindo Molecular Technologies, Inc.) for MTT assay and 
amined the cell viability at 4 hours after the peptide addition. 

ime-Lapse Microscopy 
To examine cellular morphological changes caused by the peptide 
eatment, we added either PBS or 1 mM each of either wild-type 
ptide or substituted peptide to the culture medium when breast 
ncer cells reached 70% confluency and then cultured at 37°C in 
midified air with 5% CO2. The cell phenotypes were photo­
aphed with 20× magnification at 5-minute intervals over 24 hours 
 using an automated imaging system with high resolution (EVOS 
L Auto 2 Imaging System, Thermo Fisher Scientific). 

tatistical Analysis 
Student's t test, chi-square test, and Fisher's exact test were applied 
r comparisons. Results were considered significantly when P values 
ere b .05. 

esult 

entification of a Novel GALNT6 Substrate(s) 
We screened a GALNT6 substrate(s) using the three stable cell 
es (HeLa-GALNT6-WT, HeLa-GALNT6-H271D, and HeLa-
ock) and identified 182 possible O-glycosylated proteins in HeLa­
ALNT6-WT cells, 190 in HeLa-GALNT6-H271D cells, and 117 
 HeLa-Mock cells (Supplementary Figure 1 and Supplementary 
able 1). Among them, ER-α glycosylation was uniquely observed in 
e GALNT6-WT–expressing cells but not in two other cell lines. 
nce ER-α is a well-known and important protein in mammary 
rcinogenesis, we focused on this protein for further analysis and 
tempted to examine the biological significance of O-glycosylation of 
R-α by GALNT6 in breast cancer cells. 

nockdown Effects of Endogenous GALNT6 
We chose four cell lines for further analysis: two cell lines, T47D 
d MCF7 cells, expressed both ER-α and GALNT6; SKBR3 cells 
pressed ER-α but not GALNT6; HCC1937 cells expressed neither 
R-α nor GALNT6 (Supplementary Figure 2). We firstly used 
RNAs to knock down endogenous GALNT6 expression in two 
east cancer cell lines, T47D and MCF7, in which GALNT6 was 
ghly expressed [12] and the ER-α expression was detected 
upplementary Figure 2). Knockdown of GALNT6 by siRNA 
uld significantly decrease GALNT6 expression in these two cancer 
lls compared with those transfected with si-Control in a condition 
th with and without estradiol treatment (Figure 1, A and C). 
oncordantly, immunocytochemistry analysis revealed significant 
crease of ER-α in the nucleus in GALNT6 knockdown cells by 
RNAs (Figure 1, B and D). After knockdown of GALNT6 by 
RNAs, we evaluated expression levels of ER-α downstream genes 
ch as CCND1, MYC, and CTSD (Figure 2). The qPCR results 
owed that at 72 hours after the knockdown of GALNT6, 
pression levels of these downstream genes correspondingly 
creased in the conditions either with or without addition of 
tradiol. In T47D cells, CCND1 and MYC were significantly 
wnregulated regardless of addition of estradiol (P b .05), and 
TSD expression level was downregulated only in a condition 
ithout estradiol. In MCF7 cells, all of the three downstream genes 
ere significantly downregulated in conditions regardless of addition 
 estradiol (P b .05). 
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Figure 1. Knockdown effect of GALNT6 in T47D and MCF7 cell lines. (A, C) Western blotting showed the GALNT6 and ER-α protein levels 
72 hours after transfection of siGALNT6 compared with si-Control, with or without estradiol treatment (1 nM, 24 hours). (B, D) 
Immunocytochemistry showed the ER-α (green) expressions in nuclear of T47D and MCF7 72 hours after transfection of si-GALNT6. 
GALNT6 was investigated by immunostaining with a fluorescence-labeled GALNT6 (red), and DAPI was co-stained to identify nucleus 
(blue). Scale bar indicates 10 μm. 
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ALNT6 Induced In Vivo O-Glycosylation of ER-α 
To further investigate an O-glycosylation site(s) of ER-α by 
ALNT6, we introduced the Flag-tagged full-length ER-α express-
g vector into three Hela-derivative cells in which WT-GALNT6 or 
gure 2. Knockdown effect of GALNT6 to ER-α downstream genes in T
YC, and CTSD after GALNT6 siRNA knockdown (72 hours) in T47D cel
 nM, 24 hours), were examined by qPCR (*P b .05, **P b .01). 
271D-enzyme-dead-GALNT6 expression was introduced, or Hela 
lls transfected with the mock vector. By immunoprecipitation with 
ti-Flag antibody followed by VVA lectin blotting (specific to 
alNAc-Ser/Thr), we observed a glycosylated protein band of 
47D and MCF7 cell lines. (A, B) Transcriptional levels of CCND1, 
l line (A) and MCF cell line (B), with or without estradiol treatment 

