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We propose a method to detect human wants by us-
ing an electroencephalogram (EEG) test and specify-
ing brain activity sensing positions. EEG signals can
be analyzed by using various techniques. Recently,
convolutional neural networks (CNNs) have been em-
ployed to analyze EEG signals, and these analyses
have produced excellent results. Therefore, this pa-
per employs CNN to extract EEG features. Also, sup-
port vector machines (SVMs) have shown good results
for EEG pattern classification. This paper employs
SVMs to classify the human cognition into “wants,”
“not wants,” and ‘“‘other feelings.” In EEG measure-
ments, the electrical activity of the brain is recorded
using electrodes placed on the scalp. The sensing po-
sitions are related to the frontal cortex and/or tempo-
ral cortex activities although the mechanism to create
wants is not clear. To specify the sensing positions and
detect human wants, we conducted experiments using
real EEG data. We confirmed that the mean and stan-
dard deviation values of the detection accuracy rate
were 99.4% and 0.58%, respectively, when the tar-
get sensing positions were related to the frontal and
temporal cortex activities. These results prove that
both the frontal and temporal cortex activities are rel-
evant for creating wants in the human brain, and that
CNN and SVM are effective for the detection of human
wants.

Keywords: wants detection, electroencephalogram, lis-
tening to music, convolutional neural networks, support
vector machine

1. Introduction

Techniques for information and communication tech-
nology (ICT), Internet of Things, human computer inter-
actions, human sensing, and human interface are being
actively developed worldwide. One human interface in
the ICT is the brain-computer interface (BCI). The BCI
can connect the computer and human brain by analyzing
brain activity, and the BCI often supports human life by
controlling the environment around humans, for example,
for an electric-wheelchair environment control system for
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patients. If a novel ICT system based on the BCI can mea-
sure the human mental and/or emotion conditions such as
wants, decision-making, preference, relaxation, and ex-
citement, the quality of life for humans can be improved.
In particular, if human wants can be detected, the commu-
nication between a human and a computer becomes sim-
ilar to the communication between two humans. In this
paper, we focus on the wants present in the human mental
condition, and we detect these wants by analyzing human
brain activities.

The electroencephalogram (EEG) is often analyzed to
create a BCI and for analyzing brain activities. EEG anal-
ysis methods [1] have been developed for various pur-
poses, such as classifying emotions [2-9], detecting P300
waves, and classifying motor image EEG (hereinafter
“MI-EEG”) values [10]. EEG features are extracted
using various methods such as the frequency analysis
techniques [2, 11, 12], principal component analysis [13—
16], independent component analysis [15, 17-19], deep
neural networks [3], and convolutional neural networks
(CNNps) [2,6,10, 11]. Other techniques include k-nearest
neighbor classifier [20], linear discriminant analysis [21—
23], artificial neural networks [15], multi-layer percep-
tron [6], support vector machines (SVMs) [5,24], deep
neural networks [3], and CNNs [2,10,11]. Chen et al.
and Amin et al. were especially successful in classifying
emotions and MI-EEG using CNN models. Also, Lotte
et al. showed the effectiveness of CNN models by analyz-
ing EEG signals [1].

In this paper, we propose a method to detect human
wants. It is not clear how wants are created in the hu-
man brain. We assume that the frontal cortex and tem-
poral cortex activities are related to the creation of wants
because the frontal cortex activities are relevant to con-
science and judgment. Also, the frontal cortex activities
are related to creating human emotions. The temporal cor-
tex activities are relevant to decision-making. The process
of wants creation includes being conscious of the exoge-
nous stimuli using the five human senses; therefore, wants
creation involves the judgment of exogenous stimuli, cre-
ation of emotions, human thoughts, and decision-making
ability. The frontal and temporal cortex activities may
contain these factors. However, it is not clear whether
or not decision-making is related to the creation of wants.
In this paper, we confirm whether or not decision-making

Journal of Robotics and Mechatronics Vol.32 No.4, 2020

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This s an Open Access article distributed under the terms of
BY ND the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).


http://creativecommons.org/licenses/by-nd/4.0/

Start

l

EEG measurement

l

EEG feature extraction

l

Wants detection

Fig. 1. The human-wants detection technique.

is related to the creation of wants. The sensing positions
used to record the EEG signals are positions related to
the frontal and temporal cortex activities. Then, the EEG
features were extracted by using the CNN model because
previous studies had great recognition accuracy for the
CNN models. In general, EEG signals have intra- and
inter-individual differences. To solve the problem of inter-
individual differences, this paper creates a CNN model for
each person. The problem of intra-individual differences
in EEG signals can be resolved by using the CNN models
developed in this paper. To show the effectiveness of the
proposed method, we conducted experiments using real
EEG data.

