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Abstract 18 

We report on a method for analyzing the variant of coronavirus genes using autoencoder. 19 

Since coronaviruses have mutated rapidly and generated a large number of genotypes, 20 

an appropriate method for understanding the entire population is required. The method 21 

using autoencoder meets this requirement and is suitable for understanding how and 22 

when the variants emarge and disappear. For the over 30,000 SARS-CoV-2 ORF1ab gene 23 

sequences sampled globally from December 2019 to February 2021, we were able to 24 

represent a summary of their characteristics in a 3D plot and show the expansion, 25 

decline, and transformation of the virus types over time and by region. Based on ORF1ab 26 

genes, the SARS-CoV-2 viruses were classified into five major types (A, B, C, D, and E in 27 

the order of appearance): the virus type that originated in China at the end of 2019 (type 28 

A) practically disappeared in June 2020; two virus types (types B and C) have emerged in 29 

the United States and Europe since February 2020, and type B has become a global 30 

phenomenon. Type C is only prevalent in the U.S. and is suspected to be associated with 31 

high mortality, but this type also disappeared at the end of June. Type D is only found in 32 

Australia. Currently, the epidemic is dominated by types B and E. 33 
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Introduction 35 

The coronavirus outbreak at the end of 2019 has had unprecedented and significant consequences. 36 

Various researches have been conducted to understand the global trend of genetic alterations (Gómez-37 

Carballa et al. 2020; Jones and Manrique 2020; Nie et al. 2020; Rochman et al. 2020). Technologies 38 

for the analysis of viruses and other genomes have been developed mainly in the field of molecular 39 

biology for basic research. High-speed gene sequencing technology has enabled the analysis of more 40 

than 40,000 cases worldwide in one year (NCBI Nucloetide Database; NCBI Virus Database). In 41 

order to understand the alternation of viral genomes while utilizing the huge amount of information, 42 

it would be helpful to conceptualize these viral mutations and visualize the spatiotemporal transition.  43 

 We have been studying the application of deep-learning autoencoder for analyzing gene 44 

sequences (Miyake et al. 2018). The feature extraction capability of autoencoder is useful for this 45 

kind of analysis. There is no need to organize the potentially characteristic sites in the gene 46 

beforehand. In our previous study of the human leukocyte antigen A (HLA-A) gene, we discovered 47 

that autoencoder can correctly represent and classify differences in HLA-A alleles (Miyake et al. 48 

2018). Autoencoder has the potential to extract the genetic characteristics of a gene at a level close to 49 

human recognition.  A brand-new method of classification could be realized. 50 

By using a deep learning autoencoder, various analyses of genes can be performed in a limited 51 

period of time using a GPU computer, as long as the target is about tens of thousands of genes with 52 

the length of a coronavirus genome (tens of thousands of base pairs). Autoencoder does not require a 53 

gene pre-processing, such as alignment and marking of characteristic gene sequences, nor the need 54 

to prepare supervised learning data in advance. Despite this, gene types can be classified and 55 

displayed as clusters in three-dimensional space. Similar genes in sequences form a single cluster and 56 

the group can be intuitively grasped. The spatial distances between genes/clusters can serve as an 57 

indicator of genetic relationships and may contribute to a sophisticated understanding of evolutionary 58 

processes. 59 

In this paper, we used the ORF1ab gene sequences of the new coronaviruses (collected 60 

between December 2019 and February 2021), which were obtained from the NCBI Virus and NCBI 61 

Genbank databases, to extract the self-contained features of about 30,000 genes and display them in 62 

three-dimensional space to investigate how the SARS-CoV-2 virus mutated over time. 63 

 64 

Methods 65 

The Tensor-Flow library (V2.0 downgrade to V1.0) was used as Deep Learning for autoencoder. The 66 

computer was constructed in our laboratory equipped with a GPU (NVIDIA Quadoro P-6000), i7 67 

