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Abstract: Capsizing is one of the worst scenarios in oceangoing vessels. It could lead to a high
number of fatalities. A considerable number of studies have been conducted until the 1980s,
and one of the discoveries is the weather criterion established by the International Maritime
Organization (IMO). In the past, one of the biggest difficulties in revealing the behavior of
ship-roll motion was the nonlinearity of the governing equation. On the other hand, after the
mid-1980s, the complexity of the capsizing problem was uncovered with the aid of computers. In
this study, we present the theoretical backgrounds of the capsizing problem from the viewpoint
of nonlinear dynamics. Then, we discuss the theoretical conditions and mechanisms of the
bifurcations of periodic solutions and numerical attempts for the bifurcations and capsizing.

Key Words: capsizing, regular sea, safe-basin boundary, global bifurcation

1. Introduction
Capsizing is one of the most dangerous phenomena for vessels on seas. It could lead to severe fatalities.
For instance, when the cruise ferry “M.V. ESTONIA” capsized in the Baltic Sea in 1994, the total
fatalities was 852 [1]. Therefore, it is essential to prevent the capsizing of oceangoing vessels to ensure
safe transportation.

The International Maritime Organization (IMO), a specialized United Nations agency, is responsible
for the criteria that improve the safety of vessels. The Weather Criterion of Assembly Resolution A.562
of IMO is almost the same as the domestic criterion in Japan. In this criterion, energy balance between
external and restoring moments is employed, and direct manipulation of the nonlinear differential
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equation of ship-roll motion in beam seas is avoided by introducing the potential energy of restoring
moments. Therefore, the nonlinearity of the system is well organized in the criteria.

On the other hand, to analyze the capsizing phenomenon further, the knowledge of nonlinear
dynamics is essential. Nonlinear oscillators, such as the Duffing equation, are commonly analyzed in
other engineering disciplines, such as electrical engineering [2]. The best characteristic of a nonlinear
oscillator in naval architecture is the softening behavior in its restoring term. For instance, the
softening behavior commonly appears in a pendulum motion. However, for nonlinear oscillators in
naval architecture, escaping from a potential well appears as capsizing, which in actual vessels, leads
to catastrophic results.

Since the mid-1980s, it has been well-known that capsizing can be triggered by chaotic motions. In
naval architecture, one of the pioneering studies on nonlinear dynamical system theory was reported
by Nayfeh and Khdeir [3, 4]. They employed a second-order perturbation technique and Floquet
theory to predict the period-doubling bifurcation that could lead to chaotic oscillations. Nayfeh and
Sanchez revealed the existence of strong initial dependency of the roll response in a regular beam
sea on the following seas, and basin boundary metamorphoses were reported [5]. Thompson studied
the escape (the same as capsizing) from potential wells for a simple cubic potential and reported
fractal metamorphoses and chaotic motions prior to escape [6, 7]. Further, Thompson [7] employed
Melnikov’s method [8, 9] to analytically estimate the homoclinic tangency. Virgin also pointed out
the existence of chaotic behavior in the roll motion in regular seas [10–12]. Further, Virgin conducted
a detailed stability analysis for the periodic solution and derived useful criteria [11].

In the 1990s, research on this area accelerated further. Kan and Taguchi reported the capsizing after
period-doubling bifurcation in model experiments [13], and theoretical and numerical analyses were
conducted [14]. Francescutto also reported the jump phenomenon of the periodic solution in a towing
tank experiment [15]. Falzarano conducted the Melnikov analysis on homoclinic and heteroclinic
orbits [16]. Bikdash et al. also conducted Melnikov’s analysis on the general roll-damping cases [17].
Hsieh et al. extended the Melnikov’s method to random excitation. Then, combining the Melnikov
analysis and phase space flux, the probability of capsizing was calculated [18]. Murashige and Aihara
conducted experiments on a flooded ship. Then, from the measured time-histories, the Lyapunov
exponents were calculated, and they revealed the existence of a chaotic attractor [19]. Further,
through detailed numerical simulations, the existence of a strange attractor was revealed [20]. Since
2000, further contributions have been reported by Wu and McCue [21]. Maki et al. [22–24], etc.

Herein, we present the theoretical background of the capsizing problem from the viewpoint of
nonlinear dynamics.

2. Ship stability

Figure 1 shows a two-dimensional section of a vessel floating on calm water. Herein, it is assumed
that the ship is wall-sided and symmetrical along the transverse direction and the angle of the roll
is φ. For these assumptions, two water lines before and after the inclination intersect at O on the
centerline. Here, �POQ is the exposed part, whereas �P′OQ′ is the immersed part. When a ship is
heeled, the area of �POQ is shifted to the area of �P′OQ′. g and g′ are the centers of both areas, and
notice that, �POQ and �P′OQ′ are identical. Owing to shift in the area from �POQ to �P′OQ′,
the center of buoyancy also shifts from B0 to B1. The down arrow from G indicates the gravity force,
and that pointing up from B1 indicates the buoyancy force. Note that the lengths of the two vectors
are the same since the weight does not change before and after the inclination, and the ship mass is
defined as W [ kg ]. Here, let us consider the restoring moment around the center of gravity of the
vessel G. Its moment is calculated by W ·GZ . As can be understood, GZ is an important parameter
representing the restoring moment, and it is called Righting arm or Righting lever.

