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Based on the theory of symbolic dynamical systems, we propose a novel computation method to
locate and stabilize the unstable periodic points (UPPs) in a two-dimensional dynamical system
with a Smale horseshoe. This method directly implies a new framework for controlling chaos. By
introducing the subset based correspondence between a planar dynamical system and a symbolic
dynamical system, we locate regions sectioned by stable and unstable manifolds comprehensively
and identify the specified region containing a UPP with the particular period. Then Newton’s
method compensates the accurate location of the UPP with the regional information as an initial
estimation. On the other hand, the external force control (EFC) is known as an effective method
to stabilize the UPPs. By applying the EFC to the located UPPs, robust controlling chaos is
realized. In this framework, we never use ad hoc approaches to find target UPPs in the given
chaotic set. Moreover, the method can stabilize UPPs with the specified period regardless of
the situation where the targeted chaotic set is attractive. As illustrative numerical experiments,
we locate and stabilize UPPs and the corresponding unstable periodic orbits in a horseshoe
structure of the Duffing equation. In spite of the strong instability of UPPs, the controlled orbit
is robust and the control input retains being tiny in magnitude.
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1. Introduction

After the discovery of chaos, researchers have dis-
cussed considerably the applications to practical sit-
uations: encryption of the data in communication
technology or in signal processing [Habutsu et al.,
1990; Stojanovski & Kocarev, 2001], neural net-
works [Aihara et al., 1990], water quality fore-
cast in environmental engineering [Huang et al.,
2008], electromagnetic interference suppression in
electronics, and so on. On the other hand, some
researchers have also considered how to suppress the
chaos, called the controlling chaos, because chaos is
undesirable in many cases due to its randomness,
noisiness, and unpredictability. The typical and also
famous examples of the method to control chaos
are OGY method [Ott et al., 1990], external force
control (EFC) [Pyragas, 1992], and delayed feed-
back control (DFC) [Kittel et al., 1995; Nakajima,
1997]. Even though there have been many other
controlling methods developed [Rajasekar & Lak-
shmanan, 1993; Myneni et al., 1999; Zambrano &
Sanjuán, 2009; Sabuco et al., 2010], much studies
have still relied on these legacy methods [Yi et al.,
2019; Ueta et al., 2015; Mahmoud et al., 2017].
However, for using these three methods, we have
to take care of some points. OGY method requires
the unstable periodic point (UPP) corresponding to
an unstable periodic orbit (UPO) embedded within
the chaotic attractor in advance. While for EFC,
we should select a target orbit, which is often the
analytical solution of nonlinear differential equation
and thus hard to explicitly calculate. On DFC, we
cannot predict which orbit the chaos converges to.
Discussing controlling chaos to an arbitrary orbit,
the analysis of orbits in chaos is one of the most
effective ways. Indeed, some studies, such as [Faran-
tos, 1995], have proposed computational methods
to calculate the exact trajectory for certain UPOs.
Nevertheless, it is still not easy to locate an arbi-
trary UPP globally embedded in the state space
because almost all of these studies focus on the local
property of the UPP.

On the other hand, the studies on symbolic
dynamical systems have unveiled a lot of facts about
chaos. Among them, Smale [2000] has proved one
criterion causing chaos: chaos arises for transversal
homoclinicity of manifolds of periodic point, when
introducing a Smale horseshoe, which is topolog-
ically conjugate to a symbolic dynamical system
called a full 2-shift. His research has also shown
that horseshoe includes a countably infinite set

containing 2� periodic points with period-� and
an uncountably infinite set containing nonperiodic
points. These properties are now well known as the
common property of chaotic systems. A symbolic
dynamical system is one of the simplest dynamical
systems having less information than the general
systems, that is, it does not possess the dimension,
the stability of the state, and so on. However, it
brings many remarkable facts common to the con-
jugate systems. Thus, we are certain that the sym-
bolic dynamical system is a key to develop general
locating methods of UPPs.