CPU, 64GB RAM memory. OS is Windows 10 or Linax (Ubuntu) OS. The learning was usually 1 68 
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million times. The ORF1ab gene location of each gene in the NCBI nucleotide database (NCBI 69 

Genbank Database) was determined using the reference sequence (NC_045512.2). 70 

In order to achieve high accuracy in the analysis using autoencoder, it is desirable that the 71 

length of the sample genes is uniform within a certain range. The length of the genomes in the 72 

database is difficult to use because the sequencing methods are different and not uniform. The 73 

ORF1ab gene contains the major part of non-structural proteins (15 types) and occupies more than 74 

about 2/3 of the entire viral genome. The distribution of the length of the genome or the large number 75 

of undecided sequences makes the scattered dots wider and the 3D plot harder to see. Genome 76 

samples with two or more consecutive undetermined RNA sequences were excluded from the 77 

analysis. 78 

The nucleotide sequence data of the new coronaviruses were obtained from the NCBI Virus 79 

Database (NCBI Virus Database). The sequencing was downloaded on February 26, 2021 (the sample 80 

collection dates correspond to December 19, 2019 to February 16, 2021.). Data that were described only 81 
up to the year and data that did not specify the collection site were excluded from the analysis. Data with 82 
collection dates only up to the month were assigned a day in the middle of the month; for the two genes with 83 

no date found in December 2019, we assigned December 19. Finally, 31050 ORF1ab gene was extracted 84 

and analyzed for characteristics (cluster analysis) and time series. 85 

Genetic analysis by autoencoder that we have already reported (Miyake et al. 2018) was used 86 

in this study. Namely, we applied the document vector method (the nucleotide sequence was replaced 87 

by a vector (45 = 1,024 dimensions) with a normalized histogram of 1,024 words consisting of 5-mer 88 

tiny nucleotide sequences without alignment). In this research, the hierarchy was compressed to four 89 

layers and three dimensions. In order to visualize the obtained 3D data, we plotted them as x, y, z 90 

coordinates in 3D space. Each dot corresponds to a variant nucleotide sequence. The spatial distance 91 

from the center of the all dots plotted in 3D space was calculated and used to represent the gene 92 

profile in a time series.  93 

Phylogenetic trees were constructed using maximum likelihood phylogenetic analysis 94 

(RAxML) with 1000 bootstraps (GENETYX ver. 15, GENETYX Co., Tokyo, Japan). Alignment of 95 

nucleotide sequences was performed using the above software. 96 

 97 

Results 98 

The ORF1ab genes, extracted from the genomes of 33,915 novel coronaviruses (12/19/2019–99 

02/16/2021), were categorized into eight clusters in 3D space (Fig. 1). The variation of the ORF1ab 100 

gene sequence length was small, leading to the result that the separation of the clusters was clear. The 101 

3D-compressed dots correspond to respective RNA strands as many as the number of samples used.  102 
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These dots are plotted at different spatial locations, but instead of being simply distributed, 103 

several types of sets (clusters) appear. The ORF1ab genes were shown to form the eight clusters with 104 

similar characteristics in 3D coordinates and distances from the center. Close proximity of three pairs 105 

of neighboring clusters suggested their similarities in mutation profiles, respectively. The eight 106 

clusters of the ORF1ab genes were categorized into five major groups (Fig. 1). These clusters were 107 

named A, B, C, D, and E in the order of appearance. 108 

In order to investigate the temporal changes, we replotted the 3D dots monthly or bimonthly 109 

for the collection period (Fig. 2). The ORF1ab genes collected during the two months of December 110 

2019 and January 2020 showed a predominance of type A cluster in the center of 3D plotted genes 111 

(Fig. 2 a, b). Type B became the dominant genotype from February to March, and type E became the 112 

dominant genotype from April to May. Type C started in February and fell and disappeared in June. 113 