Figure 2 shows the change in GZ curve associated with change in roll angle. As can be seen, with
increase in roll angle, GZ decrease and finally becomes zero or negative. It clearly means the softening
characteristic of GZ curve, that is the restoring curve.

The importance of GZ in three-dimensional vessels is the same as above. In Fig. 3, the angle
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Fig. 1. Restoring moment for a wall-sided vessel.

Fig. 2. Change in GZ .

of the roll is φ. Typical GZ [ m ] form is also shown in the lower right panel. As explained above,
W · GZ [ kg · m ] is the restoring moment. Here, W [ kg ] is the ship mass. As shown in the figure,
GZ has three crossing points. 0 [ deg ] and 180 [ deg ] are stable equilibrium points, whereas φV , the
vanishing stability angle, is an unstable equilibrium point. For theoretical considerations, GZ curve
is sometimes approximated by polynomials:

GZ (φ) =
n∑

i=0

ciφ
i (1)

Practically, n of 3∼5 is chosen.
Next, the external moment is explained. The time-varying external moment acting on the ship

hull is derived from waves and winds. In this study, the time-varying wind moment is ignored for
brevity, and we assume the regular wave condition. The deformation of the water surface around a
vessel changes periodically in the restoring moment. The restoring moment could be evaluated with
the relative roll angle to the effective wave slope angle. Since waves are regular and sinusoidal, the
external wave moment is a sinusoidal function such as

Mwave(t) = M cos ωt (2)

As shown in Fig. 3 and Eq. (1), the form of the GZ curve is highly nonlinear. For this general form of
the GZ curve, the analytical solution cannot be easily found. To overcome this challenge, the intact
stability code was constructed based on the energy balance method. We briefly explain the framework
of the stability code.
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Fig. 3. Coordinate systems and example of GZ curve.

The severe wind and rolling criteria of the intact stability code were developed to guarantee the
safety of ships against capsizing for ships losing all propulsive and steering power under wind and
waves. In such a condition, the ship is known as a dead ship, and under no power to maintain its
course, the ship could be in beam wind and wave condition [25]. In the weather criteria, the following
equation of ship roll motion is used such as:

φ̈ + D(φ̇) + R(φ) = Kwave(t) + Kwind (3)

Here, D(φ̇), damping term; R(φ), restoring term; Kwave(t), time-varying external moment term due to
wave, Kwind, external moment term due to wind. Here the wave component is considered as sinusoidal
function, and synchronous rolling motions are assumed. Since the motion is stationary, the energies
concerning D(φ̇) and Kwave(t) components could be cancelled out in one roll period. These are basic
assumption of the criteria

The basic principle of this weather criteria is the energy balance of wind and restoring static
moments under synchronous rolling motions. Figure 4 shows the key idea behind the weather criteria.
In this figure, φ̂ indicates the shifted coordinate, Dw indicates the moment lever due to wind, and
φshifted also indicates the heel angle (steady roll angle) due to wind moment lever Dw. Then, a ship is
oscillated by incident waves around the drifted roll angle φshifted with the roll amplitude φAW . Now,
c is defined as the ratio of the windward to the leeward areas of the restoring curve.

c ≡

∫ C

B
GZ

(
φ̂
)
dφ̂∫ D

B
GZ

(
φ̂
)
dφ̂

(4)

Since
∫

W · GZ dφ is the potential energy, these areas denote the index of this energy. Under the
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Fig. 4. Schematic of energy balance.

energy balance, the criteria require c > 1 or over for oceangoing vessels. The IMO weather criterion
utilized is almost the same as the method adopted in Japan [26] without any major modification.

3. Complexity of motion in simple systems
The energy balance method explained above is well-constructed. By adopting this rule, there has been
a remarkable record of no fatality due to the capsizing of Japanese-flagged passenger ships in Japan.
However, with the development of the computer, in naval architecture, the mechanism of capsizing
has been revealed to be more complicated than we had imagined. Figure 5 shows a good example of
its complexity. It shows the initial condition that finally leads to capsizing for the following equation.
In this figure, the white part means the capsizing. Here, κ is the roll-damping coefficient, and B is
the amplitude of the external sinusoidal moment. This is a typical equation representing a motion of
a vessel in a regular beam sea.

φ̈ + κφ̇ + φ − φ3 = B cos(ωt + δ) (5)

As shown in Fig. 5, the shape of the capsizing boundary does not monotonically decrease, and
fractal metamorphoses are not observed. Figure 6 is the magnified plot of Fig. 5. The inset of Fig. 6
is obtained by zooming in a small part. The plots show self-similarity. These facts indicate the
complexity of the capsizing phenomenon in ships. Moreover, Fig. 7 indicates the capsizing boundary
of control plane (ω,B)T . Each panel in this figure shows the result for different initial condition
(φ(0), φ̇(0))T . Also in the control space, the capsizing boundary also shows the complexity. Therefore,
capsizing cannot be predicted using the simple energy balance method.

