
Review Article
Two-Stage Robust Optimization for the Orienteering
Problem with Stochastic Weights

Ke Shang ,1,2 Felix T. S. Chan,3 Stephen Karungaru,2 Kenji Terada,2 Zuren Feng,4

and Liangjun Ke4

1Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2Department of Information Science and Intelligent Systems, "e University of Tokushima, Tokushima, Japan
3Department of Industrial and Systems Engineering, "e Hong Kong Polytechnic University, Hung Hom, Hong Kong
4State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

Correspondence should be addressed to Ke Shang; kshang@foxmail.com

Received 16 May 2020; Revised 21 September 2020; Accepted 26 October 2020; Published 16 November 2020

Academic Editor: Hiroki Sayama

Copyright © 2020 Ke Shang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the two-stage orienteering problem with stochastic weights is studied, where the first-stage problem is to plan a path
under the uncertain environment and the second-stage problem is a recourse action to make sure that the length constraint is
satisfied after the uncertainty is realized. First, we explain the recourse model proposed by Evers et al. (2014) and point out that this
model is very complex. )en, we introduce a new recourse model which is much simpler with less variables and less constraints.
Based on these two recourse models, we introduce two different two-stage robust models for the orienteering problem with
stochastic weights. We theoretically prove that the two-stage robust models are equivalent to their corresponding static robust
models under the box uncertainty set, which indicates that the two-stage robust models can be solved by using common
mathematical programming solvers (e.g., IBM CPLEX optimizer). Furthermore, we prove that the two two-stage robust models
are equivalent to each other even though they are based on different recourse models, which indicates that we can use a much
simpler model instead of a complex model for practical use. A case study is presented by comparing the two-stage robust models
with a one-stage robust model for the orienteering problem with stochastic weights. )e numerical results of the comparative
studies show the effectiveness and superiority of the proposed two-stage robust models for dealing with the two-stage orienteering
problem with stochastic weights.

1. Introduction

)e orienteering problem (OP) is a routing problem which
has been widely studied in the past few decades. It was first
introduced in [1, 2] and had been developed in terms of the
problem variants, solution algorithms, and applications. )e
original OP aims at planning a path which starts and ends at
the depot location and visits a subset of nodes in order to
maximize the total collected score, while the length of the
path cannot exceed a predefined budget, and each node can
only be visited at most one time.)e OP has a wide practical
application background. A few examples are unmanned
aerial vehicle (UAV) mission planning (a deterministic one
[3] and an uncertain one [4]), tourist trip design problem [5]

(and a survey in [6]), andmobile crowdsourcing problem [7]
(and a survey in [8]). A detailed survey on the OP is given in
[9], and a more recent one is given in [10].

)e stochastic orienteering problem (SOP) is a variant of
the OP, which assumes that some parameters in the OP are
stochastic and uncertain such as the score associated with each
node and the weight (or distance) associatedwith each arc. SOP
is more appropriate than the OP in practical situations. For
example, in a practical environment, traffic congestion affects
the travel time between nodes. Ilhan et al. [11] first considered
uncertainties in the score of nodes, and the resulting SOP is
called OP with stochastic profits (OPSP). Campbell et al. [12]
and Evers et al. [1] considered uncertainties in the travel and
service times, respectively, and the resulting SOP is called OP
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with stochastic travel and service times (OPSTS) or OP with
stochastic weights (OPSW). Other variants include the dy-
namic stochastic OP (DSOP) with stochastic time-dependent
travel times [13] and the stochastic OPTW (SOPTW) with
stochastic waiting time [14].

In this paper, we focus on the OPSW where the un-
certainties lie in the weights of the arcs. Some works on
OPSW have been done in recent years. Campbell et al. [12]
considered the OPSTS in which a penalty is incurred if a
commitment to a node is made but not completed. A variant
of VNS for the OPSTS is proposed, and its performance is
evaluated by comparing with a dynamic programming (DP)
approach. Evers et al. [1] introduced a two-stage stochastic
programming model for the OPSW. )e first-stage problem
is to plan a path. )e second-stage problem is a recourse
action after the uncertain weights are realized, which aborts
the execution of the first-stage path and enforces a direct
return to the depot. )e objective is to maximize the first-
stage path score plus the expected loss of the score due to the
recourse action. )ey presented a sample average approx-
imation (SAA) approach and an OPSW heuristic to solve the
problem. )e performance of the two approaches was
evaluated. Evers et al. [4] applied the robust optimization
(RO) methodology to build robust models for UAV mission
planning with uncertain fuel usage between targets, which is
essentially an OPSW problem. )e performance of the
robust models is studied in terms of different uncertainty
sets and the feasibility of the robust solutions.

Inspired by the recourse model proposed in [1], we
consider the two-stage OPSW in this paper, i.e., OPSW with
recourse action.)e first-stage problem is to plan a path with
the stochastic weights unrevealed.)e second-stage problem
is a recourse action to avoid the violation of the length
budget after the uncertainty is realized. )e recourse action
is to abort the execution of the first-stage path and enforce a
direct return to the depot. )is kind of recourse action is
necessary, especially in the UAV mission planning. )e
UAV has to return to the depot safely in the uncertain
environment. Evers et al. [1] used the two-stage stochastic
programming technique [15] to deal with the two-stage
OPSW. )ere are two main drawbacks in their method. (1)
)e recourse model itself has many decision variables and
constraints, which make the two-stage model very com-
plicated. (2) By using the SAA approach, the resulting SAA-
problem is a large mixed-integer program (MIP), which
makes it unacceptable to use for large instances.

To address these issues, we use the two-stage robust
optimization (RO) for the two-stage OPSW. Two-stage RO,
which is also known as adjustable RO and can be extended to
the multistage situation, was initially introduced in [16].
Compared with the traditional one-stage RO, two-stage RO
divides the decision variables into “here and now” decisions
and “wait and see” decisions, which are more flexible and are
suitable for modeling two-stage problems. It has been
successfully applied to different applications such as unit
commitment (a single-objective one [17] and a

multiobjective one [18]), network flow [19], and portfolio
optimization [20]. To the best of our knowledge, this is the
first time to use the two-stage RO paradigm for the two-stage
OPSW. )e two-stage RO model introduced in this paper
has binary recourse decisions. )is kind of problem has
largely resisted solution so far [21]. Computing an optimal
adjustable robust solution is often intractable since it re-
quires computing a solution for all possible realizations of
the uncertainties [22]. Instead of solving the two-stage RO
model directly, Bertsimas et al. [23] studied the performance
of the static solutions for two-stage adjustable robust linear
optimization problems and presented a tight characteriza-
tion of the conditions under which a static robust solution is
optimal for the two-stage robust problem. From this point of
view, we introduce the static robust model for the OPSW
which corresponds to the two-stage robust model and study
its performance and the relationships with the two-stage
robust models. We prove that, with the box uncertainty set
defined, the two-stage robust models are equivalent to their
corresponding static robust models, and the two two-stage
robust models are also equivalent to each other even though
they are based on different recourse models. )ese con-
clusions we obtained indicate that the two-stage robust
models for OPSW can be solved to optimality by solving
their corresponding static robust models.

