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ABSTRACT Extracting drug—drug interaction (DDI) in the text is the process of identifying how two
target drugs in a given sentence interact. Previous methods, which were limited to conventional machine
learning techniques, we are susceptible to issues such as “vocabulary gap” and unattainable automation
processes in feature extraction. Inspired by deep learning in natural language preprocessing, we addressed
the aforementioned problems based on dynamic transfer matrix and memory networks. A TM-RNN method
is proposed by adding the transfer weight matrix in multilayer bidirectional LSTM to improve robustness
and introduce a memory network for feature fusion. We evaluated the TM-RNN model on the DDIExtraction
2013 Task. The proposed model achieved an overall F-score of 72.43, which outperforms the latest methods
based on support vector machine and other neural networks. Meanwhile, the experimental results also
indicated that the proposed model is more stable and less affected by negative samples.

INDEX TERMS Drug-drug interaction extraction, memory network, multilayer bidirectional LSTM,

transfer weight matrix.

I. INTRODUCTION

Drug—drug interaction (DDI) is a situation where one
drug increases or decreases the effect of another drug
entity [1], [2]. According to the survey of [3], the number
of individuals who take multiple drugs simultaneously has
considerably increased. The interactions amongst these drugs
may be harmful to the human body. Hence, building a reliable
DDI system or database is necessary to avoid certain drug
abuse medical accidents. Meanwhile, with the rapid growth of
biomedical scientific publications (for example, the MedLine
database has doubled in size in the past ten years), the need
for an automatic DDI extraction system is urgent.

In recent years, a growing number of researchers have
focused on DDI extraction based on conventional machine
learning techniques and achieved meaningful works. Mathe-
matically, DDI extraction can be considered a classification
problem, that is, a decision should be made whether a relation
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(binary classification) or what kind of relation (multiclass
classification) exists between two drug entities. The most rep-
resentative methods are the rule-based and statistical machine
learning (SML) methods. However, these methods are sus-
ceptible to issues, such as ‘vocabulary gap’ and unattainable
automation processes in feature extraction. Inspired by deep
learning in natural language preprocessing, we propose a
drug—drug interaction extraction method based on transfer
weight matrix and memory network. Fig. 1 illustrates the
basic outline of the proposed framework.

Firstly, a pretrained word embedding, which can map a
single word into a fixed-size dense vector, is used to represent
input sentences. Secondly, a bidirectional long short-term
memory (LSTM) with dynamic transfer weight is used.
A sequence model is constructed for the input sentences, and
a network with different depths and structures is generated.
This step aims to extract the long-distance dependency of
words in the drug relationship sentence and improve robust-
ness. Finally, the extracted features of the multilayer LSTM
with dynamic transfer weight are decomposed into memory
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FIGURE 1. The framework of the proposed method, the bold words are
entities mentioned in input sentence.

and attentive information via matrix transformations. A fea-
ture fused strategy is introduced into the proposed model for
drug—drug type classification.

The main innovation points are as follows:

(1) The proposed bidirectional LSTM with transfer weight
matrix can not only encode input sentences with
dynamic input and capture the long-term dependency
of input sentences, but also generate a network with
varying depths and structures. Thus, overfitting is over-
come, and robustness is improved. In the drug—drug
interaction extraction task, this technique renders the
model insensitive to negative samples, which can help
build the model without using various pretreatments
(e.g. predefined filter rules).

(2) The memory network, which is introduced into the
proposed model, is used to split the deep semantic
feature of input sentences into memory space for infor-
mation storage and attention spaces for attentive weight
calculation. Feature fusion is implemented on the basis
of attentive weights, thereby avoiding the crosstalk
amongst input information and highlighting the impor-
tant effect of keywords on drug—drug interaction. In this
manner, the model becomes interpretable instead of just
a black box.

(3) Compared with other recurrent neural network (RNN)-
based methods, the biggest difference of the proposed
TM-RNN is that the transfer weight matrix (which is
firstly used in convolutional neural network (CNN))
is introduced into the multilayer bidirectional LSTM
to generate different networks. A memory network
addresses the attentive hidden state instead of only the
last hidden state to highlight the role of different words
in a sentence. As such, the overfitting problem can be
prevented, and full advantage can be taken of all hidden
states.