Symbolic dynamical systems contain a topolog-
ical relationship among the periodic states in its
domain. In other words, a symbolic dynamical sys-
tem has the information of the positions of an arbi-
trary UPP globally embedded in the state space.
This structure is invariant under homeomorphism,
so a conjugate system to the original symbolic sys-
tem also contains the same topology. Even better,
this structure is independent of whether the chaotic
state is attractive or not, which implies that we can
find UPPs also in the transient chaos. We have con-
sidered that these facts help to locate all UPPs
in the chaotic behavior of planar dynamical sys-
tems. Furthermore, the corresponding UPO should
be suitable to the controlling methods such that
OGY or EFC. From the previous research [Ueta
et al., 2015], we know EFC works well in determin-
ing the target orbit. Besides, comparing with OGY,
EFC can perform with better robustness. Thus, in
this paper, from the standpoint of symbolic dynam-
ics, we try to investigate a computation method to
locate arbitrary UPPs and stabilize them by using
EFC method.

This paper composes of five parts. In Sec. 1, we
confirmed the motivation of our study. In Sec. 2, let
us define some preliminaries for our novel method.
We take a general definition for a two-dimensional
nonlinear map constructing a discrete-time dynam-
ical system and confirm the topological types of the
periodic points in the state space of the system.
Besides, we introduce a Smale horseshoe geometri-
cally with its primal domain S. Basic ideas for sym-
bolic dynamical systems, e.g. shift map, symbolic
sequence, full 2-shift, and so on, are also included
in this section. Also, we verify the homeomorphism
between a horseshoe map and a full 2-shift. In
Sec. 3, we suggest a method that locates a par-
ticular UPP of a horseshoe map intentionally. We
carefully describe the principle of why our method
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is valid for the map according to the dynamical
property of symbolic systems. With some new def-
initions for subsets of a horseshoe in a symbolic
system and corresponding discrete-time map, we
locate the region where the UPP belongs. We also
try to mention the robustness of the method by
using the distance d defined in the space of sym-
bolic sequences. In the last part of Sec. 4, we give
a step-by-step procedure for our novel method. In
the earlier part of Sec. 4, we present the results of
numerical experiments for a continuous-time pla-
nar system: Duffing equation [Kovacic & Brennan,
2011]. As a result, we find our method guarantees
that we can locate the initial condition candidate
of Newton’s method to find a periodic point. More-
over, we confirm whether the method derives the
periodic points correctly within the given errors. In
the latter part, we show a result of EFC control
using the UPO corresponding to the obtained UPP.
We conduct the numerical experiments for the Duff-
ing equation again and find whether the UPOs are
proper target orbits or not from the standpoint of
the convergence of the control input. In Sec. 5, we
conclude this study.

2. System Description

2.1. Two-dimensional map with
Smale horseshoe

Let us consider a nonlinear two-dimensional diffeo-
morphism T :

T : R
2 → R

2; x �→ T (x), (1)

where x ∈ R
2. A kind of map T often describes

a discrete-time dynamical system: xi+1 = T (xi),
i ∈ Z; then the sequence (xi)i∈Z for x0 is a trajectory
of the system along with x0. A point p is a fixed
point of T if

T (p) = p. (2)

Also, p is a periodic point with period-� if it satisfies
T �(p) = p for � ∈ N. For simplicity, we call these
points �-periodic points. Jacobian matrix DT (x),
which is the derivative of T with respect to x, rep-
resents the asymptotic stability of a fixed point. A
fixed point p is

• a completely stable node if ‖μ1‖ < 1 and
‖μ2‖ < 1;

• a directly unstable saddle if −1 < μ1 < 1 < μ2;
• a directly unstable saddle if μ1 < −1 < μ2 < 1;

and

• a completely unstable node if ‖μ1‖ > 1 and
‖μ2‖ > 1,

where μ1 and μ2 are the eigenvalues of DT (p) (μ1 <
μ2). In this paper, we do not take into account the
nonhyperbolic points, i.e. there exists i such that
‖μi‖ = 1.