It is worth mentioning that there are some other application
fields which employ similar methodological tool to our method.
Some of the representative applications are capacity expansion
planning [24], humanitarian relief logistics [25], distribution
expansion planning [26], plug-in electric vehicle (PEV) charging
station design [27], and parking-lot- (PL-) based charging in-
frastructure allocation [28]. We can expect that our method has
the potential to be applied in these fields as well.

)e main contributions of this paper are summarized as
follows:

(1) For the two-stage OPSW, we propose a new recourse
model which has less variables and less constraints
compared with the recourse model proposed in [1].
)e difference and relation of these two recourse
models are discussed in detail in this paper.

(2) Based on the two recourse models, we present two
different two-stage robust optimization models for
OPSW. To the best of our knowledge, this is the first
time to adopt the two-stage robust optimization
method to solve the two-stage OPSW.

(3) We theoretically prove that the two-stage robust
models are equivalent to their corresponding static
robust models under the box uncertainty set, which
means that we can use common mathematical
programming solvers to solve the two-stage robust
models. We also prove that the two two-stage robust
models are equivalent to each other even though they
are based on different recourse models. )is indi-
cates that we can use a much simpler model instead
of the complex model in [1] for the two-stage OPSW.
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(4) )e two-stage robust models for OPSW are evalu-
ated numerically by comparing them with a one-
stage robust model for OPSW. )e experimental
results suggest the usefulness of the two-stage robust
models for dealing with the two-stage OPSW.

)e remainder of the paper is organized as follows. First,
the deterministic OP is described in Section 2. Section 3
describes the two-stage OPSW and two recourse models.
Section 4 introduces two two-stage robust models for OPSW
and draws some theoretical conclusions of the equivalence
between the two-stage robust models and their corre-
sponding static robust models. A case study is presented in
Section 5. We conclude the whole paper in Section 6.

2. The Deterministic Orienteering Problem

In this section, the formal definition and the mathematical
model of the deterministic orienteering problem (OP) are
introduced.

In a deterministic OP, a set of verticesN is given with |N|
as its cardinality. Each vertex i ∈N has a score si associated
with it. Denote 0 as the depot location, where 0 ∉N and
N+ � N∪ 0{ }. )e goal is to plan a path with length limit L
that starts and ends at the depot and visits some vertices in
order to maximize the sum of the collected scores. Each
vertex is visited at most one time.

Suppose all nodes N+ are on a complete graph G� (N+,
A), where A is the set of arcs connecting the vertices in N+.
)e weight of each arc (i, j) ∈A is dij, representing the
Euclidean distance from i to j. Let xij be a binary decision
variable, where xij � 1 if and only if arc (i, j) is visited by the
path; otherwise, xij � 0. An auxiliary variable ui is used to
denote the position of node i in the path. )e formulation of
the deterministic OP is as follows:

DOP:

maximize 􏽘
i∈N

􏽘
j∈N+\ i{ }

xij, (1a)

subject to 􏽘
(i,j)∈A

dijxij ≤L,
(1b)

􏽘
i∈N

x0i � 􏽘
i∈N

xi0 � 1, (1c)

􏽘

i∈N+\ j{ }

xij � 􏽘

i∈N+ j{ }

xji ≤ 1, ∀j ∈ N,
(1d)

ui − uj + 1≤ 1 − xij􏼐 􏼑|N|, ∀i, j ∈ N (1e)

1≤ ui ≤ |N|, ∀i ∈ N, (1f)

xij ∈ 0, 1{ }, ∀(i, j) ∈ A. (1g)

Constraint (1b) is the path length constraint. Constraint
(1c) guarantees that the path starts and ends at the depot.
Constraint (1d) is the flow conservation constraint ensuring
that a vertex is visited at most once. Constraint (1e) ensures

the connectivity of the path. Constraints (1f ) and (1g) are the
boundary and integrality constraints on the auxiliary vari-
ables and decision variables, respectively.

3. The Two-Stage Orienteering Problem with
Stochastic Weights

In this section, the two-stage orienteering problem with
stochastic weights (OPSW) is introduced.

Suppose the weight of each arc (i, j) is stochastic and
uncertain; denote the stochastic weight of arc (i, j) as 􏽥dij. In
this paper, we consider 􏽥dij as a symmetrically distributed
random variable on the interval [dij − 􏽢dij, dij + 􏽢dij], where
dij is the expected value of 􏽥dij and 􏽢dij is the maximum
deviation of dij from its expected value. For simplicity and
convenience, we use dij to denote the realizations of 􏽥dij. In
this paper, we use the interval value to describe the stochastic
weights. )is is because we will use the robust optimization
technique to deal with the two-stage OPSW. In robust
optimization, only interval value is needed, and we do not
need more knowledge about the uncertain information, e.g.,
the probability distribution.

We consider the two-stage OPSW, i.e., OPSW with
recourse action. In the two-stage OPSW, the first-stage
problem is to plan a path with the stochastic weights un-
revealed. Due to the randomicity and uncertainty of the
stochastic weights, the first-stage path may violate constraint
(1b) after the uncertainty is realized. So, the second-stage
problem is a recourse action to avoid constraint violation
after the uncertainty is realized. )e recourse action is to
abort the execution of the first-stage path and enforce a
direct return to the depot.

3.1. RecourseModel in [1]. )e recourse model introduced in
[1] is explained as follows. In this model, after the uncertain
weights of the first-stage path are realized, the recourse
action is performed to abort the execution of the first-stage
path and enforce a direct return to the depot from the
current location when the remaining budget cannot support
any further visit of the remaining path. Figure 1 gives an
illustration of this recourse action. Figure 1(a) shows the
planned path in the first stage when all the weights are
uncertain. Figure 1(b) shows the recourse action in the
second stage after all the uncertain weights of the planned
path are realized.)e recourse action aborts the execution of
the planned path at node 7 and forces a direct return to the
depot from node 7. )is is because any further execution of
the planned path from node 7 will violate constraint (1b)
(i.e., the visit of node 6 will violate the path length constraint
in Figure 1).

Denote the first-stage path as vector x which contains all
xij and the weight realizations as vector d which contains all
dij. Let xijk be a binary variable, xijk � 1 if arc (i, j) is the kth arc
in the first-stage path; otherwise, xijk � 0; let yi be a binary
variable, and yi � 1 if node i is in the first-stage path but
cannot be reached as a result of the recourse action; oth-
erwise, yi � 0; and let zk be a binary variable; zk � 1 if the kth
node in the first-stage path cannot be reached as a result of
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the recourse action; otherwise, zk � 0. With the first-stage
path x and the weight realizations d, the recourse model of
the two-stage OPSW proposed in [1] is formulated as
follows.