The rest of this paper is organized as follows: Section II

summarizes the related work. Section III details the proposed
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TM-RNN along with the important components; Section IV
evaluates the experimental results; Section V concludes our
work.

Il. RELATED WORK

A large, gold standard dataset has been annotated in DDI task
due to the first community-wide competition: DDIExtraction
2013 [2]. DDI extraction has captured much interest recently,
and a series of studies [4] on this challenging workshop has
been reported. Previous works have exploited many tech-
nologies for biomedical relation extraction, especially feature
engineering approaches, and have been proven to be effec-
tive in many fields (i.e. protein—protein interaction [5]—[7]
and DDI extraction [4], [8]). In general, these methods
fall under two categories, namely, rule- and SML-based
methods.

Rule-based methods often use predefined patterns or rules
to match the pretreated or labeled sequences [9]. Despite
the sophisticated design in patterns or rules, such methods
suffer from low recall, which deviate them from practical
usage. Different from rule-based methods, most SML-based
methods consider the relation extraction task as a standard
classification task. That is, the relation (binary classification)
or the kind of relation (multiclass classification) between
the two entities should be determined. SML-based meth-
ods [10], [11] have been proven to perform much better than
rule-based methods and have achieved state-of-the-art results
on many relation extraction tasks. Conventional SML-based
methods for DDI extraction often collect n-grams or part-
of-speech (POS) around two aimed drug entities as features.
These features are then converted into discrete (i.e. one-
hot) representations. Lastly, these representations are fed into
classifiers, such as support vector machine (SVM) [12] or
maximum entropy model (MXENT), to determine the type
of relation between two target entities. However, such meth-
ods cannot encode sequence information and fail to capture
semantic information amongst input words. For the former
issue, these models are insufficient to capture the semantic
information and account for differences in word order or
syntactic structure (e.g. ‘cat sat on mat’ versus ‘mat sat on
cat’). The second issue can be rendered as ‘vocabulary gap’.
The words ‘rely’ and ‘depend’ are far from each other in
one-hot representation despite their similarity in meaning and
grammar.

Neural network-based methods [3], [13]-[16] have been
utilised by several works for DDI tasks because of the natural
advantage of recurrent neural network (RNN) in dealing with
sequential data and the great success in natural language
preprocessing [17], [18]. Liu et al. [13] firstly proposed the
use of CNN for a DDI extraction task, which outperformed
conventional SML methods. However, CNN-based methods
can only extract a limited size of word window of input
sentence, thus making the capture of long-term dependency
difficult due to the special structure of the CNN. Compared
with CNN-based methods, Sahu and Anand [3] showed
that RNN-based methods can achieve better results in the
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DDI extraction task, because RNN-based methods handle the
input as sequential data rather than word windows.

lll. METHOD

In this section, we firstly introduce the basic concepts of word
embedding since our method is built on it; secondly, we intro-
duce the RNN with transfer weight; thirdly, we introduce our
feature fusion model; at last, we define the loss function and
show how to train the model.

A. WORD EMBEDDING
Word embedding [18], [19] is the collective name for a set
of language modelling and feature learning techniques in
natural language processing, in which words or phrases from
the vocabulary are mapped into fix-sized dense vectors. The
basic idea under word embedding is that words with a similar
context have similar semantics. Many methods including
Glove [20], word2vec [19], Senna [17] had been proposed
to train word embedding. In this paper, we adopt the word
embedding trained by word2vec [21] to initialize the words
appearing in DDI extraction task (all pre-trained word embed-
ding can be obtained from.")

For the mathematical notation, we use
X =[wy, - ,ws---,,wy] to represent the input sentence,
where each vector w, € R? in X is the word embedding for
t-th input word.