The discrete-time system for T behaves chaot-
ically if T constructs a Smale horseshoe. Smale
horseshoe is the topological structure composed
of a map T and a subset S of its domain. Sup-
pose that T and S form a Smale horseshoe and S
composes of five individual subsets: A, B, C, D,
and E with S ∩ T [B] �= ∅, S ∩ T [D] �= ∅, and
T [A] ∩ S = T [C] ∩ S = T [E] ∩ S = ∅, where
T [X] = {T (x) |x ∈ X}, Fig. 1 gives a brief example
of a Smale horseshoe. Through squishing, stretch-
ing, and folding, the area S transforms into the
shape like a horseshoe. The inverse map T−1 of T
also makes the horseshoe structure from the same
S but T−1[S] results in another horseshoe, which
is topologically symmetric to T [S]. We call a set
Λ ⊂ R

2 a horseshoe, which is the set of points
remaining in B ∪D after the infinite-time iteration
of T and T−1:

Λ = {x |T n(x) ∈ B ∪ D for all n ∈ Z}, (3)

and T is a horseshoe map. Horseshoe is homeo-
morphic to the Cantor set and embeds a count-
ably infinite set of unstable �-periodic points and an
uncountably infinite set of nonperiodic trajectories.

2.2. Symbolic dynamical system

A symbolic dynamical system composes of a shift
map σ and a bi-infinite sequences space as an
evolution equation and a state space, respectively.
Assume that two symbols “0” and “1” formulate
the space Σ of the bi-infinite sequences:

Σ = {(ai)i∈Z | ai ∈ {0, 1} for all i ∈ Z}, (4)

and the shift σ moves each symbol in a = (ai) as

σ : Σ → Σ; a = (ai) �→ σ(a) = (ai+1). (5)

This symbolic system is called a full 2-shift. In this
paper, we might represent the sequences (ai)i∈Z

without commas as (· · · a−2a−1a0a1a2 · · ·) and so
on. Generally, we locate a decimal point “.” to dis-
tinguish a sequence into two parts: ai for i <= 0 and
ai for 0 < i. For instance, if a = (· · · 000.111 · · ·),
σ(a) = (· · · 0001.11 · · ·) so that the map σ shifts the
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Fig. 1. Schematic illustration for a Smale horseshoe.

decimal point one slot rightward. A sequence s ∈ Σ
is a fixed sequence of σ if

σ(s) = s. (6)

Besides, s is a periodic sequence with period-� if it
satisfies σ�(s) = s. The periodic sequences infinitely
repeat the same finite symbolic sequence like “01,”
“001,” and so on. We name such a sequence a basic
sequence. Table 1 shows some examples of the peri-
odic sequences and corresponding basic sequences.
Notice that some different periodic sequences, like
(· · · 101.010 · · ·) and (· · · 010.101 · · ·), could have the
same basic sequence. From the standpoint of the
dynamical system, we can regard these sequences
are identical without loss of generality.

Table 1. Examples of �-periodic sequences of σ and
their corresponding basic sequence.

� Periodic Sequence Basic Sequence

1 (· · · 0000.0000 · · ·) (0)
1 (· · · 1111.1111 · · ·) (1)
2 (· · · 0101.0101 · · ·) (01)
3 (· · · 1001.0010 · · ·) (001)
3 (· · · 1011.0110 · · ·) (011)

Considering a homeomorphism h:

h : Λ → Σ; x �→ (ai)i∈Z, (7)

where

ai =

{
0 if T i(x) ∈ B,

1 if T i(x) ∈ D,
(8)

for all i ∈ Z, then a horseshoe map T and a full
2-shift σ are topologically conjugate to each other
with the following diagram:

Λ

h
��

T �� Λ

h.
��

Σ
σ �� Σ

In other words, every dynamical property of σ is
equivalent to the property of T , and vice versa.

As remarkable facts of the full 2-shift, it
includes 2�-periodic sequences with period-� if we
distinguish the cases with the same basic sequences.
These sequences correspond to the countably-
infinite set of periodic points of the horseshoe map.
On the other hand, suppose that the distance d
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Fig. 2. EFC block diagram.

between two sequences s and s′ is

d(s, s′) =
∑
i∈Z

δi

2|i|
, (9)

where δi = 0 if si = s′i and otherwise δi = 1, we can
find an arbitrarily “near” sequence s′ to s satisfying
d(s, s′) < ε for all ε > 0. The set of these dense
trajectories correspond to the uncountably-infinite
set of nonperiodic trajectories of the horseshoe map.