Recourse1:

R1(x, d) � max − 􏽘 siyi, (2a)

subject tox0j1 ≥ x0j, ∀j ∈ N, (2b)

xijk ≥xij + 􏽘
l∈N+

xli(k− 1) − 1, ∀i, j ∈ N, k � 1, . . . , |N|,

(2c)

􏽘

k

k�1
􏽘

(i,j)∈A
dijxijk + 􏽘

(i,j)∈A
dj0xijk ≤ L + Mzk

,

∀k � 1, . . . , |N|,

(2d)

zk ≥ zk− 1, ∀k � 2, . . . , |N|, (2e)

yj ≥ 􏽘
i∈N+

xijk + zk − 1, ∀j ∈ N, k � 1, . . . , |N|, (2f)

xijk ∈ 0, 1{ }, ∀i, j ∈ N
+
, k � 1, . . . , |N|, (2g)

yj ∈ 0, 1{ }, ∀i ∈ N, (2h)

zk ∈ 0, 1{ }, ∀k � 1, . . . , |N|, (2i)

where objective function (2a) is to minimize the loss in the
collected score as a result of the recourse action. Constraint
(2b) identifies the first arc in the path. Constraint (2c)
identifies the order of the other arcs in the path. Constraint
(2d) determines the nodes of the first-stage path x that can
and cannot be reached based on d, where M is a sufficiently
large number. Constraint (2e) makes sure that all nodes in

the path after the first unreachable node cannot be reached
either. Constraint (2f ) identifies the nodes in the first-stage
path that cannot be reached, based on their indexes. For a
detailed explanation of this model, refer to [1].

From the above recourse model, we can see that there are
|N|3 + 2|N|2 + 3|N|�O(|N|3) variables (i.e., xijk, yi, and zk)
and |N|3 + |N|2 + 3|N| − 1�O(|N|3) constraints in total,
which is a very complex model.

3.2. A New Recourse Model. We now introduce a new re-
course model which has less variables and constraints. We
introduce a new binary variable yij; yij � 1 if arc (i, j) is in the
first-stage path but is cancelled by the recourse action, and
yij � 0 if arc (i, j) is in the first-stage path and is not cancelled
by the recourse action, or arc (i, j) is not in the first-stage
path. )en, the recourse model of the two-stage OPSW can
be formulated as follows.

Recourse2:

� R2(x, d) � max − 􏽘
j∈N

si 􏽘

i∈N+ j{ }

yij, (3a)

subject toyij ≤ xij, ∀(i, j) ∈ A, (3b)

􏽘

i∈N+ j{ }

yij ≤ 􏽘

k∈N+ j{ }

yjk, ∀j ∈ N,
(3c)

􏽘
(i,j)∈A

dijxij − 􏽘
(i,j)∈A

dijyij

+ 􏽘
j∈N

􏽘

k∈N+ j{ }

yjk − 􏽘

i∈N+ j{ }

yij
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 ≤L,

(3d)

yij ∈ 0, 1{ }, ∀(i, j) ∈ A, (3e)

where objective function (3a) is to minimize the loss in the
collected score as a result of the recourse action. Constraint
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Figure 1: An illustration of the two-stage OPSW. (a) First-stage planned path. (b) Recourse action.
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(3b) ensures that the cancelled arcs are from the first-stage
path. Constraint (3c) ensures that the cancelled arcs com-
pose a subpath of the first-stage path starting at a vertex of
the first-stage path and ending at the depot. Constraint (3d)
ensures that the modified path after the recourse action is
within the length limit.

From the above example, we can see that there are |N|2 +

|N| � O(|N|2) variables (i.e., yij) and
|N|2 + 2|N| + 1 � O(|N|2) constraints in total. Compared
with the Recourse1 model, the Recourse2 model has much
less variables and constraints.

3.3. "e Difference between Recourse1 and Recourse2 Models.
)e idea behind the Recourse1 and Recourse2 models is
different, and they may lead to different solutions. In the
Recourse1 model, it is assumed that the uncertain weights of
the planned path are realized in a sequential manner (i.e., the
uncertain weight of each arc is realized one by one).
However, in the Recourse2 model, it is assumed that the
uncertain weights of the planned path are realized in a
concurrent manner (i.e., the uncertain weights of all arcs are
realized at the same time).)us, themain difference between
these two models is whether the prior knowledge of the
realized weights is known beforehand.

Let us take Figure 1 as an example to illustrate this
difference. For the Recourse1 model, the weights of the
planned path are realized one by one during the execution of
the planned path. If the current location is 7 as shown in
Figure 1(b), the weight of the next arc 7⟶ 6 is realized,
and the weights of the arcs 6⟶ 9 and 9⟶ depot are still
unknown. Now, we need to make a decision according to the
Recourse1 model. We need to calculate the cost of visiting
node 6 and returning to the depot from node 6. If the
remaining budget cannot support this decision, the Re-
course1 model will cancel visiting node 6 and directly return
to the depot from node 7. However, for the Recourse2
model, the weights of the planned path are realized at the
same time. )us, the realized weights of arcs 7⟶ 6,
6⟶ 9, and 9⟶ depot are known beforehand. If visiting
node 6 violates the constraint, then the Recourse2 model will
lead to the same solution as the Recourse1 model. However,
if visiting node 6 does not violate the constraint, then the
Recourse2 model will continue to visit node 6, and thus, the
solution will be better than the Recourse1 model.

In summary, the Recourse1 model and Recourse2 model
are based on different ideas (i.e., how the uncertain weights
of the planned path are realized). Also, the two recourse
models may lead to different solutions since the Recourse2
model has more prior knowledge of the uncertain weights.
With respect to the complexity of the models, the Recourse2
model is less complex and is more attractive to use in
practice. However, the Recourse1 model is more realistic
since we usually cannot get all the uncertain information
beforehand.

In the next section, we will establish two-stage robust
optimization models based on these two recourse models.
We will show that, under certain conditions, these two
models are equivalent, i.e., we can use the Recourse2 model

instead of the Recourse1 model. )is is the main contri-
bution of this paper.

4. Two-Stage Robust Optimization for OPSW

In this section, we apply the two-stage RO methodology to
model the two-stage OPSW. In the two-stage OPSW, the
first-stage “here and now” decisions are the binary decision
variables xij described in Section 2. )e second-stage “wait
and see” decisions are the binary decision variables yi, zk in
the Recourse1 model or the binary decision variables yij in
the Recourse2 model.

In the two-stage RO for OPSW, an uncertainty set
needs to be defined for the stochastic weights. We consider
the box uncertainty set which is defined by the∞-norm of
the uncertain vector. )e reasons that we choose the box
uncertainty set for the two-stage RO for OPSW are as
follows:

(1) It is simple compared with the polyhedral uncer-
tainty set and the ellipsoidal uncertainty set which
are defined by 1-norm [29] and 2-norm [30], re-
spectively, and the derived robust counterpart has
the same computational complexity as the original
model.