As explained above, the GZ form of an actual vessel is complex to analyze. A simplified form of the
GZ curve has been introduced for nonlinear analyses. Thompson employed the asymmetry-restoring
curve having a quadratic form as follows [6, 7, 27]:

ẍ + βẋ + x − x2 = F sin(Ωt) (6)

Here, x is the main variable, β the damping coefficient, F the amplitude of the forcing term, and Ω
the frequency of the forcing term. In this equation, the escape phenomenon, which is capsizing in a
ship, happens. On the other hand, in naval engineering, the restoring term having cubic polynomial,
as shown below, is used since ships can capsize to positive and negative sides.

Figure 8 shows the hull form of DTMB5415 in the left panel. In the right panel, the GZ curve
obtained from the hydrostatic calculation is plotted as “Original” whereas the cubic polynomial
approximation c1φ − c3φ

3 for the original GZ curve is done as “Fitted (cubic polynomial).” As can
be seen here, cubic polynomial well approximated the original GZ curve.

The single degree of freedom (DoF) equation of motion in beam seas, which has cubic restoring
curve, is expressed as follows:
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Fig. 5. Fractal metamorphoses of basin boundary in initial value plane with
κ = 0.04455 and ω = 0.905 (This figure duplicates Fig. 9 in the literature [14]),
but at higher resolution).

Fig. 6. Fractal magnification of metamorphoses of basin boundary in initial
value plane with κ = 0.04455, ω = 0.905 and B = 0.09 (This figure duplicates
Fig. 10 in the literature [14]), but at higher resolution).

(Ixx + Jxx) φ̈ + R · φ̇ + W · GM · φ
[
1 − (φ/φV )2

]
= M0 + M cos(ωt + δ) (7)

where φ [ rad ] denotes the instantaneous roll angle of the vessel and is a function of time t [ s ].
Ixx [ kg · m2 ] and Jxx [ kg · m2 ] are the roll-directional and added moment of inertia, respectively,
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Fig. 7. Fractal metamorphoses of basin boundary in control space with κ =
0.04455 for different sets of initial values φ(0) and φ̇(0) (The center figure
(φ(0) = 0.0 and φ̇(0) = 0.0) duplicates Fig. 12 in the literature [14], but at
high resolution).

Fig. 8. Body plan of DTMB5415 hull form and its GZ curve. Here, cubic
polynomial expression (c1φ − c3φ

3) is also plotted.

R [ kg · m · s ] is the roll-damping coefficient, and GM [ m ] is the metacentric height of the vessel.
φV [ rad ] is called the vanishing angle of the roll-restoring moment, and at ±φV , the restoring moment
becomes zero. M0 [ kg · m ] and M [ kg · m ] denote constant wind-induced moment and amplitudes of
time-varying wave-induced roll moments, respectively. ω [ rad · s−1 ] is the wave frequency and δ is the
phase of the wave-induced moment. Dividing both sides of (7) by the moment of inertia, Ixx + Jxx,
the equation of motion becomes simple, as follows:

φ̈ + κφ̇ + c1φ − c3φ
3 = B0 + B cos(ωt + δ) (8)

Where:
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⎧⎪⎪⎨
⎪⎪⎩

κ ≡ R

Ixx + Jxx
, c1 ≡ W · GM

Ixx + Jxx
, c3 ≡ W · GM

(Ixx + Jxx) φ2
V

B0 ≡ M0

Ixx + Jxx
, B ≡ M

Ixx + Jxx

(9)

4. Analytical solution and its bifurcation

4.1 Analytical solution
First, we explain some analytical solutions for the case of B0 = 0 and δ = 0.

φ̈ + κφ̇ + c1φ − c3φ
3 = B cos ωt (10)

This is a symmetric equation with respect to φ. In the harmonic balance method [2], the periodic
solution φ0(t) is assumed as:

φ0(t) = A cos (ωt + ε) (11)

Substituting this equation into Eq. (10) and comparing the coefficients of sinusoidal terms, the fol-
lowing equations are obtained [28]:⎧⎪⎪⎨

⎪⎪⎩

[
A
(
c1 − ω2

)− 3
4
A3c3

]
sin ε + κωA cos ε = 0[

A
(
c1 − ω2

)− 3
4
A3c3

]
cos ε − κωA sin ε = B

(12)

(c1 − ω2) appeared in this equation is sometimes called “detuning parameter,” please refer to [29].
From these equations, the relationship between the motion amplitude A and the amplitude of external
moment B can be obtained as:

B2 = A2

{[(
c1 − ω2

)− 3
4
A2c3

]2
+ κ2ω2

}
(13)

This is the well-known formula [28, 30], and the same results can be obtained using the averaging
method by Krylov and Bogoliubov [31] and Hale [32].

4.2 Saddle-node bifurcation
The stability of the periodic solutions can be determined as shown in Hayashi [2]. Now, we introduce
the nondimensional time τ = ωt. Then, the equation of motion becomes:

φ̈ + βφ̇ + α1φ + α3φ
3 = B1 cos τ (14)

where the coefficients are defined as

β =
κ

ω
, α1 =

c1

ω2
, α3 = − c3

ω2
, B1 =

B

ω2
. (15)

Here, the periodic solution of Eq. (14) is assumed to be φ0 (τ). Since φ0 (τ) is a solution of this
system, it satisfies Eq. (14). Then, small perturbation from φ0 (τ) is introduced as ξ (τ). Substituting
φ (τ) = φ0 (τ) + ξ (τ) into Eq. (14), the equation for the perturbation system is obtained as:

ξ̈ + βξ̇ +
(
α1 + 3α3φ

2
0

)
ξ = 0 (16)

To eliminate the βξ̇ term, η (τ) is introduced.

