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is anatomically close to the myocardium. EAT and the 
myocardium are believed to share the same microcircula-
tion.10 Anatomically, epicardial and paracardial adipose 
tissues are quite different.11,12 Paracardial fat is adherent 
and superficial to the parietal layer of the pericardium 
without direct connection with coronary arteries. The peri-
cardium must be precisely identified in order to quantify 
EAT volume.10,13,14 The combination of epicardial and 
paracardial fat components is called “pericardial fat”. Some 
researchers use the term “pericardial fat” for paracardial 
fat.10,13,14

Many clinical studies suggest that an increase in EAT 
volume is associated with coronary artery disease (CAD).15–18 
We also reported that inflammation is enhanced in the 
EAT of patients with CAD,19,20 suggesting that EAT plays 
a crucial role in the pathogenesis of coronary atheroscle-
rosis.4,21 In this review, we discuss recent findings regarding 
the role of EAT in the pathogenesis of coronary athero-
sclerosis.

EAT Quantification and Risk of  
Cardiovascular Diseases

It has been reported that EAT volume or thickness is associ-
ated with the presence and severity of CAD.21 A prospective 
study of a general population of 4,093 people reported that 
EAT volume was associated with fatal and non-fatal 
coronary events independent of traditional coronary risk 
factors over a mean (±SD) 8.0±1.5 years of observation.22 

M ost of arteries, except for cerebral arteries and 
microvessels, are surrounded by perivascular 
adipose tissue (PVAT).1 Although it has been 

considered that PVAT functions as a supporting tissue and 
a mechanical cushion for the vasculature, recent studies 
have shown that PVAT secretes adipokines, including 
inflammatory cytokines and chemokines, such as interleukin 
(IL)-1β, IL-6, tumor necrosis factor (TNF)-α, monocyte 
chemoattractant protein-1, and adiponectin. PVAT also 
secretes nitric oxide, reactive oxygen species, and angiotensin 
II, consequently regulating vascular homeostasis and 
reactivity (Figure 1).2,3

Inflammation in the PVAT leads to the production of 
inflammatory cytokines, which potentially play an impor-
tant role in the pathophysiology of atherosclerosis.4–6 We 
previously investigated the effects of PVAT on neointima 
formation after mechanical endovascular injury.7 In 
healthy mice, removal of PVAT markedly enhanced lesion 
formation, which was attenuated by transplantation of 
subcutaneous adipose tissue from mice fed regular chow. 
Diet-induced obesity causes inflammatory changes in 
PVAT, and this is associated with enhanced lesion forma-
tion.8 Together, these results indicate that obesity causes 
inflammation in the PVAT and exacerbates lesion forma-
tion, whereas PVAT is atheroprotective under healthy 
conditions.8,9

Epicardial adipose tissue (EAT) is located between the 
surface of the myocardium and the visceral layer of the 
pericardium, surrounding coronary arteries (Figure 2). EAT 
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Figure 2.    Epicardial adipose tissue (EAT) 
and paracardial adipose tissue. The EAT 
is located between the surface of the 
myocardium and the visceral layer of the 
pericardium, surrounding the coronary 
arteries. The EAT is anatomically close to 
the myocardium. Paracardial adipose 
tissue is adherent and superficial to the 
parietal layer of the pericardium, without 
direct connection with coronary arteries. 
Anatomically, the EAT and paracardial 
adipose tissue are quite different. The peri-
cardium needs to be identified precisely 
to quantify the EAT. The combination of 
epicardial and paracardial fat components 
is called “pericardial fat”. Some researchers 
use the term “pericardial fat” for para-
cardial fat.