(2) With the box uncertainty set, we can draw some
interesting conclusions in the following sections
which describe the equivalence between the two-
stage robust models and their corresponding static
robust models.

Without loss of generality, the box uncertainty setU for
the stochastic weights is defined as follows:

U � d ∈ RM
: dij � dij + ζ ij

􏽢dij,∀i, j ∈ N
+
, ζ ∈ Z􏽮 􏽯, (4)

where d is an M-dimensional vector with M � |N+| × |N+|,
ζ ∈ RM is the vector of primitive uncertainties, and Z is a
convex set which is defined as follows:

Z � ζ ∈ RM
: ζ∞ ≤Θ􏽮 􏽯, (5)

where Θ ∈ [0, 1] is the parameter controlling the size of Z.
Next, we introduce two two-stage RO models for OPSW

based on the Recourse1 model and the Recourse2 model,
respectively.

4.1. Two-Stage Robust Model for OPSW with the Recourse1
Model. Based on the Recourse1model and the two-stage RO
paradigm, we introduce the following two-stage RO model
for OPSW.

Two-stage-R1:

maximize 􏽘
i∈N

si 􏽘
j∈N+\ i{ }

xij + min
d∈U

R1(x,d),
(6a)

subject to 􏽘
(i,j)∈A

dij − 􏽢dij􏼐 􏼑xij ≤ L,
(6b)

(1c) − (1g), (6c)

Complexity 5



where R1(x, d) is the Recourse1 model and U is the box
uncertainty set. Constraint (6b) is the length limit on the
first-stage path. Without constraint (6b), the first-stage path
can be arbitrarily long providing there exist unvisited nodes,
and these nodes can be included in the first-stage path even
when some nodes in any particular case cannot be reached.
By adding constraint (6b), we limit the length of the first-
stage path in the most optimistic situation, i.e., all arc
weights are equal to their minimum values. With this
constraint, the size of the solution space can be reduced,
while the problem optimality is maintained.

)e two-stage robust model for OPSW introduced
above is an 0-1 integer programming problem with 0-1
integer recourse. Next, we present its corresponding static
robust model in which the second-stage “wait and see”
decisions become “here and now.”)e corresponding static
robust model of the Two-stage-R1 model is formulated as
follows.

Static-R1:

maximize 􏽘
i∈N

si 􏽘
j∈N+ i{ }

xij − 􏽘
i∈N

siyi, (7a)

subject to(1c) − (1g), (6b), (7b)

(2b) − (2c),
(2e) − (2i),

(7c)

􏽘

K

k�1
􏽘

(i,j)∈A
dijxijk + 􏽘

(i,j)∈A
dj0xijK ≤ L + MzK,

∀K � 1, . . . , |N|, d ∈ U.

(7d)

In the above static robust model, the second-stage de-
cision variables yi and zk are “here and now” and do not
depend on the realizations of uncertain d. Both first-stage
decisions xij and second-stage decisions yi and zk are se-
lected before uncertain d is known. An optimal static robust
solution to Static-R1 can be computed efficiently with the
box uncertainty set U. What interests us is the relationship
between the two-stage robust model Two-stage-R1 and its
corresponding static robust model Static-R1.

In the following, we establish a theorem which describes
the equivalence of the Two-stage-R1model and the Static-R1
model.

Theorem 1. "e two-stage robust model Two-stage-R1 and
its corresponding static robust model Static-R1 are equivalent.

Proof. It is clear that the optimal solution of the static robust
model Static-R1 is a feasible solution of the two-stage robust
model Two-stage-R1. All we need to show is that the optimal
solution of the two-stage robust model Two-stage-R1 is a
feasible solution of the static robust model Static-R1.

We prove by apagoge. Denote (x∗ij, x∗ijk, y∗i , z∗k ) as the
optimal solution of the two-stage robust model Two-stage-
R1. Suppose the optimal solution is infeasible for the static
robust model Static-R1, which means

∃d′ ∈ UandK′, 􏽘
K′

k�1

􏽐
(i,j)∈A

dij
′x∗ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK′ >L + Mz∗K′ .

(8)

Because M is a sufficiently large number, the above
condition is only satisfied by z∗

K′ � 0. )is means that the
K′th node in the first-stage path of the two-stage robust
model Two-stage-R1 is reachable, but this node is unreachable
under the context of the static robust model Static-R1.

Now, we consider the second-stage problem R1(x∗, d′),
where x∗ is the first-stage optimal solution, and denote the
optimal solution as (yi

′, zk
′). )en, for K′,

􏽘

K′

k�1
􏽘

(i,j)∈A
dij
′x∗ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK′ ≤L + MzK′′. (9)

Comparing constraints (8) and (9), it is clear that zK′′
must be 1.)is means the K′th node in the first-stage path is
unreachable with d′. Denote the K′th node in the first-stage
path as node j; then, the second-stage optimal value
RS(x∗, d′)≤ − 􏽐i∈Nsiy

∗
i − sj. Because we are optimizing

mind∈URS(x∗, d), (y∗i , z∗k ) is not the optimal second-stage
solution, so this is a contradiction. )us, the hypothesis
cannot be established, which means (x∗ij, x∗ijk, y∗i , z∗k ) is
feasible for the static robust model Static-R1.

We conclude that the optimal solution of the two-stage
robust model Two-stage-R1 is a feasible solution of the static
robust model Static-R1. Because the two models have the
same objective function value with the same solutions, the
optimal solution of the two-stage robust model Two-stage-
R1 is also the optimal solution of the static robust model
Static-R1; this implies the two models are equivalent. □

Remark 1. )e proof of )eorem 1 does not need the
support of the box uncertainty set. We can still draw this
conclusion even if the uncertainty set U is an arbitrary
uncertainty set.

Based on )eorem 1, the two-stage robust model Two-
stage-R1 can be solved to optimality by solving its corre-
sponding static robust model Static-R1. Comparing the static
robust model Static-R1 with the original deterministic OP
model DOP, many new integer variables are added which
makes the static robust model Static-R1 computationally ex-
pensive. Evers et al. [1] proved that the relaxation model with
0≤xijk ≤ 1 and 0≤yi ≤ 1 of the second-stage problemR1(x, d)

is equivalent to the original R1(x,d), and the resulting relax-
ation model provides a substantial decrease in the computation
time. )is conclusion can be easily applied to the static robust
model Static-R1 which leads to the following proposition.

Proposition 1. "e relaxation model with 0≤ xijk ≤ 1 and
0≤yi ≤ 1 of the static robust model Static-R1 is equivalent to
the original static robust model Static-R1.