ξ (τ) = exp
(
−1

2
βτ

)
η (τ) (17)

Then, the following system concerning η (τ) is obtained:

η̈ +
(

α1 − 1
4
β2 + 3α3φ

2
0

)
η = 0 (18)
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Now, the periodic solution is defined as:

φ0 (τ) = A cos (τ − ε′) (19)

Substituting Eq. (19) to Eq. (18) yields:

η̈ + (θ0 + 2θ1 cos 2 (τ − ε′)) η = 0 (20)⎧⎪⎨
⎪⎩

θ0 = α1 − 1
4
β2 +

3
2
α3A

2

2θ1 =
3
2
α3A

2
(21)

This is Mathieu’s equation, and its stability diagram is shown in Fig. 9. If the following relation is
satisfied, the periodic solution Eq. (20) becomes stable [2].

(θ0 − 1)2 + 2 (θ0 + 1)β2 + β4 > θ2
1 (22)

In other words, the following condition is satisfied at the critical condition.

(θ0 − 1)2 + 2 (θ0 + 1)β2 + β4 = θ2
1 (23)

This condition finally leads to

C2 +
3
2
CA2 + κ2ω2 = 0 (24)

C ≡ ω2 − 1 +
3
4
A2 (25)

On the other hand, when a saddle-node (fold) bifurcation occurs, the response curve satisfies the
following “vertical tangent” condition (e.g. [11]):

dB

dA
= 0 (26)

From this condition, Eq. (24) is also derived.
Now, putting R = A2, Eq. (13) can be expressed as

R3 + a2R
2 + a1R + a0 = 0 (27)

where

a2 = −24(c1 − ω2)
9c3

, a1 =
16
[
(c1 − ω2)2 + (κω)2

]
9c2

3

, a0 = −16B2

9c2
3

. (28)

Fig. 9. Mathieu’s stability diagram.
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Introducing new variable t = R + a2/3 yields

t3 + a′
1t + a′

0 = 0 (29)

where

a′
1 ≡ a1 − a2

2

3
, a′

0 ≡ 2a3
2

27
− a2a1

3
+ a0. (30)

The discriminant D for Eq. (29) is:

D ≡ (t1 − t2)2(t2 − t3)2(t3 − t1)2 (31)

Here, t1, t2, t3 are the solutions of Eq. (29). Considering

t1 + t2 + t3 = 0, t1t2 + t2t3 + t3t1 = a′
1, t1t2t3 = −a′

0, (32)

the discriminant D becomes
D = − (4a′ 3

1 + 27a′ 2
0

)
(33)

Solving D = 0, the following condition is obtained as the fold bifurcation point for the designated
B [14]:

B =

√
8

81c3

{
(c1 − ω2)

[
(c1 − ω2)2 + 9κ2ω2

]
±
[
(c1 − ω2)2 − 3κ2ω2

]3/2
}

(34)

Figure 10 shows the response amplitude curve. The folding of the response curves indicates the
coexistence of multiple solutions. In the left panel, a numerical solution is shown, and they were
obtained using Kawakami’s method [33, 34]. In the right panel, the backbone curve is also plotted.
The backbone curve can be obtained by putting κ = 0 and B = 0 into Eq. (13).

ω2 = c1 − 3
4
c3A

2 (35)

Due to this folding behavior of RAO, two different stable solutions are coexisting as shown in Fig. 11.
The left panel of this figure shows the sets of initial conditions which converged to two different
solutions. The right panel of this figure represents the numerically obtained boundary of initial
condition sets. Here, the black points denote the saddle-type fixed points, and the solid lines do their
stable manifolds. On the other hand, the white point also denotes the saddle point, and the dotted
lines do its stable manifolds. As can be seen here, these stable manifolds become boundaries between
capsizing and not-capsizing or between two different solutions. Although only in a few cases, the
coexistence of multiple solutions has been experimentally observed [15]. Our research group has also
measured this phenomenon. Figure 12 shows the response amplitude for different wave heights in

Fig. 10. Response amplitude of the primary motion with c1 = 1, c3 = 1,
κ = 0.04455 and B0 = 0.0. The left panel represents the numerical solutions,
and the right panel shows the analytical solutions. The solid and dashed lines
indicate the stable and unstable regions, respectively. (This figure duplicates
Fig. 1 in the literature [24]).
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Fig. 11. Coexistence of the two solutions with c1 = 1, c3 = 1, B = 0.025,
κ = 0.04455, ω = 0.905. Black and gray regions show that with the initial con-
ditions, the solution converges to a periodic attractor (fixed point, represented
by the white points).

Fig. 12. Response amplitude of the model ship CEHIPAR2792. A part of
the data is included in [36]. The lines show the results of the averaging method.

beam seas. This experiment was carried out at a rectangular tank of the National Research Institute
of Fisheries Engineering (NRIFE). The subject ship was CEHIPAR2792 [35].