Type D appeared in June-July and disappeared in October. 114 

The time series of the type C obtained by autoencoder analysis seems to be consistent with 115 

the emergence and disappearance and geo location of coevolving variant group 4 (CEVg4) reported 116 

by Chan et al. (Chan et al. 2020). Based on genome frequencies and geo locations, our classification 117 

of types A1, A2, B1, and D seemed to correspond to the wild type, CEVg3, CEVg1, and CEVg6, 118 

respectively. The B2 cluster is in a different location from the B1 cluster and, is a group of similar 119 

size to the B1 cluster (Figs. 1 and 2). In contrast, there is no CEVg similar to CEVg1.  120 

The distance of each dot from the center of the all dots in the 3D space was calculated and 121 

used to represent the genotype profile in a time series by country/region. The data were color-coded 122 

by cluster and displayed separately by geographic region (Figs. 3 and 4). 123 

The stretching and extinction of genotypes was quite frequent, with a new species emerging 124 

and disappearing approximately every two months. It is unclear whether this was derived from a 125 

single species, or whether a species that originally existed was grown. 126 

The maximum likelihood phylogenetic trees of 88 ORF1ab genes and their corresponding 127 

full-length genomes are shown in Fig. 5a and b, respectively. Genes corresponding to genotypes A1, 128 

A2, B1, B2, C, D, E1, and E2 in both the ORF1ab and full-length genomes of the phylogenetic tree 129 

are represented by the same colors as in Fig. 4. Genes classified into clusters can be regarded as 130 

having a certain degree of correlation. This is a fairly good correlation considering the fact that they 131 

have different principles. 132 

 133 

Discussion 134 

The deep-learning autoencoder was able to successfully classify the genotypes of SARS-CoV-2 135 

viruses, and the autoencoder method is useful for overarching classification, which is similar to 136 

human cognitive abilities. It is widely recognized that the genes of coronaviruses change one after 137 
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another, and the autoencoder method is a useful method for easily recognizing time-series changes. 138 

As shown in Figs. 2–4, it is a simple and straightforward method that allows us to grasp the elongation 139 

and disappearance of clusters in the viral genome. 140 

Judging from the present analysis, the occurrence and disappearance of new species appears 141 

to be observed about every two months. Such correlations are available for understanding: type A 142 

first appeared in December, 2019, but largely disappeared by the end of June, 2020. The most 143 

widespread strains globally appear to be types B and E. Type B also appears to have started close to 144 

type A and spread, possibly as a result of successive changes in each. 145 

Coronaviruses are RNA viruses and are particularly rapidly-mutated genomes. As shown in 146 

the eight clades in Fig. 1, mutations do not cause simple spread, but lead to the formation of clusters. 147 

Mutant species that pop out of the clusters form new clusters there as well. We can read a form of 148 

repeated expression and flourishing of new species in nature. 149 

The cluster classification by the autoencoder method (shown in Fig. 1) showed a certain 150 

correlation with the classification by the phylogenetic tree method (Fig. 5). In both ORF1ab and the 151 

whole genome, a certain degree of cohesion was observed for genotypes A1, A2, B1, B2, C, D, E1, 152 

and E2, and we judged that there is considerable correlation in gene sequencing. Because both 153 

classification by autoencoder and phylogenetic tree analysis based on sequence homology and 154 

differences, the methods are do not always match perfectly in principle, but they help each other to 155 

understand classification. As shown in Fig. 5, they can be considered as essentially distant 156 

correlations as classification methods for gene sequences.  157 

We found the eight clusters using over 30,000 SARS-CoV-2 ORF1ab genes in the NCBI 158 