Proof. )is conclusion can be drawn by following the proof
way of )eorem 1 in [1].
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However, even the relaxed Static-R1 model has a large
number of decision variables and constraints, which make
this model not practical to use. □

4.2. Two-Stage Robust Model for OPSW with the Recourse2
Model. Based on the Recourse2model and the two-stage RO
paradigm, we introduce the following two-stage RO model
for OPSW.

Two-stage-R2:

maximize 􏽘
i∈N

si 􏽘
j∈N+\ i{ }

xij + min
d∈U

R2(x, d),
(10a)

subject to(1c) − (1g), (6b), (10b)

where R2(x, d) is the Recourse2 model and U is the box
uncertainty set.

We also consider the corresponding static robust model
of Two-stage-R2 instead of solving the two-stage robust
model directly; the corresponding static robust model of
Two-stage-R2 is formulated as follows.

Static-R2:

maximize 􏽘
i∈N

si 􏽘
j∈N+\ i{ }

xij − 􏽘
j∈N

sj 􏽘

i∈N+ j{ }

yij, (11a)

subject to(1c) − (1g), (6b), (11b)

(3b) − (3c), (3e), (11c)

􏽘
(i,j)∈A

dijxij − 􏽘
(i,j)∈A

dijyij

+ 􏽘
j∈N

􏽘

k∈N+\ j{ }

yjk − 􏽘

i∈N+\ j{ }

yij
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 ≤L, ∀d ∈ U.

(11d)

We can readily see that the optimal solution of the static
robust model Static-R2 is feasible to the two-stage robust
model Two-stage-R2. With the help of the box uncertainty
set, the following theorem can be established which shows
that Two-stage-R2 and Static-R2 are equivalent.

Theorem 2. "e two-stage robust model Two-stage-R2 and
its corresponding static robust model Static-R2 are equivalent.

Proof. It is clear that the optimal solution of the static robust
model Static-R2 is a feasible solution of the two-stage robust
model Two-stage-R2. All we need to show is that the optimal
solution of the two-stage robust model Two-stage-R2 is a
feasible solution of the static robust model Static-R2.

We prove by apagoge. Denote (x∗ij, y∗ij) as the optimal
solution of the two-stage robust model Two-stage-R2.
Suppose the optimal solution is infeasible for the static
robust model Static-R2, which means

∃d′ ∈ U, 􏽘
(i,j)∈A

dij
′x∗ij − 􏽘

(i,j)∈A
dij
′y∗ij + 􏽘

j∈N
􏽘

k∈N+\ j{ }

y
∗
jk − 􏽘

i∈N+\ j{ }

y
∗
ij

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 >L. (12)

Denote du � d + Θ􏽢d; according to the definition of the
box uncertainty set U, we know that du ∈ U and du≽d′,
where ≽ is the element-wise inequality. Based on inequality
(12), it is clear that

􏽘
(i,j)∈A

d
u
ijx
∗
ij − 􏽘

(i,j)∈A
d

u
ijy
∗
ij + 􏽘

j∈N
􏽘

k∈N+\ j{ }

y
∗
jk − 􏽘

i∈N+\ j{ }

y
∗
ij

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 > L.

(13)

Denote d∗ ∈ U as the optimal value of d that achieves
optimal solution (x∗ij, y∗ij) in the two-stage robust model
Two-stage-R2; then,

􏽘
(i,j)∈A

d
∗
ijx
∗
ij − 􏽘

(i,j)∈A
d
∗
ijy
∗
ij + 􏽘

j∈N
􏽘

k∈N+\ j{ }

y
∗
jk − 􏽘

i∈N+\ j{ }

y
∗
ij

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 ≤ L,

􏽘
(i,j)∈A

d
∗
ijx
∗
ij − 􏽘

(i,j)∈A
d
∗
ijyij
′ + 􏽘

j∈N
􏽘

k∈N+\ j{ }

yjk
′ − 􏽘

i∈N+\ j{ }

yij
′⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dj0 > L, ∀y′ ∈Y andy′ ≠ y∗,

(14)
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where Y �

yij
′ ≤y
∗
ij, ∀i, j,

y′: 􏽘

i∈N+ j{ }

yij
′ ≤ 􏽘

k∈N+\ j{ }

yjk
′, ∀j,

yij
′ ∈ 0, 1{ }, ∀i, j

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

is the set

which contains all recourse actions with less cancelled arcs
compared with y∗.

Based on the fact that du≽d∗ and using inequality (14),
we have

􏽘
(i,j)∈A

d
u
ijx
∗
ij − 􏽘

(i,j)∈A
d

u
ijyij
′ + 􏽘

j∈N
􏽘

k∈N+\ j{ }

yjk
′ − 􏽘

i∈N+\ j{ }

yij
′⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

dj0 > L, ∀y′ ∈Y andy′ ≠ y∗.

(15)

Combining inequalities (13) and (15), we can observe
that, for the second-stage problem R2(x∗, du), the recourse
action needs to cancel more arcs than y∗ to satisfy the length
constraint, which means R2(x∗,du)< − 􏽐j∈Nsj􏽐i∈N+\ j{ }y∗ij.
Because we are optimizing mind∈UR2(x∗, d), y∗ is not the
optimal second-stage solution, so this is a contradiction.
Hence, the hypothesis cannot be established, which means
(x∗ij, y∗ij) is feasible for the static robust model Static-R2.

We conclude that the optimal solution of the two-stage
robust model Two-stage-R2 is a feasible solution of the
static robust model Static-R2. Because the two models have
the same objective function value with the same solutions,
the optimal solution of the two-stage robust model Two-
stage-R2 is also the optimal solution of the static robust
model Static-R2; this implies the two models are
equivalent. □

Based on )eorem 2, the two-stage robust model Two-
stage-R2 can be solved to optimality by solving its corre-
sponding static robust model Static-R2. Meanwhile, the
Static-R2 model has much less decision variables and
constraints compared with the Static-R1 model, which make
it more practical to use.

4.3. "e Relationship between Two-Stage-R1 and Two-Stage-
R2 Models. Until now, we have introduced two two-stage
robust models Two-stage-R1 and Two-stage-R2 and also
proved that these two models are equivalent to their cor-
responding static robust models, respectively. In this section,
we further investigate the relationships between Two-stage-
R1 and Two-stage-R2.

First, we investigate the static models Static-R1 and
Static-R2. Comparing static model Static-R2 with static
model Static-R1, model Static-R2 has less decision variables
and less constraints and is computationally more attractive.
)e two static models are based on different recourse
models. Next, we show that model Static-R1 and model
Static-R2 are equivalent with the support of the box un-
certainty set.

Theorem 3. "e static robust models Static-R1 and Static-R2
are equivalent.

Proof. First, suppose (x∗ij, x∗ijk, y∗i , z∗k ) is the optimal solu-
tion of the static robust model Static-R1, and we introduce
decision variable yij which is defined in the Recourse2
model to model Static-R1; then, the optimal solution
(x∗ij, x∗ijk, y∗i , z∗k ) can be mapped to an optimal solution
(x∗ij, y∗ij) of model Static-R1, and it is clear that (x∗ij, y∗ij) is
feasible to the static robust model Static-R2.