In the experiments, waves were generated by wavemakers in the model basin, and the frequency of
the external force was not sequentially changed. After dissipating waves, waves for another condition
were generated. Therefore, a sequential trace of the response curve was impossible. The photo of the
experiment is shown in Fig. 13.

H and λ are the wave height and wavelength, respectively, and ω0 is the natural roll frequency of
the vessel. Under heavy wave conditions (higher H/λ condition), a jump in the response is observed.
The theoretical results using the averaging method are also shown in the figure.

4.3 Negative stiffness in Mathieu’s equation
Holmes and Rand [28] and Virgin [11] identified the bifurcation point from the condition of negative
stiffness in Eq. (22). It corresponds to the 0th instability region in the Mathieu’s equation, namely,
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Fig. 13. Photo of the experiment for the model ship CEHIPAR2792 in the
rectangular tank of the National Research Institute of Fisheries Engineering
(NRIFE). Waves were generated by a wave maker located at the end of the
tank (right side of this photo).

θ0 < 0. This condition becomes

α1 − 1
4
β2 +

3
2
α3A

2 < 0

⇒ A2 > −2α1

3α3

(
1 − β2

4α1

) (36)

Note that α3 is negative. Considering Eq. (15) yields:

A >

√
2c1

3c3

(
1 − κ2

4c1

)
(37)

Usually, the damping term κ included in Eq. (37) is small in ship-roll motions; hence, κ2 can be
neglected. Thus, the threshold of the bifurcation approximately becomes

A =

√
2c1

3c3
(38)

Since c3 is negative, this condition is never satisfied by the Duffing oscillator having a hard-type
restoring moment. Substituting Eq. (38) into Eq. (13), we finally obtain the equation as follows:

B2 =
2c1

3c3

[(
ω2 − c1

2

)2
+ κ2ω2

]
(39)

4.4 Exceedance of vanishing stability angle
One of the fundamental criteria for capsizing is whether the motion amplitude is exceeded or not.
Now, the stability vanishing angle is

φ = ±
√
−α1

α3
or φ = ±

√
c1

c3
(40)

For this condition, the threshold of capsizing becomes

A =
√

c1

c3
(41)

This is the most “natural” condition for the safety of the ship.

13



4.5 Symmetry breaking and pitchfork bifurcation
The occasion of symmetry breaking was reported by some authors, including Kan [14]. Recently, the
criterion for this phenomenon was shown in [24], and its symmetry breaking was finally concluded
as the pitchfork bifurcation. The left panel in Fig. 14 shows the phase portrait of the coexistence of
three solutions [24]. Two trajectories having larger amplitudes are asymmetric. The right panel in
Fig. 14 shows an initial condition set for the three solutions. Red and blue regions indicate the two
large-amplitude trajectories, and the gray region indicates the small-amplitude primary solution.

To show the condition of its occurrence, the same equation is employed, namely,

φ̈ + κφ̇ + c1φ − c3φ
3 = B cos ωt (42)

The periodic solution with bias C0 is assumed to be

φb = C0 + A cos(ωt + ε) (43)

Substituting φb into Eq. (42), the following condition is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C0

(
c1 − 3

2
c3A

2 − C2
0c3

)
= 0

A

[(
c1 − ω2

)− 3
4
A2c3 − 3C2

0c3

]
sin ε − κωA cos ε = 0

A

[(
c1 − ω2

)− 3
4
A2c3 − 3C2

0c3

]
cos ε + κωA sin ε = B

(44)

If the amplitude satisfies

A =

√
2c1

3c3
(45)

in the first equation, the following equation is obtained:

C0 = 0 (46)

At this point, the pitchfork bifurcation occurs. The amplitude of the external wave moment after
pitchfork bifurcation can be calculated as

B2 =
2c1

3c3

[(
ω2 − c1

2

)2
+ κ2ω2

]
(47)

Fig. 14. Left panel: phase portraits of three trajectories [24]. Right panel:
the convergence of an initial condition set for three solutions in a safe basin [24].
Both panels are the results with c1 = 1, c3 = 1, κ = 0.04455, B = 0.05,
B0 = 0.0, and ω = 0.579.
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This result is identical to Eq. (39). On the other hand, combining the second and third equations in
Eq. (44), the amplitude of the motion is obtained as follows:

B2 = A2

{[(
c1 − ω2

)− 3
4
c3

(
A2 + 4C2

0

)]2
+ κ2ω2

}
(48)

When C0 takes a nonzero value, C0 is obtained from the first equation in Eq. (44) as

C0 = ±
√

c1

c3
− 3

2
A2 (49)

This result indicates the existence of candidate two solutions for C0: a positive or negative side shift
with the same absolute value of the angle. Thus, the motions are identical to each other. Topologically,
its symmetry in the positive and negative shifts can be explained by the symmetry of the dynamical
system (Eq. (42)).

4.6 Global bifurcation
To theoretically estimate global bifurcation points, such as heteroclinic and homoclinic bifurcation,
one of the best techniques is Melnikov’s method [8, 9, 37]. The start of fractal metamorphoses in the
safe-basin boundary is considered the global bifurcation. Therefore, as explained in the introduction
part, Melnikov’s method has been employed in several studies on capsizing, such as [7, 13, 16, 18].