2.3. External force control

External force control (EFC) is a method to con-
trol from the chaotic state to the steady state
like with the periodic orbit [Pyragas, 1992]. This
method requires a target orbit to construct the con-
trol input as shown in Fig. 2. According to our
method in Sec. 3, we provide the unstable periodic
orbit (UPO), which corresponds to the UPP, as the
target orbit of EFC. Adding the controlling part of
the EFC, the original chaotic system becomes such
that dx/dt = f(t,x) changes its form as follows

dx
dt

= f(t,x) + u(t), (10)

where

u(t) = K(x(t) − x∗(t)) (11)

is the control input calculated from the current state
value and the target orbit.

3. Method to Obtain UPP

Our method to obtain unstable periodic points
(UPPs) of T is based on symbolic dynamics. Gener-
ally, as mentioned in the previous section, we accept
the correspondence between a UPP of T and a
periodic-sequence s of σ. Instead, we introduce the
definition for a subset-based-correspondence.

Considering a full 2-shift, let us pick up a “bi-
finite” �-periodic-sequence b from a “bi-infinite” �-
periodic sequence, i.e. there exists k ∈ N such that

b = (bi)i∈[−k�,k�−1]. (12)

From the definition, it is clear that b comprises
2k basic sequences with period-�. Then, some
sequences in Σ completely include b and such
sequences assemble one subset S ⊂ Σ:

S(b) = {(ai)i∈Z | ai = bi for all i ∈ [−k�, k� − 1]}.
(13)

Table 2 shows the example of sequences in S(b)
with b = (01.01), which is a bi-finite two-periodic
sequence with k = 1. As a matter of course, S(b)
includes an �-periodic sequence corresponding to
b and also includes uncountably many trajectories
“near” the periodic sequence.

From Eqs. (7) and (8), the preimage of s ∈ S(b)
under h constructs a subset R(b) ⊂ Λ:

R(b) = h−1[S(b)] = {h−1(s) | s ∈ S(b)}. (14)

In R
2, R(b) gives an infinitely dense but not sim-

ply connected region. Although we have no idea to
specify R(b) analytically, we can compute a simi-
lar simply connected region R(b) that completely
contains R(b). Since b on S(b) justifies Eq. (12),
x in R(b) also satisfies the equivalent limitation:
for all trajectories (xi)i∈Z in R(b), xi ∈ B for i
with bi = 0 and xi ∈ D for i with bi = 1. Revisit-
ing the example of b = (01.01), this rule indicates
that all trajectories in R(b) must satisfy x−2 ∈ B,
x−1 ∈ D, x0 ∈ B, and x1 ∈ D. In other words,
all x0, including a two-periodic point correspond-
ing to the basic sequence (01), should be in the
set {T 2[B] ∩ T [D] ∩ [B] ∩ T−1[D]}. Consequently,
defining R(b) by

R(b) =
k�−1⋂
i=−k�

T−i[Xi], (15)

where

Xi =

{
B if bi = 0,

D if bi = 1,
(16)

we obtain the relationship R(b) ⊂ R(b). The bot-
tom figure of Fig. 3 shows the example of R(b) with

Table 2. Some sequences of S(b) with b = (01.01).

ai with i < −2 a−2a−1.a0a1 ai with 1 < i

· · · 0100 01.01 1000 · · ·
· · · 0001 01.01 0100 · · ·
· · · 0011 01.01 0100 · · ·
· · · 0111 01.01 1000 · · ·

· · · 01.01 · · ·
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Fig. 3. Schematic illustration of R(b) with b = (01.01).

b = (01.01), which is the common set of primal four
sets shown in the top figure.

In the topological sense, we can locate R(b) eas-
ily by assigning the symbols to the vertical and hor-
izontal stripes in the area S, as shown by the orange
regions in the top four figures in Fig. 3. For vertical
stripes, let the first stripes be T [B] and T [D] with
the symbols of “0.” and “1.”, respectively, second
stripes be the intersection of the first stripes and
its image under T , the remaining stripes are also
similar. Adding a symbol “0” or “1” to the existing
symbolic sequence from the left side, we can make
a new symbolic sequence of the second or the fol-
lowing stripes. We determine such a symbol (“0”
or “1”) according to where its preimage is located,
i.e. T [B] or T [D], respectively. Almost the same dis-
cussion is available for T−1, by paying attention to
that we should choose the first stripes as B and D
and should add the symbol from the right side of
the decimal point.