Figure 1.    Atherosclerotic lesion and perivascular adipose tissue (PVAT). PVAT secretes various adipokines that regulate vascular 
homeostasis and reactivity. Inflammation in PVAT leads to the production of inflammatory cytokines, which potentially play an 
important role in the pathophysiology of atherosclerosis. At the site of the atherosclerotic lesion, the vasa vasorum proliferates and 
invades into the lesion from the adventitia. Secreted humoral factors and inflammatory cells reach the adjacent arterial wall by 
direct infiltration or via the vasa vasorum.
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paracardial fat index was the most valuable for evaluating 
the presence or severity of CAD.31 Conversely, Sato et al 
reported that among EAT, VAT, and subcutaneous fat, 
visceral fat is the strongest risk factor for cardiometabolic 
diseases, although epicardial fat accumulation may be a 
risk factor for coronary atherosclerosis in subjects without 
visceral fat accumulation.32 Future studies should clarify 
relationship between EAT and VAT in the pathogenesis of 
CAD.

Imaging Techniques to Evaluate  
the Quality of EAT

EAT has been primarily quantified by volume measurement 
on CT or MRI, or by measuring its thickness using echo-
cardiography. Increased accumulation of visceral fat was 
shown to be associated with enhanced inflammation in 
adipose tissue.33 Like visceral fat, several studies reported 
that increased EAT volume was associated with enhanced 
inflammation in adipose tissues, as determined by histo-
logical and/or biochemical analysis of biopsy samples 
obtained during cardiac surgery.15,16,19,20 A non-invasive 
way of estimating the quality of EAT has been wanted, but 
the EAT phenotype cannot be detected using common 
imaging modalities. However, new imaging techniques have 
recently been reported that can assess the inflammatory 
status of EAT.

Fat Attenuation Index (FAI)
It has been reported that inflammation in the pericoronary 
adipose tissue can be estimated using a novel analysis of 
conventional coronary CT angiography (CCTA).34,35 The 
authors of those studies developed an imaging metric, the 
CT FAI, which reflects adipocyte lipid content and size. 
The method was validated by analyzing human EAT 
explants obtained during cardiac bypass surgery, and it 
was shown that the FAI was able to detect adipose tissue 
inflammation.34 In a validation cohort study, the FAI 
gradient around human coronary arteries could identify 
early subclinical CAD and detect inflamed, vulnerable 
atherosclerotic plaques during acute coronary syndrome.34 
The authors claimed that atherosclerotic lesions in human 
coronary arteries exert paracrine effects on the EAT, 
affecting local intracellular lipid accumulation in preadipo-
cytes that can be monitored using the pericoronary FAI.34 
The same group further investigated whether FAI in EAT 
can predict clinical outcomes, using post hoc analysis of 
outcome data gathered prospectively from 2 independent 
cohorts of consecutive patients undergoing CCTA.36 Peri-
coronary FAI indicated inflammation in coronary arteries, 
and enhanced cardiac risk prediction and restratification 
over conventional risk factors.36 This group also proposed 
a new artificial intelligence-powered method to predict 
cardiac risk by analyzing the radiomic profile of pericoro-
nary adipose tissue.37 FAI analysis using conventional 
CCTA images may become a new biomarker for CADs.

Positron Emission Tomography (PET)/CT
Fluorine 18-fluorodeoxyglucose (18F-FDG) PET has 
assumed increasing importance in the diagnosis of infection 
and inflammatory diseases such as aortitis and sarcoidosis. 
In addition, 18F-FDG PET has been reported as useful in 
assessing the inflammation of visceral adipose tissue.38,39 It 
was considered that enhanced FDG uptake in human 
adipose tissue indicates increased glucose uptake due to 