To employ Melnikov’s method, it is essential to calculate the separatrix connecting saddles for the
Hamiltonian system, as follows:

φ̈ + c1φ − c3φ
3 = 0 (50)

This autonomous system has two saddle points φs = ±√c1/c3. Here, we assume the form of the
separatrix as φ̇ = Cs

(
φ2 − φ2

s

)
. Substituting this assumed form into Eq. (50), we obtain the condition

for Cs as 2C2
s = c3. Therefore, separatrix becomes:

φ̇ = ±
√

c3

2
(
φ2 − φ2

s

)
(51)

Equation (51) can be derived as follows. Multiplying φ̇ to both sides of Eq. (50) and integrating it in
time yield:

1
2
φ̇2 + c3

(
1
2
φ2φ2

s −
1
4
φ4

)
= C ′

s (52)

C ′
s can be determined by boundary condition (φ, φ̇)T = (φs, 0)T . Then, the same form of separatrix

Eq. (51) can be derived. Therefore, the separatrix for the system with c1 = 1 and c3 = 1 can be
analytically obtained as:

φ̇ = ± 1√
2

(
φ2 − 1

)
or

⎧⎪⎪⎨
⎪⎪⎩

φ = tanh
t√
2

φ =
1√
2

sech2 t√
2

(53)

Figure 15 shows an example of the separatrix for the Hamiltonian system.
Hereafter, we explain the Melnikov integral. The state variable is defined as

x =

(
φ

φ̇

)
(54)

The differential equation is represented in the vector form as follows:

ẋ = f(x) + ε · g(x, t) (55)

where f and g are expressed as
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Fig. 15. Phase portrait for φ̈ + φ − φ3 = 0.

f(x) =

(
φ̇

−φ + φ3

)
, g(x, t) =

(
0

−κφ̇ + B cos ωt

)
(56)

The Melnikov integral is defined as:

M (t0) = −
∫ ∞

−∞

[
f (x0(t)) ∧ εg (x0(t), t + t0)

]
dt (57)

In this equation, x0(t) is the separatrix for the Hamiltonian system. The separatrix x0(t) is then

x0(t) =

⎛
⎜⎜⎝

tanh
t√
2

1√
2

sech2 t√
2

⎞
⎟⎟⎠ (58)

The wedge product inside the integral is calculated as

f (x0(t)) ∧ εg (x0(t), t + t0) = φ̇ ·
(
−κφ̇ + B cos ω (t + t0)

)
(59)

Thus, the Melnikov integral becomes

M (t0) = −
∫ ∞

−∞

[
φ̇ ·
(
−κφ̇ + B cos ω (t + t0)

)]
dt

=
√

2B cos ωt0

∫ ∞

0
cos ωt · sech2

(
t√
2

)
dt − κ

∫ ∞

0
sech4

(
t√
2

)
dt

(60)

The semi-infinite integral can be calculated in the complex domain as shown in Fig. 16.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
cos ωt · sech2

(
t√
2

)
dt = πω · cosech

(
πω√

2

)
∫ ∞

0
sech4

(
t√
2

)
dt =

2
√

2
3

(61)

Substituting Eq. (61) into Eq. (60), we obtain the final expression for BM .

BM =
2κ

3πω
sinh

(
πω√

2

)
(62)

As can be seen in Eq. (60), this integral can be regarded as an energy integral, and the condition
M (t0) = 0 means the energy balance of the dissipation term and external wave moment term on
the separatrix. On the other hand, in the weather criteria, the same balance is imposed due to the
assumption of the stational synchronous rollings. In the both, there could exist the similarity, and if
so, the Melnikov’s method to the ship safety criterion could be one of challenges.

We show an example with κ = 0.04455 and ω = 0.905. In this case, the heteroclinic bifurcation
point can be estimated as B = 0.03830. Figure 17 shows the change in the safe region, and it is
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Fig. 16. Integral path of an infinite integral. tp is a pole of integrand, and
tR → ∞ is finally taken.

Fig. 17. Fractal metamorphoses of basin boundary in initial-value plane with
κ = 0.04455. The threshold is calculated as B = 0.03830 from Eq. (62).

Fig. 18. Heteroclinic tangency with κ = 0.04455 and B = 0.03830 from
Eq. (62). The blue and red curves are the manifolds for the blue and red
saddles, respectively; thicker curves are the stable manifolds and thinner are
the unstable ones.

observed that the erosion of the safe basin starts around B of 0.04. Figure 18 shows the Poincaré
map at B = 0.03830, and it shows that this occurs immediately before the heteroclinic bifurcation.
These show the validity of Melnikov’s method.
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In the case of high dissipation, the damping term cannot be regarded as a small order. For such
a case, Melnikov’s method for highly dissipative systems, proposed by Salam [38], is applicable.
To apply this theory, the exact form of the heteroclinic or homoclinic orbits is necessary. Endo
investigated the Melnikov integral for systems having piecewise linear restoring systems [39]. On the
other hand, in general, a nonlinear differential equation is not solvable. To avoid such a challenge,
Wu and McCue employed Melnikov’s method for numerically obtained heteroclinic orbits [21]. On
the other hand, owing to advances in nonlinear science, several solitary solutions have been found
for nonlinear equations, such as literature [40]. Then, for a more general case, Maki et al. [22, 23]
obtained the heteroclinic orbit for autonomous systems based on the solution method for nonlinear
waves [41]. Suppose the following equation of motion with damping term.