B. MULTILAYER BIDIRECTIONAL LSTM WITH TRANSFER
WEIGHT MATRIX

Almost all methods for the DDI classification task search
for a way to encode input raw sentences to capture semantic
or grammatical information well. Manually generated fea-
tures, such as n-grams, parser tree, and dependency parser
tree, are widely used in DDI extraction tasks. However,
the accuracy of generating features is difficult to guarantee.
Meanwhile, the propagation of errors can seriously affect
the performance of the model. Hence, a bidirectional LSTM
with dynamic transfer weight is firstly proposed to encode
input sentences and eventually capture word order and long
word dependency information. LSTM is a variant of the basic
RNN [22]. Equation (1) demonstrates the full description for
LSTM.

ip = 0 (Wiew; + Winhi—1 + by)

fi = o (Waowi + Wahi 1 + by)

or = 0 Woxw; + Wonhi—1 + by)

g: = tanh (ngwt + Wenhi—1 + bg)

G =f0Oc—1+1irOg

h; = o; © tanh (¢;) (1)
where w; represents the ¢-th pretrained word embedding
vector of input sentence; h,_; and h; represent the previ-

ous and current hidden states, respectively; (Wi, Wiy, b)),
(fos ths bf)» (Wox, Won, by) and (Wg)n Wghv bg) are the

1 http://bio.nlplab.org/
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FIGURE 2. A multi-layer bi-directional LSTM with dynamic transfer weight
(The gray line donates transfer weight matrix).

weight and bias matrixes of the input, forget and output gates
and memory cell, respectively; o (-) and tanh(-) are activation
functions. The implied concept under LSTM uses the param-
eters of the input (W;,, Wi, b;), output (W, Wy, b,) and
forget (Wgx, Wep, b,) gates to control the flow of information
and use the memory cell ¢; to store the gradient, which can
overcome the gradient vanishing problem.

Addressing to the DDI task, we feed a word embedding
vector w; into LSTM in each time step and generate the hid-
den state A, as features for the latter work. To address previous
and future features well, we use a multilayer bidirectional
LSTM to extract the features, as shown in Fig. 2.

The multilayer bidirectional LSTM is introduced into
TM-RNN, and wlk, t] is used to represent the ¢-th input of
the k-layer and distinguish the input data of various layers
at different moments. Given this representation, the input
embedding vector w; in the first layer can be regarded as
w[1, t]. Meanwhile, the z-th hidden output of the k-layer can
be calculated as follows:

hik.tf = LSTM (w k.11, hk. t — 1}f)

hik.1]” = LSTM (w k.11, hk. 1 — 1]b)
hik,t] = hik, tY ®hlk,t]°, )

where & [k, t]f and K[k, t]b represent the ¢-th hidden output
of the forward and backward LSTM network, respectively,
in the k-th layer. h[k, t] is the transformation of the original
input. Considering the original information will be at risk of
vanishing when training a large and deep model, a transfer
weight matrix W[k] of the k-th layer is introduced to the
constructed deep network model. The input w[k + 1, ¢] of
the k£ + 1-th LSTM layer is calculated by (3) instead of only
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FIGURE 3. An example to explain transfer weight matrix with 2-layer
LSTM model.

feeding A [k, t] to w [k + 1, ¢] directly:
wlk+ 1,t] =wlk,t]W[k] + h[k,t]. 3)

To explain the motivation behind transfer weight matrix,
we take the final w([3, 1] in Fig. 2 as an example and its four
generation paths are shown in Fig. 3.

The first generation of w[3, 1] (Fig. 3(a)) can be expressed
as:

wl[2,1] = h[1, 1] = LSTM (w[1, 1],k [1,0])
h(2,1] = LSTM (w[2, 1], h[2,0])
wl(3,1]1 = h[2,1]
= LSTM (LSTM (w[1,1],R[1,0]),R[2,0]). 4)

Based on (4), we find that the transfer weight matrixes of
two layers are not functioning, indicating that w [k, 1] W [k]
is close to zero. In this manner, the input of the k + 1-th layer
is determined as the output of the k-th layer only.

In contrast to the first generation, the transfer weight matrix
in Fig. 3(b) works on the output of the first layer. The gener-
ation of w[3, 1] can be expressed as:

wl[2, 1] = h[1, 1]
h(2,1] = w[2, 1]W[2]
w[3, 1] = h[2, 1] = LSTM (w[1, 1], R[1,0]) W[2]. (5)

Similarly, in Fig. 3(c), the transfer weight matrix only
works on the input of the first layer. Hence, the generation
of w[3, 1] can be expressed as:

w[2, 1] = A[1, 1] = w[1, 1]W[1]
h[2,1] = LSTM (w[2, 1], h[2, 0])
w(3, 1] = h[2, 1] = LSTM (w[1, 1]W[1], A[2,0]). (6)