)en, suppose (x∗ij, y∗ij) is the optimal solution of the
static robust model Static-R2, and we introduce variables
xijk, yi, zk which are defined in the Recourse1 model to
model Static-R2; then, the optimal solution (x∗ij, y∗ij) can be
mapped to an optimal solution (x∗ij, x∗ijk, y∗i , z∗k ) of model
Static-R2, and we now show that (x∗ij, x∗ijk, y∗i , z∗k ) is feasible
to the static robust model Static-R1.

Suppose z∗
K′ � 0 and z∗

K′+1 � 1; then, this means the
nodes in the first-stage path become unreachable from the
(K′ + 1)th node. )en, length constraint (11d) in the static
robust model Static-R2 is equivalent to

􏽘

K′

k�1
􏽘

(i,j)∈A
dijx
∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK′ ≤ L, ∀d ∈ U. (16)

Based on the definition of the box uncertainty set U,
inequality (16) is equivalent to

􏽘

K′

k�1
􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK′ ≤L. (17)

We transform the left-hand side of the above inequality
as follows:

􏽘

K′

k�1
􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK′

� 􏽘

K′ − 1

k�1
􏽘

(i,j)∈A
dij +Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijK′ + 􏽘

(i,j)∈A
dj0x
∗
ijK′

≥ 􏽘
K′ − 1

k�1
􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dij + dj0􏼐 􏼑x

∗
ijK′

>
1

􏽘

K′− 1

k�1
􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ij K′− 1( ),

(18)

where relation 1 is due to the triangle inequality.
Based on (17) and (18), we have

􏽘

K′− 1

k�1
􏽘

(i,j)∈A
dij + Θ􏽢dij􏼐 􏼑x

∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ij K′− 1( ) ≤ L, (19)

which implies

􏽘

K′− 1

k�1
􏽘

(i,j)∈A
dijx
∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ij K′− 1( ) ≤L, ∀d ∈ U. (20)

Following the above transformation recursively, finally,
we can get
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􏽘

K

k�1
􏽐

(i,j)∈A
dijx
∗
ijk + 􏽘

(i,j)∈A
dj0x
∗
ijK ≤ L, ∀K � 1, ..., K′, d ∈ U.

(21)

So, the optimal solution (x∗ij, x∗ijk, y∗i , z∗k ) is feasible to
the static robust model Static-R1.

We conclude that the optimal solution of the static
robust model Static-R1 is a feasible solution of the static
robust model Static-R2, and the optimal solution of the static
robust model Static-R2 is a feasible solution of the static
robust model Static-R1. )en, the two models have the same
optimal solution; this implies the two models are equivalent.

)e following corollary shows the equivalence between
two two-stage robust models. □

Corollary 1. "e two-stage robust models Two-stage-R1 and
Two-stage-R2 are equivalent.

Proof. Based on )eorems 1, 2, and 3, we can draw this
conclusion.

Based on )eorems 1–3 and Corollary 1, we know that
the four models Two-stage-R1, Static-R1, Two-stage-R2, and
Static-R2 are equivalent to each other. It is an interesting
conclusion that Two-stage-R1 and Two-stage-R2 are
equivalent under the box uncertainty set even though they
are based on different recourse models. □

In this section, we have established the two-stage robust
optimization models for OPSW. First, we proved that the
two-stage robust optimization models are equivalent to their
corresponding static robust models. )is is a very important
conclusion since this indicates that the two-stage robust
models can be solved by solving their corresponding static
models. We can directly use some mathematical program-
ming solvers (e.g., CPLEX) to solve the two-stage robust
optimization models. Second, we proved that, with the box
uncertainty set, Two-stage-R1 and Two-stage-R2 are
equivalent. )is is another important conclusion since this
indicates that we can use a much simpler model (i.e., Re-
course2 model) to get the same solution as the Recourse1
model. As we have discussed in the previous section, the
Recourse1 model is more realistic, and this recourse model
has been well studied in [1]. However, this model is very
complex and is not preferable to use in practice. We in-
troduced the Recourse2 model, and now, our theories
support us to use the Recourse2 model instead of the Re-
course1 model in our two-stage robust optimization models.

5. Case Study

In this section, a simple case study is presented to illustrate
the effectiveness of the proposed two-stage robust models for
OPSW.

5.1. Test Instance. )e test instance used in our experiments
is based on problem set 3 from [31] which was originally
used for the deterministic OP. Problem set 3 contains 20
instances with the same 33 nodes and 20 varying length

limits. We only consider 3 length limits: 80, 90, and 100. In
the instance, the end point is ignored, and the start point is
kept as the depot location. )e problem set can be found at
http://www.mech.kuleuven.be/en/cib/op.

To generate the uncertain instances for OPSW, we use
the Euclidean distances between nodes as the expected
weights dij. Two kinds of uncertain instances are generated
with the deviation values 􏽢dij chosen as 0.2dij and 0.5dij,
respectively. )en, based on different length limits and
different deviation values, we can get a total of 6 uncertain
instances for OPSW.

5.2. Experiments. In order to evaluate the effectiveness of the
proposed two-stage robust models, we use the one-stage
robust model for OPSW for comparison. In the one-stage
robust model, all the decision variables are “here and now,”
and there are no recourse decision variables considered in
the model. )e one-stage robust model follows the tradi-
tional RO paradigm and is formulated as follows.

One-stage-RO:

maximize 􏽘
i∈N

si 􏽘
j∈N+\ i{ }

xij, (22a)

subject to(1c) − (1g), (22b)

􏽘
(i,j)∈A

dijxij ≤ L, ∀d ∈ U.
(22c)

As proven in Section 4, the Static-R2 model is equivalent
to the two-stage robust models Two-stage-R1 and Two-
stage-R2 and is computationally more efficient than the
Static-R1 model. So, we use the Static-R2 model to solve the
two-stage OPSW with sequential or concurrent realized
weights.

We generate 1000 scenarios for the 􏽢dij � 0.2dij and 􏽢dij �

0.5dij cases, respectively, for simulation purposes. Suppose
the uncertain weights 􏽥dij are uniformly distributed on in-
terval [dij − 􏽢dij, dij + 􏽢dij]. )en, the realizations dij are
sampled uniformly on the interval [dij − 􏽢dij, dij + 􏽢dij].

For each uncertain instance, the Static-R2 model and the
One-stage-RO model are solved by CPLEX 12.6 with
Θ � 0, 0.1, ..., 1, respectively. )e java source code of using
CPLEX to solve the models is provided in the supplementary
material. )e robust solutions obtained by the Static-R2
model and the One-stage-ROmodel are then simulated with
the 1000 scenarios for the two-stage OPSW with Recourse1
and Recourse2 actions. )e mean objective values and the
standard deviations of the robust solutions are statistically
summarized.