d2φ

dt2
+ β̃

dφ

dt
+ μ̃ · φ(1 − φ)(φ − â) = 0 (63)

For the system (63), the following heteroclinic orbit is assumed:

φ̇ = c̃φ(1 − φ) (64)

Solving Eq. (64), we obtain a time-domain solution as follows:

φ0(t) =
1

1 + e−c̄t+d
=

1
2

+
1
2

tanh

(
c̄t − d̃

2

)
(65)

Here, d̃ ∈ (−∞,∞) denotes the arbitrary integral constant determined by an initial condition, for
instance, taking φ = 0.5 at t = 0 yields d̃ = 0. In this case, Eq. (64) becomes

φ0(t) =
1
2

+
1
2

tanh
c̃t

2
(66)

The proposed analytical method was validated with the numerical results of Wu and McCue [21], and
the Melnikov integral was analytically determined with the use of Eq. (66).

5. Numerical analysis
In this section, we analyze the results of some numerical experiments to find the characteristic equation
of ship motion (8).

5.1 Numerical example
Figure 19 compares the numerically obtained capsizing boundary and the analytically obtained bi-
furcation sets. The red line indicates the capsizing boundary for the initial condition, φ = 0.0 and
φ̇ = 0.0. On the other hand, the “Numerical results of capsizing” are the numerically obtained capsiz-
ing threshold B. A periodic solution is traced with a slightly increasing the amplitude of the external
force B until capsizing. Then, the obtained B is defined as the threshold.

Below ω = 1.0, the saddle-node bifurcation lines coexist, indicating the coexistence of the periodic
solutions. As stated by Kan and Taguchi [14], the saddle-node bifurcation line correspond to the
red line (safe basin contour). Further, as also stated in [14], at a higher frequency region (above
ω = 0.9), the condition of capsizing (Eq. (41)), negative stiffness (Eq. (38)), and pitchfork (Eq. (45))
almost coincides with the tendency of the red line. The global bifurcation (heteroclinic bifurcation)
set (Eq. (62)) always predicts the safe side.

5.2 Technical preliminaries
Using numerical integration, the Runge–Kutta method, we obtained the solution of Eq. (8) with an
adequate step size. In addition, we define the Poincaré map T to discretize to treat the periodic
orbits as a periodic map: T : R

2 → R
2; x0 �→ T (x0) = ϕ(x0, 2π/ω), where x0 is an initial value and

ϕ(x0, t) is the trajectory function. The periodic orbit satisfying ϕ(x0, 2π�/ω) = x0 corresponds to
the periodic point x0 satisfying T �(x0) = x0.

The eigenvalues of ∂T/∂x0 indicate the stability of the periodic point x0. In two-dimensional cases,
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Fig. 19. Capsizing boundary and bifurcation sets with c1 = 1, c3 = 1. Red
line indicates the capsizing boundary for φ = 0 and φ̇ = 0 shown in Fig. 7.
The part of the plots is included in [24].

such as Eq. (8), two eigenvalues exist for one periodic point, including μ1 and μ2 with μ1 < μ2. The
periodic point is a stable node, denoted as 0D, if |μ1| < 1 and |μ2| < 1; it is a saddle, denoted as 1D

or 1I, if |μ1| > 1 or |μ2| > 1; it is an unstable node, denoted 2D, if |μ1| > 1 and |μ2| > 1. According
to the Liouville formula, system (8) does not contain the unstable node.

5.3 Stable and unstable manifolds
In the state space, stable and unstable manifolds of periodic points have great meaning. However, we
need a special technique to calculate the manifolds of system (8) because the target periodic point
often has several eigenvalues. Thus, we developed a method to calculate the stable and unstable
manifolds in such a situation, as shown in Ref. [42]. The result obtained from the proposed method
is as shown below.

Considering the case of the following parameters:

κ = 0.17, c1 = 2, c3 = 0.25, B0 = 0, B = 0.6, ω = 1.1.

Figure 20 shows the basin boundary in the initial-value plane calculated from the brute force method
and the stable and unstable manifolds of two saddles calculated from the method of Ref. [42]. In
the left-hand figure, the blue and red areas indicate the initial values where the trajectory converges
to one and another periodic orbit, respectively. Choosing the initial values in the white region, the
trajectory diverges. In the right-hand figure, the blue and red curves are the manifolds for the blue
and red saddles, respectively. They complicatedly cross each other and form a fractal structure. We
obtained these two results using completely different methods, but they show the same shape in the
state space. This is because the stable manifolds of saddles generally form the basin boundary.