After this study, many prospective studies examined the 
relationship between EAT volume and the onset of CAD 
events. For example, Commandeur et al evaluated the 
performance of machine learning, integrating clinical 
parameters with coronary artery calcium and automated 
EAT quantification, for the prediction of the long-term 
risk of myocardial infarction (MI) and cardiac death in 
asymptomatic subjects and found that the machine learning 
method significantly improved the prediction of MI and 
cardiac death compared with standard clinical risk assess-
ment.23 It was also reported that fully automated EAT 
volume and attenuation (Hounsfield units) quantification 
by deep learning from non-contrast cardiac computed 
tomography (CT) can provide prognostic value for asymp-
tomatic patients.24 EAT thickness measured by echocar-
diography was associated with the composite endpoint of 
non-fatal cardiovascular events (coronary revascularization, 
MI, heart failure, cardiac arrest, cerebrovascular disease, 
and peripheral artery disease) and all-cause mortality in 
patients with type 2 diabetes (T2D), particularly in men, 
after adjusting for cardiovascular disease (CVD) risk 
factors.25 EAT modestly improved risk prediction over 
conventional CVD risk factors. In addition, it was reported 
that the superior interventricular groove, an index of the 
thickness of EAT, obtained from cardiac magnetic reso-
nance imaging (MRI) measurements performed within 1 
week after revascularization in patients with ST-elevated 
MI was a predictor of major adverse cardiovascular events 
independent of on age, sex, and left ventricular ejection 
fraction, among others.26

EAT quantification may be used for risk stratification 
for CVD in addition to other conventional risk factors.

Relationship Between Increased EAT Volume and 
Abdominal Visceral Fat Accumulation

Many studies have reported that visceral abdominal tissue 
(VAT) is associated with CVD and its risk factors, including 
diabetes, insulin resistance, hypertension, and dyslipidemia.27 
VAT is reported to be associated with plaque morphology.28 
By analyzing participants free of CVD in the Framingham 
Heart Study, Rosito et al reported that pericardial fat was 
correlated with multiple measures of adiposity and CVD 
risk factors.27 VAT was a stronger correlate of most meta-
bolic risk factors. Intrathoracic and pericardial fat were 
associated with vascular calcification, suggesting that these 
fat depots may exert local toxic effects on the vasculature.27 
Britton et al reported that visceral adiposity, but not 
pericardial fat, was associated with incident CVD after 
adjusting for clinical risk factors and generalized adiposity 
in participants from the Framingham Heart Study.29 In 
these analyses from the Framingham Heart Study, pericar-
dial fat, but not EAT, was measured between 2002 and 
2005 using multidetector CT (MDCT). It is plausible that 
the spatial resolution of MDCT at that time was not high 
enough to distinguish between EAT and paracardial fat by 
precisely identifying the pericardium.

Thus, it remains unknown whether EAT is more valuable 
than VAT in predicting CAD, because few studies have 
measured VAT and EAT volumes in the same subjects. 
Oikawa et al reported that echocardiographic EAT was 
an independent predictor of coronary calcification and 
coronary atheromatous plaque, but that abdominal VAT 
area was not.30 Ueda et al measured paracardial, epicardial, 
visceral, and subcutaneous fat indices and found that the 
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reduced EAT, subcutaneous adipose tissue, weight, and 
body mass index (BMI); although there was a slight 
decrease in the volume of intra-abdominal adipose tissue, 
the difference was not statistically significant.44

It has been shown that IL-6 modulates fat metabolism 
in humans, increasing fat oxidation and free fatty acid 
re-esterification without causing hypertriacylglyceridemia.45 
IL-6 has been shown to stimulate myocardial hypertrophy 
in vitro and in vivo.46 Christensen et al randomly assigned 
52 abdominally obese but otherwise healthy participants 
to moderate- to high-intensity aerobic exercise or to no 
exercise, with or without monthly infusions of the IL-6 
receptor antagonist tocilizumab.47 Exercise significantly 
reduced EAT volume and increased cardiac muscle mass 
and the effects of exercise were abolished by tocilizumab, 
suggesting that exercise reduces EAT accumulation 
through IL-6 receptor-dependent lypolysis.47

A meta-analysis of 5 randomized controlled trials evalu-
ated whether exercise or a combination of exercise and diet 
reduces EAT.48 The exercises used in the studies included 
in the meta-analysis were aerobic exercise and/or resistance 
circuit training, and the exercise frequency was 2–3 times a 
week. EAT volume or thickness was quantified by CT, 
MRI, or echocardiography. Although exercise significantly 
reduced EAT and waist circumference, it did not affect 
BMI, body weight, or high-density lipoprotein.48 Exercise 
significantly increased peak oxygen consumption.48 Because 
that meta-analysis had some limitations, such as a high risk 
of bias due to insufficient blinding of the original studies and 
a small number of subjects in each study,48 newer studies 
with better designs and methods are needed to improve the 
quality of the evidence.

Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitors
It is well known that SGLT-2 inhibitors, oral glucose-
lowering agents, reduce body weight and visceral adiposity 
in patients with T2D. SGLT-2 inhibitors have been reported 
to reduce ectopic fat deposition, improving adipose tissue 
function and weight-related quality of life.49 Recent studies 
have reported that SGLT-2 inhibitors reduce EAT. For 
example, we measured the EAT thickness of T2D patients 
by echocardiography before and after 3 and 6 months 
treatment with canagliflozin (Figure 3).50 EAT thickness 
was significantly decreased, independent of decreases in 

inflammation of adipose tissue.38 In patients with CAD or 
multiple CAD risk factors, FDG uptake in neck subcuta-
neous, chest pericardial, and chest subcutaneous adipose 
tissue was significantly associated with FDG uptake in the 
adjacent arteries, carotid artery, and ascending aorta.38 
Weight gain was the most important risk factor for increasing 
FDG uptake by fat tissues.39 FDG uptake, standardized 
by left atrial blood activity, also indicated that the inflam-
matory activity of pericoronary fat was greater than that 
of fat in other locations, such as subcutaneous fat and 
visceral fat, in patients with CAD.40 Furthermore, the 
standardized uptake of FDG by pericoronary fat in CAD 
patients without a recent inflammatory reaction such as 
diabetes or a recent coronary intervention was greater than 
that in non-CAD controls, and was correlated with the 
extent of CAD.40 However, this study had limitations, such 
as lack of motion correction.41

Electrocardiogram (ECG)-gated 18F-FDG PET/CT 
enables more accurate evaluation of small structures of the 
coronary artery and perivascular tissue.42 Using CCTA 
and ECG-gated 18F-FDG PET/CT, Ohyama et al reported 
that coronary PVAT volume and coronary perivascular 
FDG uptake were significantly increased in patients with 
vasospastic angina.42 That study indicated that inflam-
mation of the coronary PVAT may be the cause of the 
vasospasm.42

Possible Treatments to Reduce EAT Burden
It is plausible that treatments to reduce EAT volume would 
ameliorate the inflammatory phenotype of EAT, suppressing 
the coronary atherosclerosis process. Several treatments to 
reduce EAT volume have been reported recently.

Exercise
Kim et al reported that aerobic exercise training signifi-
cantly reduced EAT thickness in obese men.43 The reduction 
in EAT was correlated with a decrease in visceral adipose 
tissue and the percentage changes in EAT and VAT were 
similar.43 In another study, Kahl et al investigated the 
effects of exercise on adipose tissue compartments in 
patients with major depressive disorder, using MRI to 
measure the volume of subcutaneous adipose tissue, intra-
abdominal adipose tissue, and EAT.44 Exercise significantly 

Figure 3.    Representative echocardio-
graphic image of epicardial fat tissue 
(EAT). (A) Measurement of epicardial 
fat thickness using a high-frequency 
linear probe. (B) Schematic illustration 
of the echocardiographic image. LAD, 
left anterior descending coronary 
artery; LV, left ventricle; RV, right 
ventricle. Reproduced from Yagi et 
al50 without modification.
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be valuable in predicting the presence and prognosis of 
CAD, independent of conventional risk factors. New 
automated measurement methods with machine learning 
have been developed. Moreover, new imaging techniques 
have been reported to estimate the inflammatory status of 
EAT. Some treatments have been reported to reduce EAT 
volume and improve its quality. The quantity and quality 
of EAT may become a new risk factor for CAD and a 
biomarker for treatment.
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