Image of &INS id=
Image of Figure 2
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Figure 3. Cell-permeable peptides treatment on breast cancer cell lines. Immunocytochemistry of ER-α (green) was conducted 1 hour 
(MCF7) or 2 hours (T47D) after treatment of permeable peptides. Cell morphology was further investigated by immunostaining with a 
fluorescence-labeled phalloidin (red), and DAPI was co-stained to identify nucleus (blue). Scale bar indicates 10 μm. 

Figure 4. (A, B, C, D) The proliferation assay to analyze the antitumor effect of the cell-permeable peptides (1 mM) on breast cancer cell 
lines. Four hours after the peptide treatment in four cell lines, T47D, MCF7, SKBR3, and HCC1937, we performed the cell viability with 
both wild-type and substituted peptides. 

Image of &INS id=
Image of Figure 4
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proximately 66 kDa in WT-GALNT6 cells (Supplementary Figure 
, black arrow) but not in GALNT6-H271D–expressing cells or 
ock cells, suggesting that GALNT6 could mediate O-glycosylation 
 ER-α. To identify an O-glycosylation site(s) of ER-α by 
ALNT6, we visualized protein bands with Coomassie stains, cut 
e protein band which was specifically detected in the Hela­
ALNT6-WT cells, and conducted LC-MS/MS analysis (Figure 
). We then identified an O-glycosylation site at Ser573 in an F 
main of ER-α protein. 

he Growth Suppression of Breast Cancer Cell Lines with Cell 
embrane–Permeable Peptides 
To further examine the significance of ER-α glycosylation by 
ALNT6, we synthesized two cell membrane–permeable peptides 
rresponding to a part of ER-α including the S573 (Supplementary 
gure 4); one corresponds to the wild-type peptide sequence, and the 
her has a substitution of this serine to proline. As shown in 
munocytochemical staining (Figure 3), ER-α expression levels in 
47D and MCF7 cells were significantly reduced in 1-2 hours 
 hour for T47D cells and 2 hours for MCF7 cells) after addition of 
mM of each peptide. Four hours after the peptide treatment, three 
ll lines, T47D, MCF7, and SKBR3, in which GALNT6 was 
pressed, showed significant decrease of cell viability with both wild-
pe and substituted peptides (Figure 4, A-C and Movies S1-S3). We 
d not observe significant differences in the cell viability in ER-α– 
sitive cells (T47D and MCF7 cells) and ER-α–negative SKBR3 
lls with peptide treatment. We suspect that since these peptides 
und to GALNT6 protein, glycosylation of other GALNT6 
bstrates that were critical for cell survival was also suppressed and 
e cell death was induced. However, the growth-inhibitory effect 
ith the peptide treatment was very modestly observed in HCC1937 
lls that expressed neither ER-α nor GALNT6 compared with the 
ree GALNT6-positive cell lines (Figure 4D and Movie S4), 
pporting that the peptides worked in a GALNT6-dependent 
anner. 