5.4 Bifurcation analysis
Stable and unstable manifolds change their form by controlling the system parameter. Processing
the controlling, they can contact to each other and get crossed. This situation is the beginning of
the erosion of the ship capsizing region and is known as one of the bifurcation phenomena. In the
parameter plane, we confirm the bifurcation set where the qualitative change in the system occurs.
In our previous study [43], some bifurcation sets of the system (8) were obtained with the parameters
κ = 0.05, c1 = 1, c3 = 1, and ω = 1.0, as shown in Fig. 21.

First, we confirm the symmetry of the system (8). This system is invariant under the following
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Fig. 20. Left panel: Fractal metamorphoses of basin boundary in the initial-
value plane with κ = 0.17, c1 = 2, c3 = 0.25, B0 = 0, B = 0.6, and ω = 1.1
(This figure duplicates Fig. 12 in the literature [10]), but at a higher resolution).
Right panel: stable and unstable manifolds of two saddles, 1D1 and 1D2, which
are the red and blue points, respectively. Bolder curves are the stable manifolds
and thinner curves are the unstable manifolds.

Fig. 21. Bifurcation sets of the system (8) with κ = 0.5, c1 = 1, c3 = 1 and
ω = 1.0 (this figure duplicates Fig. 1 in the literature [43]). G1 and I1 are
saddle-node and period-doubling bifurcation sets, respectively.

transformation: ⎡
⎢⎣ φ

t

B0

⎤
⎥⎦ �→

⎡
⎢⎣ −φ

t + π/ω

−B0

⎤
⎥⎦ .

Therefore, when we find a periodic orbit with some B0, we can also observe another periodic or-
bit having the same topological structure as −B0. In other words, the two symmetric orbits have
completely the same stability so that the bifurcation diagram is symmetric to B0 = 0, as shown in
Fig. 21(a). In the case of B0 = 0, the two periodic orbits coexist in the same state space and encounter
the bifurcation set simultaneously. This leads to the lined-up cross points of the bifurcation curves
on the line B0 = 0.

Next, let us discuss Fig. 21. As a parameter changes, the periodic orbit continuously changes its
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Fig. 22. Stable and unstable manifolds of the system (8) with the parameters
of P1–P6. This figure duplicates Fig. 5 in the literature [43] and the variables
x and y here are equivalent to the variables φ and φ̇ in this manuscript, re-
spectively.

position and suddenly disappear at a critical value of the parameter. The set of parameters is the local
bifurcation set, shown as G1 or I1. In the reverse process, the periodic orbit suddenly appears. As a
parameter changes again, stable and unstable manifolds cross each other. The parameter set where the
two manifolds cross each other is the global bifurcation set, denoted as homoclinic and heteroclinic.
The global bifurcation relates to the structure of the stable manifold and, therefore, causes a crucial
change in the basin boundary. Figure 22 shows the structure of the stable manifolds for each point
in Fig. 21(b). On the heteroclinic bifurcation between P4 and P5, erosion of the divergent region into
the convergent region progresses when global bifurcation occurs.

6. Further topics on ship capsizing

The actual seaway in the ocean is not a regular phenomenon. Studies combining the theories of
nonlinear dynamics and stochastics have been conducted in the naval architecture field. In this
section, we briefly introduce their contributions.

So far, a considerable number of theoretical studies on ship motions in irregular seas have been
conducted. Haddara employed the Fokker-Planck-Kolmogorov (FPK) equation to estimate the value
and variance of ship-roll motion in beam seas [44]. Roberts combined the averaging method and FPK
equation to derive the probability density function (PDF) of roll motion in beam seas [45]. The results
were compared with the numerical PDF of roll motion reported by Dalzell [46]. Fujiwara et al. [47]
conducted a model experiment on capsizing in the towing tank of Osaka Prefecture University, and the
results were compared with the theoretical results reported by Umeda [48]. Belenky applied piecewise
linearization to the GZ curve and obtained the theoretical method for predicting the probability of
capsizing. In the 21st century, research on the probability of capsizing and ship motion has been
further advanced. Dostal et al. presented an energy-based averaging method, and the prediction
accuracy of the PDF of roll motion was enhanced [49, 50]. The authors [36, 51] also developed a
method for predicting the PDF of roll motion based on Kimura’s work [52, 53], and the probability
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of capsizing was successfully predicted for general 1 DoF roll equation of motion [51]. However, the
theoretical approach to predicting the probability of capsizing for the multi-DoF equation of motion
is challenging, and it shall be considered in our future studies.

7. Conclusion
In this paper, we discuss the dynamics of the capsizing of a vessel in seas. One of the characteristics
of the equations of ship motion is the soft-spring stiffness in its restoring moment. Owing to these
characteristics, the analysis for capsizing is not straightforward, and complex phenomena occur. We
discuss some criteria for the theoretical estimation of the capsizing boundaries, and numerical results
are presented. Further, the mechanism of global bifurcation is explained in detail. The period-
doubling bifurcation that happens immediately after pitchfork bifurcation is not discussed here; it
shall be analyzed in our future studies.

For practical application of the results, there is a need to extend the theories to multidimensional
equations of motion and irregular external moments. We aim at the application of these results in
future ship safety criteria and designs.

From the point of view of nonlinear dynamics, the capsizing of oceangoing vessels has been studied
in naval architecture and ocean engineering since the mid-1980s. This topic has a very long history,
and we believe it still strongly attracts several researchers.
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