2. Methods

The proposed method consists of EEG measurements,
EEG feature extraction, and human-wants detection. For
the EEG signal measurements, we employed a simple
electroencephalograph. For the EEG features extraction,
we used a CNN to extract the EEG features required for
detecting human wants. For the wants detection, we used
an SVM. Fig. 1 shows the procedure of the proposed
method.

2.1. EEG Measurements

EEG signals were recorded using EPOC+ (Emotiv
Inc.) [3,4]. EPOC+ has a maximum of 14 channels and
two reference channels; the 14 channels can record the
neural activities of the brain from the scalp. For the two
reference channels, the common mode sensing the active
electrode and the driving right leg passive electrode were
attached at the bone just behind the ear lobes, and the ref-
erence values were calculated. EPOC+ covers the posi-
tions AF3, AF4, F3, F4, F7, F8, T7, and TS in the im-
proved international 10-20 system. These sensing posi-
tions are positions related to the frontal and temporal cor-
tex activities. Fig. 2 shows the sensing positions in a part
of the improved international 10-20 system. We recorded
the EEG signals while the subject listened to music.
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O Exploring electrodes related to frontal cortex activities

O Exploring electrodes related to temporal cortex activities (T7.8)

. Reference electrodes

Fig. 2. Sensing positions for recording the EEG signals.

2.2. EEG Feature Extraction

The EEG feature extraction techniques include EEG
signal normalization and feature extraction using a CNN.
In the normalization step, the EEG signals are normalized
based on the average, variance, and maximum and mini-
mum values of all channels as follows:

EEG/(ch) — Mi

NormEEG(ch) — M
Ma — Mi W
EEG(ch)—A :
Subject to EEG/ (ch) — LEO(ch) —Ave
Var

where NormEEG is the normalized EEG signal that uses
the maximum and minimum values. EEG’ is the normal-
ized EEG signal that uses the average and variance val-
ues. EEG(ch) includes the recorded EEG signals and the
channels. Ave and Var are the average and variance val-
ues, respectively, of the recorded EEG signals. Mi and
Ma are the minimum and maximum values in the normal-
ized EEG signals (EEG’) that use the average and variance
values. CNNs are then used to extract the EEG features.
A CNN consists of an input layer, two hidden layers, and
a full-connection layer based on Chen’s model [2]. We
chose Chen’s model because it exhibited very high accu-
racy in classifying human emotions. Convolutional and
pooling layers are employed in the proposed method in
the hidden layers. We used N x M filters for the convo-
lutional layers, and the pooling layer employed the max
pooling technique. The full-connection layer was used
to extract features and reduce noise in the EEG signals.
The full-connection layer connects the extracted features.
Then, a dropout function (dropout ratio: p [%]) was im-
plemented to avoid overtraining. Fig. 3 shows the CNN
structure for the proposed method. The output of the full-
connection layer is the EEG features.
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Fig. 3. Structure of the CNNs.

2.3. Wants Detection

In this paper, we selected the sensing positions to detect
human wants. Fig. 4 shows the kinds of sensing positions.
Eight channels are in the frontal cortex and the temporal
cortex, and six channels are in the frontal cortex. Four
channels are in the prefrontal cortex. Also, the L3 chan-
nels and R3 channels are in the left frontal cortex and
right frontal cortex, respectively. Then, we employed a
linear SVM to detect the wants related to listening to mu-
sic by classifying the signals as “wants,” “not wants,” and
“other feelings.” The selection of the sensing positions
and the detection of wants were evaluated by calculating
the recognition accuracy of wants detection as follows:

Correct
Total ’

where RecAcc, Correct, and Total are the recognition ac-
curacies for detecting the wants, the number of correctly
classified data, and the total number of EEG signals, re-
spectively.

RecAcc = . (2)