R(b) contains not only the �-periodic point cor-
responding to the basic sequence b but also the
initial point of the uncountably many trajectories
“near” the periodic point. This leads us to consider
the legacy numerical computation for finding the
periodic point, e.g. Newton’s method, which will
work fine by giving initial conditions in R(b). On the
other hand, improving the value of k, we can take
an arbitrarily small value of the distance among the
sequences in S(b) such that d ≤ 1/2k�. Therefore, we
can locate a more limited region including periodic

points with the larger k, e.g. b = (0101.0101) and
so on.

In summary, our method takes the following
steps:

(1) Find the area S ⊂ R
2 forming a Smale horse-

shoe;
(2) Decide the sequence b of the target UPP with

the value of k;
(3) Locate R(b) in R

2; and
(4) Calculate the target UPP by solving Eq. (2)

with the initial point in R(b).

For the fourth step, we use Newton’s method until
the 2-norm of the left-hand side of Eq. (2) converges
within 10−10 or the iteration goes over 10.

4. Result of Numerical Experiments

4.1. Obtaining UPO

In this section, let us do a numerical experiment
for the Duffing equation, and evaluate our novel
method.

Duffing equation models a certain damped and
driven oscillator written as

d2x

dt2
+ κ

dx

dt
+ x3 = γ0 + γ cos t,

where x is the state variable, t is the time, and
the others κ, γ0, and γ are parameters. Substitut-
ing y = dx/dt, we rewrite the Duffing equation

2150110-6
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Fig. 4. S, B, D, T [B], and T [D] for Poincaré map T of
Duffing equation.

as a two-dimensional nonautonomous dynamical
system:

dx

dt
= y,

dy

dt
= −κy − x3 + γ0 + γ cos t. (17)

We accept the vector notation like x = (x, y),
and so on. Suppose that Eq. (17) has a solution

x(t) = ϕ(t,x0) with x(0) = ϕ(0,x0) = x0. For the
nonautonomous system including a periodic func-
tion of t, we can define stroboscopic mapping as
the corresponding Poincaré map:

T : R
2 → R

2; x �→ T (x) = ϕ(2π,x). (18)

Consequently, the discrete-time dynamical system
xn+1 = T (xn) with this Poincaré map T has the
same dynamical property as Duffing equation and
we consider this T with the following parameters:
κ = 0, γ0 = 0.08, and γ = 0.3. Thereby, T
obtains a symmetry under the transformation of
(t, x, y) → (−t, x,−y) so that any geometrical fea-
ture observed in the state space looks symmetric
to y = 0. Considering a simply connected region S
having the following 16 vertices:

(−1.05, 0), (−0.95,±0.2), (−0.83,±0.31),

(−0.75,±0.34), (−0.64,±0.356), (−0.665,±0.25),

(−0.66,±0.15), (−0.63,±0.08), (−0.57, 0),

T and S form a Smale horseshoe. This S is esti-
mated from the stable and unstable manifolds of the
saddle x0 = (−1.029952, 0). S does not shape up as
a square but it is not due to applying the method.
This S and corresponding B, D, T [B], and T [D]
are shown in Fig. 4.
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Fig. 5. (a) S (in cyan) and its images under T 3 (in orange) and T−3 (in teal) for the Poincaré map of Duffing equation, and
(b) its enlargement.

2150110-7

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
O

K
U

SH
IM

A
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/0
4/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 29, 2021 15:45 WSPC/S0218-1274 2150110

Y. Miino et al.

Table 3. Results of experiments on the Poincaré map of
Duffing equation — Selected initial condition x0, iteration
count of Newton’s method, and error in 2-norm ‖x0 −p‖ for
each b.