Virus database, whereas Chan et al. identified nine CEVg using 86,450 genomes in the GISAID 159 

database (Chan et al. 2020). Yet there is not enough data to rigorously compare the differences 160 

between the ABCDE and CEVg classifications. autoencoder-based classification is considered to be 161 

a useful method for scanning the entire SARS-CoV-2 virus for variations or for rapid genetic 162 

classification of viral genes and viruses with a certain genetic distance. 163 

With regard to the new coronavirus, more than 40,000 gene sequencings were performed in 164 

one year for the whole world. In order to take advantage of the vast information space made possible 165 

by next-generation sequencing technology, we believe that we need technology to grasp the entire 166 

picture of genetic variation and its distribution patterns. We hope that artificial intelligence will 167 

contribute to the development of methods for rapid recognition and classification of genetic 168 

mutations. We believe that being able to explain the direction of mutations and the principles that 169 

constrain them will make a significant contribution to this field. A better understanding of viral 170 

evolution will allow us to respond more effectively and quickly to pandemics. 171 
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We are currently working on a detailed analysis of the internal structure of the autoencoder 172 

cluster and would like to point out that there may be new applications for classification. 173 
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Figures 214 
 215 
 216 
 217 
 218 

 219 
  220 
Fig. 1. Three-dimensional plot of the ORF1ab genes. 221 
A deep-learning autoencoder classified 33,915 ORF1ab genes of SARS-CoV-2 viruses into eight 222 
clusters. The symbols of the clusters are given in the order of the time of emergence. Two clusters 223 
that appeared at the same time differed with suffix. ORF1ab genes were dissected from 33,915 224 
genome sequences of SARS-CoV-2 viruses collected from December 2019 to February 2021. 225 
Occurrence time was shown by colored dots monthly (December 2019–February 2020) or 226 
bimonthly (March 2020–February 2021).  227 
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 228 

Fig. 2. Monthly or bimonthly trend of gene clusters. 229 

 (a) ORF1ab genes of SARS-CoV-2 viruses collected in December 2019 (orange). (b) January 2020 230 

(green). (c) February 2020 (red). (d) March–April 2020 (purple). (e) May–June 2020 (brown). (f) 231 

July–August 2020 (pink). (g) September–October 2020 (yellow green). (h) November–December 232 

2020 (cyan). (i) January–February 2021 (blue). Shown as background in light gray is the ORF1ab 233 

gene for the entire period.  234 
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 236 

 237 

 238 

 239 
 240 

Fig. 3. Time course plot of the SARS-CoV-2 ORF1ab gene for A1 and A2 241 

clusters. 242 

This figure shows the way of visualization of temporal transitions in target gene clusters. The gray 243 

or colored dots, which represent the ORF1ab genes classified by autoencoder, were plotted by the 244 

collection date and distance from the center in the 3D plot in Fig. 1. Based on the coordinate data of 245 

each gene, the time evolution of a particular cluster can be shown by coloring. Here we show an 246 

example of A1 and A2 extracted. 247 
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Fig. 4. Emergence and transition of clusters. 252 

Autoencoder-classified ORF1ab genes for World, Asia, USA, Europe and Oceania are separately 253 

illustrated. Clusters are extracted as shown an example in Fig. 2. Dot colors represent different 254 

clusters (A1, red; A2, pink; B1, green; B2, light green; C, purple; D, orange; E1, blue; E2, light 255 

blue). To prevent mixing, dots in border regions between the clusters were omitted. Along the axis 256 

of the distance from the center, B2 cluster had some overlap with B1 cluster. 257 
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Fig. 5. Phylogenetic trees of SARS-CoV-2 ORF1ab genes and whole genomes.  260 

(a) Phylogeny of 88 ORF1ab genes of SARS-CoV-2 viruses. (b) Phylogeny of 88 whole genomes 261 

of the SARS-CoV-2 viruses. Eleven genes from each of eight clusters were randomly selected from 262 

the central region of the respective clusters of A1, A2, B1, B2, C, D, E1 and E2 in the autoencoder 263 

3D plot (Fig.1). The accession numbers of the viruses used were identical between the ORF1ab 264 

genes and whole genomes. Phylogenies showed similar features between ORF1ab genes and whole 265 

genomes that members from single or two clusters formed isolated or mixed clades. Phylogenetic 266 

trees were constructed with maximum likelihood method with RAxML, 1,000 bootstraps 267 

(GENETYX ver. 15). 268 
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