3. Experiments

The subjects were volunteers from Tokushima Univer-
sity, Japan. The sample size included nine students (mean
age = 22.7 years). After giving a detailed description
of the experiment’s purpose and procedures, we obtained
written informed consent from the subjects based on the
Declaration of Helsinki. The subjects wore EPOC+ de-
vices to record the EEG signals while sitting on a chair;
they kept their eyes closed in the laboratory and were ex-
posed to some music. Fig. 5§ shows the timeline of the ex-
periments. The EEG signals were recorded for 15 s while
the subject was listening to music (“Listen to music” in
Fig. 5). The subjects responded as to whether or not they
wanted to listen to music (“Ans. Q.” in Fig. 5). Ten sets
of EEG measurements were carried out for each subject.
In the CNN parameters, the sizes of the input layers were
8 x 128, 6 x 128, 4 x 128, and 3 x 128 for eight chan-
nels (frontal and temporal cortex), six channels (frontal
cortex), four channels, and the L3- and R3-channels, re-
spectively. The size of the two filters was 3 x 1 for eight
and six channels and 2 x 1 for the four channels and the
L3- and R3-channels. Then, the number of units of the
hidden layers was 50. The number of units for the full-
connection layer was 2,000. The p of the dropout rate
in the full-connection layer was 50; 80% of the data sets
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were randomly selected as training data for the evalua-
tion tests. Then, we assumed that the frontal and temporal
cortex activities might become aware of the exogenous
stimuli obtained through the five senses; the stimuli in-
clude the judgment of the exogenous stimuli, creation of
emotions, human thoughts, and decision-making. How-
ever, it is not clear whether or not the decision-making
process is related to the creation of human wants. In this
experiment, we resolved this problem by comparing eight
channels with six channels, four channels, and the L3- and
R3-channels.

4. Results and Discussions

Table 1 shows the number of EEG signals as the sub-
jects experienced “wants,” “not wants,” and “other feel-
ings” while listening to music. The nine subjects were
numbered from S1 to S9. The number of EEG signals for
the wants, not wants, and other feelings was different for
each subject. These results suggest that the subjects had
different sensibilities and “kansei” (which means “feel-
ings” in Japanese).

Table 2 shows the mean and standard deviation values
of the recognition accuracy for classifying the wants, not
wants, and other feelings by using data sets of all subjects.
“Soft” is the softmax technique used to classify the wants.
We confirmed that the mean of the recognition accuracy
for eight channels was higher than that for six channels,
four channels, and the L3- and R3-channels. Also, the
mean and standard deviation of the recognition accuracy
for eight channels by using SVM were 76.1% and 4.15%,
respectively. These results suggest that it is possible to
detect the wants regarding listening to music when the
target sensing positions are selected related to the frontal
and temporal cortex activities. Moreover, the recognition
accuracy was not high probably because of the individual
differences in the EEG signals and/or noise signals.

Table 3 shows the mean and standard deviation of the
recognition accuracy for classifying the wants, not wants,
and other feelings for every subject. S1 to S9 were the
same as those shown in Table 1. A mean recognition ac-
curacy of 90% or more was achieved for all the channels
(eight, six, four, and the L3- and R3-channels) by using
SVM. These results prove that it is possible to detect the
wants regarding listening to music when the target sensing
positions are selected related to the frontal and/or tempo-
ral cortex activities.

We compared the results obtained for the eight chan-
nels with the results obtained for the six channels, four
channels, and the L3- and R3-channels. We found that
the mean recognition accuracy of the eight channels was
higher than those of the other channels (i.e., six channel,
four channels, and the L3- and R3-channels). The eight
channels were related to the frontal and temporal cortex
activities, and other channels were related to the frontal
cortex activities only. These results show that temporal
cortex activities are related to the creation of wants. Also,
decision-making can be included when creating a want.
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Fig. 4. Sensing positions for recording the EEG signals: (a), (b), and (c) have eight channels (frontal and temporal cortex), six
channels (frontal cortex), and four channels (prefrontal cortex), respectively; (d) and (e) have L3-channels (left frontal cortex) and
R3-channels (right frontal cortex), respectively.

Rest Ans. Q. Ans. Q. Ans. Q.
N A I
Listen to music Listen to music Listen to music ’

0 15 30 45 60 270 285 300 315 (sec)

Fig. 5. Timeline of the experiments. “Ans. Q.” indicates that the subject responded whether or not he/she wanted to listen to music
continuously. “Rest” and “Listen to music” are the rest time and time for which they listened to the music, respectively. The subject
answered a set of ten questions and listened to ten songs.
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Table 1. Number of EEG signals for the wants, not wants, and other feelings of each subject.

S1 S2 S3 S4 Ss S6 S7 S8 S9 Total

Want 720 550 600 450 350 630 770 750 560 5,380
Not want 190 440 140 750 560 350 190 320 260 3,200
Other feeling 290 200 460 0 290 220 240 130 380 2,210

Table 2. Mean and S.D. of recognition accuracy to classify wants, not wants, and other feelings using data sets of all subjects [%].

Eight-channels Six-channels Four-channels L3-channels R3-channels
Soft Mean 67.2 53.6 50.2 51.1 51.0
S.D. 5.13 3.76 0.54 0.68 1.21
76.1 . 523 . .
SVM Mean 58.7 533 53.6
S.D. 4.15 4.16 1.38 1.46 1.43

Table 3. Mean and S.D. values of recognition accuracy to classify the wants, not wants, and other feelings for each subject [%].