b x0 Count ‖x0 − p‖

(000.000) (−1.020, +0.000) 4 9.951934 × 10−3

(001.001) (−0.670, +0.307) 6 4.638147 × 10−3

(010.010) (−0.935, +0.000) 4 9.390133 × 10−4

(011.011) (−0.755, +0.205) 7 4.523907 × 10−3

(100.100) (−0.672,−0.308) 5 3.848197 × 10−3

(101.101) (−0.623, +0.000) 3 3.895543 × 10−4

(110.110) (−0.755,−0.205) 5 4.523626 × 10−3

(111.111) (−0.685, +0.000) 5 2.058372 × 10−3

Let us consider the case of k� = 6 again for the
Poincaré map of Duffing equation. From the images
of S under T and T−3, we can add the labels to the
vertical and horizontal stripes as shown in the top of
Fig. 5 according to the manner explained in Sec. 3.
Focusing on the basic sequence b = (100.100), we
choose the initial condition x0 = (−0.672,−0.308).
After the fifth iterations of Newton’s method, we
could obtain the corresponding UPP within the
given error. Also, we obtained further UPPs with
the initial conditions as shown in Table 3. These
obtained UPPs are shown in Fig. 6. On the trajec-
tories shown in Fig. 6, we can see completely the
same topology between each position of UPPs and

the images of S under T . Since the original dynam-
ical system is the continuous-time system defined
with t ∈ R, we can also see the unstable peri-
odic orbits corresponding to the UPPs in R

2, as
shown in the right-hand side of Fig. 6. There are no
problems that some orbits cross each other because
the original Duffing equation is a nonautonomous
system.

Table 4 shows the eigenvalues for each UPP cat-
egorized by the basic sequences. This table includes
the cases of � = 2, 4, and one result for � = 8 with
the basic sequence of 00000001. From the table, our
method is also suitable for the UPOs with a much
larger value of eigenvalue.

4.2. Controlling chaos by EFC with
targeting UPO

Let us do numerical experiments of the Duffing
equation (17) to validate the EFC using the UPO
obtained by our method. According to Eq. (10), the
modified dynamical system after taking account of
the controlling part of Fig. 2 is

dx

dt
= y + Kx(x − x∗(t)),

dy

dt
= −κy − x3 + γ0 + γ cos t + Ky(y − y∗(t)),

(19)
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Fig. 6. (a) Numerically calculated periodic points of the Poincaré map of Duffing equation and (b) their corresponding
solution orbits.
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Table 4. Eigenvalues μ1 and μ2 of DT (p) for the Poincaré
map of Duffing equation (17). The values having magnitude
more than unity are emphasized.

Basic
Sequence μ1 μ2

(0) +1.982185 × 10−1 +5.044932

(1) −3.356635 −2.979172 × 10−1

(01) −9.659009 −1.035301 × 10−1

(001) −5.490790 × 10 −1.821228 × 10−2

(011) +1.982978 × 10−2 +5.042912 × 10

(0001) −2.787754 × 102 −3.587107 × 10−3

(0011) +3.599590 × 10−3 +2.778088 × 102

(0111) −1.208045 × 102 −8.277821 × 10−3

(00000001) +5.42777707 × 10−6 +1.84236855 × 105

where Kx and Ky are the gain, and x∗(t) and y∗(t)
are the x and y coordinates of target UPO x∗(t),
respectively. In this study, we set the parameters
Kx = Ky = −1 and the others are the same as
the previous section. As the target UPO, let us
choose four UPOs such that ϕ(t,p(0)), ϕ(t,p(01)),
ϕ(t,p(001)), and ϕ(t,p(00000001)), where p is the

UPP and its right subscript corresponds to the basic
sequence of the obtained UPP. Concretely,

p(0) = (−1.02995193, 0.00000024),

p(01) = (−0.70389635,−0.20138366),

p(001) = (−0.67405357, 0.30474589),

p(00000001) = (−1.027205124082, 0.000000000088).

In the experiments, we will switch the system (17)
and (19) manually to clarify the effectiveness of the
controlling. In other words, we will turn on and off
the controlling manually.