VOLUME 7, 2019

Contrary to the former three generations, the transfer
weight matrixes in Fig. 3(d) work on two layers, and the
generation of w[3, 1] can be expressed as:

w(2, 1] = h[1, 1] = w[1, 1]W[1]
h[2,1] = w[2, 1]W][2]
w[3, 1] = h[2, 1] = w[1, 1]W[1]W[2]. )

Based on (7), we find that the two LSTM modules do not
need to work, and the input of the k + 1-th layer is deter-
mined as the input of the k-th layer only. Given the above,
the 25X model combinations can be generated by dynamic
transfer weight matrixes with the K-layer network. Mean-
while, the input for the k-th layer can come from a linear
transformation of the first layer input. These characteristics
not only endow the proposed model with excellent robustness
but also overcome the overfitting problem when training a
large and deep model.

C. FEATURE FUSION WITH MEMORY NETWORK FOR
DRUG-DRUY TYPE CLASSIFICATION
The proposed multilayer bidirectional LSTM with transfer
weight matrix implements the feature extraction of drug—drug
interaction. Instead of taking only the last hidden output of
LSTM as final features to classify the drug—drug interaction
type, the attention mechanism is used to access all hidden
states. In the traditional attention-based model, all operations
are conducted on features, which may cause a crosstalk in
information. Inspired by memory network [23], [24] and
transformer by Google’s recent work [25], [26], we split
the deep semantic feature of input sentences into memory
space for information storage and attention spaces for atten-
tive weight calculation. Moreover, feature fusion based on
attentive weights is implemented to avoid crosstalk amongst
input information. The details are shown in Fig. 4.

Firstly, the ¢-th input of the k-layer w [k, ¢] is decom-
posed into memory and attentive information via matrix
transformations:

m[t] = wlk,t]U
alt] = wlk,t]T, (8)

where U and T represent transformation matrixes. m [t] is
regarded as memory, which is used to store information in
each time step; whereas a [¢] is rendered as attention, which
is used to generate attentive weight for memory access.
By splitting w [k, t] into memory and attention spaces, it can
effectively avoid crosstalk amongst the input information.
Meanwhile, memory cell m [¢] can alleviate the long-distance
dependence of words by storing the information of all time
steps.

Secondly, the attention weight s [¢] is calculated based on
alt]:

s [t] = Softmax; (vTa [t]), )

where v is an attentive coefficient, and SoftMax is a nor-
malised function, which compresses the input value into
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FIGURE 4. Feature fusion with memory network for drug-drug type
classification.

[0,1]. Meanwhile, the final output M is the weighted sum over
all memories:

N
M= "m@®*s @), (10)
t=1
where N represents the number of words in the input sen-
tence, and M is regarded as the fusion information of a given
sentence X = [wy, -+, w; -+, WnN].
Finally, the fusion information M is fed to a SoftMax
classifier for classification. Let C denote the classes of drug—
drug interaction. The probability of each class X belongs to

o = Soft max (MV + d), (11)

where V is a transformation matrix, and d is the bias term.

Cross entropy is taken as a loss function to train the
parameters of the proposed model. Suppose Y; is the one-hot
representation of the true label, and o; is the final output for
the i-th input instance, the final cross-entropy loss can be
calculated as

loss = — log (Yl-Toi) (12)

Meanwhile, an improved gradient descent method based
on Adadelta [27] is used to update the parameters in each
training step.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

We use PyTorch to implement our proposed model.> The
related hardware configurations are as follows: Intel(R)
Xeon(R) CPU E5-2650 V3@2.3 GHz, NVidia Tesla K40m

2The source code of the proposed model can be found in
https://github.com/coddinglxf/DDI-with-rnn.
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TABLE 1. The Number of Samples for Train and Test.

Train Test
Drug Bank Med Line Drug Bank Med Line

Advice 815 7 214 7
Effect 1517 152 298 62
Mechanism 1257 62 278 21

Int 178 10 94 2
p?e‘;‘fgggzsf?:;) 2118 1547 4367 345
Other(after 14445 1179 2819 243

preprocessing)

GPU, 8 GB Memory. The related parameters of TM-RNN are
set as follows: The embedding size is 200, the hidden units for
LSTM are set to 64, and the learning rate for Adadelta is set to
0.5. In order to get a better results and reduce the randomness,
10 epochs over training datasets are needed and the tenfold
cross validation is performed in the following statistics.