5.3. Numerical Results. We use the Static-R2 model instead
of the Static-R1 model in our experiments. Here, we show a
simple runtime comparison between Static-R1 and Static-R2
to illustrate that Static-R2 (i.e., with the new recourse model
proposed in this paper) is much more efficient than Static-
R1. We choose the instance with L � 80 and 􏽢dij � 0.5dij and
set Θ � 0.1. )en, the two models are solved by CPLEX.
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)eir runtime is shown in Figure 2. We can clearly see that
Static-R2 can be solved in 0.11 seconds, whereas Static-R1
needs 102.75 seconds to be solved. Our proposed model is
900+ times faster, which shows the great improvement in the
computational time.)e results in Figure 2 clearly suggest us
to use Static-R2 in our experiments.

Tables 1–6 show the numerical results of the 6 instances
with different length limits and different deviation values.
Obj. in the tables represents the objective value obtained by
the One-stage-RO model or the Static-R2 model. First, we
can observe that the objective values of the robust solutions
are decreasing as parameter Θ increases for both one-stage

Table 2: Numerical results of the instance with L� 80 and d
⌢

ij� 0.5dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent

Obj.
Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 710.00 652.47 77.39 657.90 73.04 710.00 652.47 77.39 657.90 73.04
0.10 680.00 662.97 40.82 664.29 39.68 680.00 680.41 25.69 681.26 24.96
0.20 660.00 658.71 8.26 658.85 7.74 660.00 655.91 17.83 656.05 17.58
0.30 640.00 639.83 2.07 639.86 2.00 640.00 639.48 6.43 639.54 6.15
0.40 620.00 620.00 0.00 620.00 0.00 630.00 629.99 0.32 629.99 0.32
0.50 610.00 610.00 0.00 610.00 0.00 610.00 631.71 19.40 633.11 19.23
0.60 590.00 590.00 0.00 590.00 0.00 600.00 600.00 0.00 600.00 0.00
0.70 570.00 570.00 0.00 570.00 0.00 580.00 580.00 0.00 580.00 0.00
0.80 570.00 570.00 0.00 570.00 0.00 570.00 600.00 0.00 600.00 0.00
0.90 550.00 550.00 0.00 550.00 0.00 560.00 593.93 24.90 596.25 28.57
1.00 540.00 540.00 0.00 540.00 0.00 550.00 570.00 0.00 570.00 0.00

Static-R1 Static-R2
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20

40
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80
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120
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Figure 2: Runtime comparison between Static-R1 and Static-R2. )e instance is with L � 80, 􏽢dij � 0.5dij, and Θ � 0.1.

Table 1: Numerical results of the instance with L� 80 and d
⌢

ij� 0.2dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent

Obj.
Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 710.00 680.19 41.66 681.63 41.43 710.00 693.76 27.37 695.29 24.89
0.10 690.00 676.52 28.56 677.93 27.62 700.00 691.55 19.85 692.43 18.59
0.20 690.00 688.48 7.08 688.82 6.36 690.00 685.64 18.87 685.70 18.79
0.30 680.00 679.58 6.02 679.58 6.02 680.00 679.93 1.38 679.94 1.34
0.40 670.00 670.00 0.00 670.00 0.00 670.00 679.77 1.50 679.78 1.47
0.50 660.00 660.00 0.00 660.00 0.00 660.00 660.00 0.00 660.00 0.00
0.60 650.00 650.00 0.00 650.00 0.00 650.00 650.00 0.00 650.00 0.00
0.70 640.00 640.00 0.00 640.00 0.00 640.00 640.68 5.17 640.68 5.17
0.80 630.00 630.00 0.00 630.00 0.00 640.00 640.00 0.00 640.00 0.00
0.90 630.00 630.00 0.00 630.00 0.00 630.00 630.00 0.00 630.00 0.00
1.00 620.00 620.00 0.00 620.00 0.00 630.00 630.00 0.00 630.00 0.00
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and two-stage RO models. As Θ increases, the size of the
uncertainty set U is increasing which means the protection
level is increasing, and the resulting robust solution is more
conservative.

For both one-stage and two-stage robust models, the
mean objective values with concurrent recourse are greater
than or equal to the corresponding mean objective values
with sequential recourse. )e reason is that the concurrent

recourse has more information on the uncertainty reali-
zations than the sequential recourse, so the concurrent
recourse can make a better recourse decision and achieve a
lower loss of the collected score. However, the gaps be-
tween the mean objective values with the sequential re-
course and concurrent recourse are very small which
means that the difference between the two recourse actions
is small.

Table 3: Numerical results of the instance with L� 90 and d
⌢

ij� 0.2dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent

Obj.
Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 770.00 744.96 35.74 748.44 33.24 770 728.16 44.97 729.68 45.17
0.10 760.00 750.74 25.94 751.33 25.31 760 754.09 17.22 754.47 16.44
0.20 750.00 746.09 17.02 746.51 16.21 750 752.69 10.43 752.93 9.90
0.30 740.00 739.80 2.36 739.85 2.25 740 747.12 5.07 747.26 4.81
0.40 730.00 730.00 0.00 730.00 0.00 730 730.00 0.00 730.00 0.00
0.50 720.00 720.00 0.00 720.00 0.00 720 720.00 0.00 720.00 0.00
0.60 710.00 710.00 0.00 710.00 0.00 710 710.00 0.00 710.00 0.00
0.70 700.00 700.00 0.00 700.00 0.00 710 736.43 4.83 736.71 4.74
0.80 690.00 690.00 0.00 690.00 0.00 690 690.00 0.00 690.00 0.00
0.90 680.00 680.00 0.00 680.00 0.00 690 700.00 0.00 700.00 0.00
1.00 670.00 670.00 0.00 670.00 0.00 680 680.00 0.00 680.00 0.00

Table 4: Numerical results of the instance with L� 90 and d
⌢

ij� 0.5dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent

Obj.
Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 770.00 722.34 58.05 727.46 57.50 770 719.97 59.25 725.56 58.42
0.10 740.00 718.99 48.56 721.56 43.38 740 730.86 38.69 733.30 36.30
0.20 720.00 718.37 10.40 718.43 10.37 720 716.06 16.54 716.74 15.18
0.30 690.00 689.98 0.45 689.98 0.45 700 699.83 2.88 699.88 2.57
0.40 670.00 670.00 0.00 670.00 0.00 680 683.83 12.27 684.13 13.68
0.50 650.00 650.00 0.00 650.00 0.00 660 679.90 1.18 679.92 1.09
0.60 640.00 640.00 0.00 640.00 0.00 640 701.27 26.59 702.86 26.30
0.70 620.00 620.00 0.00 620.00 0.00 630 630.00 0.00 630.00 0.00
0.80 610.00 610.00 0.00 610.00 0.00 610 650.00 13.75 650.21 14.85
0.90 600.00 600.00 0.00 600.00 0.00 600 649.83 26.63 652.74 31.74
1.00 580.00 580.00 0.00 580.00 0.00 590 604.88 13.09 608.52 16.38