Figure 7 shows the result of applying EFC,
exhibiting the trajectories of the system state x and
the control input ux(t) = Kx(x−x∗(t)). We turn on
the controlling from the time t = 4�π to t = 20�π,
where � is the period of the target UPP. All of the
cases show that the control input converges to zero
quickly. Afterwards, we no longer see the chaotic
state and observe the steady state with pretty small
amplitude of ux(t). Even with inputting a tiny con-
trol signal, we can see quite different behavior from

u x(
t)

controlling non-controlling

−2

−1

0

1

2

x(
t)

−2
−1

0
1
2

0 4π 8π 12π 16π 20π 24π 28π 32π

u x(
t)

controlling non-controlling
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−1

0

1

2

x(
t)

−2
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0
1
2

0 8π 16π 24π 32π 40π 48π 56π 64π

(a) x∗(t) = ϕ(t,p(0)) (b) x∗(t) = ϕ(t,p(01))

u x(
t)

controlling non-controlling
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0

1

2

x(
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0
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0

1

2

x(
t)
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0
1
2

0 32π 64π 96π 128π 160π 192π 224π 256π

controlling non-controlling

(c) x∗(t) = ϕ(t,p(001)) (d) x∗(t) = ϕ(t,p(00000001))

Fig. 7. EFC with targeting UPO. In the top figure of each window, orange trajectory is the trajectory of the modified
system (19) and gray one is the trajectory of the original system (19). The gray shaded area in each figure indicates the time
interval without controlling.
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Fig. 8. Transition of the control input in the absolute value
with a log scale. Target orbit is (top) x∗(t) = ϕ(t,p0) and
(bottom) x∗(t) = ϕ(t,p00000001).

the original system (17). When t > 20�π, after turn-
ing off the control input, we cannot observe the
steady state found in the controlled situation, and
the system again generates chaotic state. Focusing
on the cases of Figs. 7(a) and 7(d), Fig. 8 exhibits
the transition of the control input in the abso-
lute value, plotted on a log scale. We find that the

control input remains in the range |ux(t)| < 10−4

while the trajectory is in steady state. For the cases
with the other target orbits in Fig. 7, we have also
confirmed the convergence is to the same extent.
As a remarkable feature of Fig. 8(d), the propos-
ing method is still robust when t = 160π s has
passed even though the target UPP has the insta-
bility of μ = 1.84236855×105 . Besides, Fig. 9 shows
the behavior of the controlled trajectory in the
state space. From these figures, we can confirm the
quick convergence of the trajectory to the steady
state. Similarly, we can see that uy(t) also shrinks
quickly.

Let us also confirm the robustness of our
method for the external input. In the case of x∗(t) =
ϕ(t,p1), we do a brief numerical experiment using
an external impulse input:

δ(t) =

⎧⎪⎪⎨
⎪⎪⎩

2 cos
(

t

16

)
· t

16π
if t ≡ 0 (mod 16π)

0 otherwise

to x(t). Figure 10 shows the result of the exper-
iment. Whatever is the amplitude of the external
input applied, we find that the proposing method
instantly reacts to the error, and the state converges
to the target with precision to the extent of 10−4.
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(a) x∗(t) = ϕ(t,p(0)) (b) x∗(t) = ϕ(t,p(01))

Fig. 9. EFC with targeting UPOs in the state space. The trajectory in gray is the chaotic state of Eq. (17) with x0 = (0, 0)
and t ∈ (0, 100π).
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Fig. 9. (Continued)
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Fig. 10. EFC with targeting UPOs (impulse interrupted).
x∗(t) = ϕ(t,p1).

5. Conclusion

Based on the theory of symbolic dynamical systems,
we have proposed a novel computation method
to locate and stabilize arbitrary unstable periodic
points (UPPs) in the two-dimensional dynamical
system with a Smale horseshoe. By introducing the
subset based correspondence between the dynam-
ical systems on R

2 and on a space of symbolic
sequences, we have found the region of R

2 cer-
tainly containing a UPP. As the result of a numeri-
cal experiment for the Duffing equation, we located
the exact coordinates of UPPs. Besides, we have

conducted the numerical experiments of the EFC
method targeting the UPO. We confirmed that
the proposing EFC shows quick convergence of the
chaotic state to the steady state through some
numerical experiments. Moreover, we found the
control input of the method keeps the value within
an extremely small range, 10−4.

For future works, we should try to apply the
method to the cases where chaos is attractive. In
such a case, we have to consider how can we deter-
mine the region S.
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