Mean S1 S2 S3 S4 Ss S6 S7 S8 S9

Soft Mean 97.7 98.7 | 989 | 96.8 | 997 | 97.7 | 992 | 985 | 973 | 929

8¢ S.D. 4.80 0.66 1.15 | 2,60 | 017 | 231 0.59 1.14 | 2.02 | 5.60
SVM Mean 94 | 992 | 994 | 9.5 | 999 | 994 | 999 | 997 | 99.6 | 98.2
S.D. 058 | 059 | 098 | 049 | 017 | 042 | 017 | 021 | 0.65 | 157

Soft Mean 91.6 93.8 | 91.6 | 919 | 893 89.3 95.5 95.5 91.1 86.5

6c S.D. 3.95 446 | 472 | 406 | 549 | 293 | 426 | 229 1.85 5.51
SVM Mean 98.0 98.1 989 | 98.0 | 98.6 | 953 99.3 | 993 | 98.8 | 95.8

S.D. 1.25 2.00 | 0.86 1.33 | 0.88 1.80 | 0.57 | 0.55 | 0.59 | 2.69

Soft Mean 82.4 842 | 80.2 | 832 | 879 | 77.1 80.8 83.1 85.3 80.2

4c S.D. 3.06 235 | 553 | 738 | 295 3.03 5.42 7.0 3.66 39
SVM Mean 91.8 932 | 90.2 92 948 | 86.5 93.8 | 923 | 959 | 87.7

S.D. 2.98 1.73 3.1 4.5 1.59 | 2.89 | 2.82 | 3.03 1.19 | 3.39

Soft Mean 83.1 86.8 84.1 85.8 | 87.1 83.3 84.0 | 79.8 827 | 742

L3¢ S.D. 3.79 4.07 | 3.67 | 490 | 297 | 378 | 7.51 7.57 | 947 | 9.11
SVM Mean 91.0 936 | 92.1 93.1 92.1 89.3 93.0 | 87.7 | 926 | 852

S.D. 2.75 287 | 242 | 470 | 474 | 5.64 | 414 | 590 | 559 | 592

Soft Mean 83.8 869 | 81.6 | 774 | 847 | 78.1 82.8 | 912 | 91.8 | 793

R3¢ S.D. 5.04 236 | 5.56 | 931 6.27 | 3.95 342 | 298 | 2.66 | 3.96
SVM Mean 90.9 94.0 | 90.1 87.0 | 884 | 8.6 | 93.6 | 974 | 973 85.1

S.D. 4.51 1.45 354 | 587 | 447 | 4.10 1.99 | 0.96 126 | 5.55

We compared the results of each subject with those of
all the subjects, and we found that the mean and standard
deviation values of the recognition accuracy per subject
were higher and lower, respectively, than the values of all
the subjects. Also, the mean and standard deviation of
the recognition accuracy were 76.1% and 4.15%, respec-
tively. This was not an optimal result because it showed
that there were individual differences in the EEG signals
recorded when the subjects wanted to listen to music.

When the sensing positions were eight channels and the
classifier was the SVM, the mean and standard deviations
were 99.4% and 0.58%, respectively. These results prove
that it is possible to detect wants and classify the wants,
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not wants, and other feelings by using the CNN model to
extract the EEG features and the SVM implementation.
Also, frontal and temporal cortex activities are related to
wants and not wants.

5. Conclusions

This paper proposes a method for detecting human
wants by using a CNN model and an SVM. The pro-
posed method consisted of EEG measurements, EEG fea-
ture extractions, and wants detection. A wearable device
(EPOC+) was employed for the EEG measurement, and
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the EEG signals were recorded while the subjects experi-
enced wants, not wants, and other feelings as they listened
to music. The sensing positions used to record the EEG
signal were related to the frontal cortex (AF3, AF4, F3,
F4, F7, and F8) and the temporal cortex (T7 and T8). In
the EEG feature extraction, a CNN model was employed
based on the algorithm model interfacing. For wants de-
tection, we employed an SVM. To show the effectiveness
of the proposed method, we conducted experiments using
real EEG data. Based on the experimental results, we con-
firmed that the mean recognition accuracy of eight chan-
nels was higher than that of other channels (six channels,
four channels, and the L3- and R3-channels). The eight
channels were related to the frontal and temporal cortex
activities, and six channels were related to the frontal cor-
tex activities. These results suggest that the temporal cor-
tex activities are related to wants creation, and it is pos-
sible to include decision-making in wants creation. The
mean and standard deviation values for the detection ac-
curacy were 99.4% and 0.58%, respectively. These results
suggest that it is possible to detect the wants and classify
the wants, not wants, and other feelings by using a CNN
model to extract the EEG features and the SVM.
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