iscussion 
R-α belongs to members of the nuclear hormone-receptor 
perfamily, which acts as a ligand-inducible transcriptional factor 
0]. The human ER-α gene (ESR1) encodes a 66-kDa protein with 
5 amino acids [21] which consists of four major domains: an N-
rminal domain (NTD), a ligand-binding domain (LBD), a DNA-
nding domain (DBD), and an F domain. The NTD is able to 
ansactivate multiple downstream genes through binding to the 
ATA box-binding protein (TBP) [22]. The LBD can bind ligands 
d coregulatory proteins. The DBD binds to estrogen response 
ements in DNA [20], and the F domain modulates the 
anscriptional activity, coactivator interactions, dimerization, and 
ability of the protein [23]. Through the activation by binding to 
trogen, ER-α is translocated into the nucleus, binds to DNA, and 
odulates transcription of its downstream genes [24]. 
O-type glycosylation is one of the important posttranslational 
otein modifications and takes place on serine or threonine residues 
5,26]. GALNT6, which is one of the GALNT family members 
nctioning in the Golgi complex, medicates O-type glycosylation 
d plays a critical role in folding of multiple glycoproteins and 
aintenance of the protein stability [27]. In our previous studies, we 
monstrated that GALNT6 could O-glycosylate and stabilize Mucin 
(MUC1) and plays critical roles in proliferation and cytoskeletal 
gulation of breast cancer cells [12]. In addition, through a signaling 
thway involving fibronectin, one of the GALNT6 O-glycosylation 
bstrates, GALNT6 would enhance transformational potentials of 
ammary epithelial cells and in vivo invasiveness of breast cancer cells 
3]. Furthermore, we reported that GALNT6 knockdown in 
ncreatic cancer cells decreased mRNA and protein levels of 
ucin 4 (MUC4), in which the 10th threonine residue of the 
ndem repeat was predominantly O-glycosylated by GALNT6, and 
duced the levels of human epidermal growth factor receptor 2 [14]. 
e also found that GALNT6 could bind to the ATPase domain of 
RP78 and stabilizes the GRP78 protein through O-glycosylations, 
hich also contributed to proper subcellular localization and 
tiapoptotic function of GRP78 protein in cancer cells [28]. 
GFR was also shown to be a substrate of GALNT6 in ovarian cancer 
lls [15]. 
In this study, we found O-glycosylation of ER-α by GALNT6 and 
monstrated the biological significance of ER-α O-glycosylation in 
ncer cell lines by two approaches: reduced expression by siRNA and 
hibition of the interaction between ER-α and GALNT6 with cell 
embrane–permeable peptides. We demonstrated that these two 
proaches could significantly decrease the ER-α expression in the 
cleus and reduce the cell viability on GALNT6-positive breast 
ncer cells. We identified S573 in the F domain of ER-α was O­
ycosylated in GALNT6-positive cells but not in GALNT6-negative 
 GALNT6-enzyme-dead cells, which strongly suggested that this 
-glycosylation is medicated by GALNT6. The F domain of ER-α is 
own to be the key covalent modification target in the function of 
R-α. All previous studies for ER-α were involved in mice or insects; 
e report demonstrated that one major in vivo glycosylation site in 
ER-α is located at Thr575 near the carboxyl terminus [29]. We  
mpared the amino acid sequences between two species and found 
at S573 in human is not compatible to Thr575 of mER-α. Hence, 
is difficult to discuss the biological significance of glycosylation of 
R-α and mER-α in mammary carcinogenesis at this point. 
The membrane-permeable arginine-rich peptide could facilitate 
ficiently the nonspecific uptake of peptides into cells and is 
nsidered to be a good peptide delivery system [30,31]. To  
vestigate the biological significance of GALNT6-mediated ER-α 
-glycosylation, we designed two cell membrane–permeable peptides 
rresponding to the S573 O-glycosylation site in the F domain: one 
ith the wild-type sequence and the other with the substitution of 
is serine residue to proline. We found that both peptides could 
gnificantly decrease the ER-α expression levels, particularly its 
clear localization, and cause the significant decrease of the cell 
ability in the GALNT6-positive cancer cells. Although one peptide 
cluded the amino acid substitution at the glycosylation site, it is 
ely that this substituted peptide still kept the binding affinity to 
ALNT6 as similar to the wild-type peptide. As expected, neither of 
ptides revealed the significant growth inhibitory effect in the ER-α/ 
ALNT6 double-negative cancer cells. Our data indicate that (1) in 
e GALNT6-positive breast cancer cells, the wild-type and 
bstituted peptides bind to GALNT6, block GALNT6 activity, 
d lead to cell death, and (2) in the GALNT6/ER-α double-positive 
east cancer cells, the stronger effect on the cell viability was observed 
 MCF7 cells where ER-α levels were much higher than another cell 
e. The modest effect was observed in the ER-α/GALNT6 double-
gative cells probably due to the toxic effect of the peptide exposure 
 due to the cross-reactivity of these peptides to other GALNT 
mily members that also play significant roles in cancer cell growth. 
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In conclusion, our data for the first time, which confirmed the O­
ycosylation of ER-α by GALNT6, indicate that targeting GALNT6 
 well as the GALNT6/ER-α interaction may be an effective strategy 
r development of novel drugs to treat hormone receptor–positive 
t hormone therapy–resistant breast cancer. 
Supplementary data to this article can be found online at https:// 
i.org/10.1016/j.neo.2018.08.006. 
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