Table 5: Numerical results of the instance with L� 100 and d
⌢

ij� 0.2dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent Obj. Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 800 795.39 7.86 795.68 7.84 800 776.88 45.66 778.99 41.13
0.10 800 798.06 5.57 798.14 5.53 800 797.02 7.11 797.20 7.05
0.20 790 789.83 1.86 789.83 1.86 790 789.77 1.86 789.78 1.83
0.30 790 789.98 0.45 789.99 0.32 790 789.89 1.70 789.89 1.70
0.40 780 780.00 0.00 780.00 0.00 790 790.00 0.00 790.00 0.00
0.50 780 780.00 0.00 780.00 0.00 780 780.00 0.00 780.00 0.00
0.60 760 760.00 0.00 760.00 0.00 770 770.00 0.00 770.00 0.00
0.70 760 760.00 0.00 760.00 0.00 760 760.00 0.00 760.00 0.00
0.80 740 740.00 0.00 740.00 0.00 750 769.39 2.39 769.48 2.22
0.90 740 740.00 0.00 740.00 0.00 740 740.00 0.00 740.00 0.00
1.00 730 730.00 0.00 730.00 0.00 730 730.00 0.00 730.00 0.00
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Table 6: Numerical results of the instance with L� 100 and d
⌢

ij� 0.5dij.

Θ
One-stage RO Two-stage RO

Obj.
Sequential Concurrent

Obj.
Sequential Concurrent

Mean Std. Mean Std. Mean Std. Mean Std.
0.00 800 778.79 43.57 779.34 43.51 800 787.07 19.79 787.63 18.57
0.10 790 774.72 40.31 776.13 38.69 790 776.04 34.31 778.05 32.25
0.20 780 777.50 14.56 778.10 12.25 780 778.71 8.64 778.81 8.18
0.30 750 749.71 4.56 749.77 4.15 760 759.72 3.15 759.79 2.84
0.40 730 730.00 0.00 730.00 0.00 730 749.27 3.57 749.33 3.44
0.50 710 710.00 0.00 710.00 0.00 710 710.00 0.00 710.00 0.00
0.60 690 690.00 0.00 690.00 0.00 690 719.75 2.29 719.81 2.02
0.70 670 670.00 0.00 670.00 0.00 670 718.05 38.05 720.08 38.58
0.80 650 650.00 0.00 650.00 0.00 660 720.00 0.00 720.00 0.00
0.90 630 630.00 0.00 630.00 0.00 640 650.00 0.00 650.00 0.00
1.00 620 620.00 0.00 620.00 0.00 630 640.00 0.00 640.00 0.00
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Figure 3: Comparison between the one-stage RO and two-stage RO with the sequential recourse, L � 80: 􏽢dij � 0.2dij (a); 􏽢dij � 0.5dij (b).
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Figure 4: Comparison between the one-stage RO and two-stage RO with the sequential recourse, L � 90: 􏽢dij � 0.2dij (a); 􏽢dij � 0.5dij (b).
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Comparing the mean objective values of the one-stage
RO and two-stage RO with the sequential recourse or
concurrent recourse, the two-stage RO achieves better values
than the one-stage RO in most cases. )is is because that the
two-stage RO considers the recourse decisions into the
model, but the one-stage RO only considers the first-stage
decisions. We also notice that the one-stage RO can achieve
better mean objective values than the two-stage RO in some
cases. Figures 3–5 show visual comparisons between the
one-stage RO and two-stage RO with the sequential re-
course. )e comparisons between the one-stage RO and
two-stage RO with the concurrent recourse are visually
similar. )e figures clearly show that the two-stage RO
dominates the one-stage RO in most cases, which shows the
effectiveness and superiority of the proposed two-stage
robust models for dealing with the two-stage OPSW.

In Tables 1–6, we also report the standard deviations of
the simulated robust solutions for both the one-stage RO
and the two-stage RO. )e standard deviations can reflect
the stabilities of the obtained robust solutions. From the
tables, we can see that, as parameter Θ increases, the
standard deviations tend to decrease, which means the
robust solutions are more stable with a larger uncertainty set.
We can also observe that the two-stage RO can mostly
achieve better mean objective values and lower or small
standard deviation values at the same time compared with
the one-stage RO. )is further indicates that the proposed
two-stage robust models can efficiently tackle the two-stage
OPSW.

6. Conclusions

In this paper, we considered the orienteering problem with
stochastic weights with recourse actions. Based on different
uncertainty realization ways, we presented two recourse

models: one is the Recourse1 model and the other is the
Recourse2 model. )e Recourse2 model has less decision
variables and less constraints and is computationally more
attractive. We applied the two-stage robust optimization
paradigm to the orienteering problem with stochastic
weights and introduced two two-stage robust optimization
models based on two recourse models. We theoretically
proved that, with the box uncertainty set defined, the two-
stage robust models are equivalent to their corresponding
static robust models, and the two two-stage robust models
are also equivalent to each other. Subsequently, the two-
stage robust models for the orienteering problem with
stochastic weights can be solved to optimality by solving
their corresponding static models. Comparative studies
between the two-stage robust models and the one-stage
robust model for the orienteering problem with stochastic
weights showed the effectiveness and superiority of the
proposed two-stage robust models for tackling the two-stage
orienteering problem with stochastic weights.

We provide the following research directions as our
future works:

(1) )e two-stage robust models for the orienteering
problem with stochastic weights proposed in this
paper are based on the box uncertainty set; therefore,
we can draw theoretical conclusions on the equiv-
alence between the two-stage robust models and
their corresponding static robust models. Other
uncertainty sets (e.g., the polyhedral uncertainty set)
could be defined in the two-stage robust models, and
the performance of the corresponding static robust
models can be studied.

(2) )e orienteering problem with stochastic weights
considered in this paper is with a two-stage setting
where the decision variables are classified into two
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Figure 5: Comparison between the one-stage RO and two-stage RO with the sequential recourse, L � 100: 􏽢dij � 0.2dij (a); 􏽢dij � 0.5dij (b).
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categories. As the planned path is executed dy-
namically and the nodes are visited sequentially, the
orienteering problem with stochastic weights can be
viewed as a multistage decision-making problem. So,
we can apply the multistage robust optimization
methodology and build a multistage robust model
for the orienteering problem with stochastic weights
with a multistage setting.

(3) Currently, all the conclusions proved in this paper
are problem-dependent, i.e., these conclusions are
only applicable to the two-stage orienteering prob-
lem with stochastic weights. In the future, we will
study if the conclusions can be applied to other
problems, such as the traveling salesman problem
and vehicle routing problem.
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