A. DDIEXTRACTION 2013

To illustrate the effectiveness of the proposed method,
we conduct an analysis and experimental comparison with
related methods on DDIExtraction 2013, which is composed
of DrugBank and MedLine [2]. This dataset focuses on the
extraction of drug—drug interactions that appear in biomed-
ical literature. One of the main purposes of this dataset
is to pursue the classification of each drug—drug interac-
tion according to one of the following five types: Advice,
Effect, Mechanism, Int and Other. Therefore, DDIExtraction
is regarded as a five-label classification task.’> The basic
descriptions and examples for each type are as follows:
(1) Advice: a recommendation or advice regarding the
concomitant use of two drugs involved (e.g. ‘UROXA-
TRAL should not be used in combination with other alpha-
blockers’); (2) Effect: the effect of drug—drug interaction is
described (e.g.: ‘Quinolones may enhance the effects of the
oral anticoagulant, warfarin’); (3) Mechanism: the mecha-
nism of interaction, which can be pharmacodynamic or phar-
macokinetic (e.g. ‘Grepafloxacin is a competitive inhibitor
of the metabolism of theophylline’); (4) Int: states that an
interaction occurs (e.g. “The interaction between omeprazole
and ketoconazole has been established’); (5) Other: no rela-
tion between entities.

In our experiments, we preprocess the DDIExtraction
2013 dataset based on our early method [28]. In summary,
preprocessing consists of two parts, namely, 1) using rules
to filter negative instances (‘Other’ instances) and 2) replac-
ing the two target drugs with special symbols, such as
DRUG1 and DRUG2. Other drug entities with the symbol
DRUGQO can refer to the detailed illustrations [28]. Unless
otherwise stated, the following experiments are based on
the preprocessed datasets. Table. I demonstrates the num-
ber of samples for training and testing. Notably, we do not

3 https://www.cs.york.ac.uk/semeval-2013/task9/
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TABLE 2. Three Statistics of Baseline and TM-RNN.( Both Models use
Two-Layer Bi-LSTM).

Baseline TM-RNN
P R F P R F
Int 88.57 32.29 47.33 82.22 38.54 52.48
Advice 81.87 63.93 71.79 81.44 72.15 76.51
Effect 64.25 69.47 66.76 69.27 71.99 70.60
Mechanism 79.78 71.48 75.40 74.13 78.86 76.42
Overall 73.57 65.15 69.11 74.11 70.82 72.43

TABLE 3. Comparisons Between 1-Layer TM-RNN and 2-Layer TM-RNN.

1-layer TM-RNN 2-layer TM-RNN
P R F P R F
Int 73.08 39.58 51.53 82.22 38.54 52.48
Advice 79.49 70.58 74.88 81.44 72.15 76.51
Effect 68.21 74.51 71.22 69.27 71.99 70.60
Mechanism 61.81 75.50 67.98 74.13 78.86 76.42
Overall 68.33 70.52 69.41 74.11 70.82 72.43

distinguish between DrugBank and MedLine in training and
testing.

B. EXPERIMENTAL RESULTS OF THE PROPOSED TM-RNN
To illustrate the advantages of the proposed model, we com-
pare our method to the baseline model, which was utilised
based on the same multilayer bidirectional LSTM without the
transfer weight matrix and memory network. For evaluation,
precision (P), recall (R) and F-scores (F) for each class are
calculated as follows:

P = TP/(TP + FP)
R = TP/(TP + FN)
F = (2*P*R)/(P+R) (13)

where TP represents that a positive instance is correctly
classified as a positive one, FN represents that a positive
instance is misclassified as a negative one, whereas FP
denotes that the negative instance is misclassified as a positive
one. Table. II displays the three statistics of the baseline and
TM-RNN.

Table. IT shows that TM-RNN achieves better results com-
pared with the baseline model. For individual interaction type
classification, TM-RNN also achieves high F-scores, which
illustrates the importance and effectiveness of the transfer
weight matrix and memory network.

Meanwhile, to analyse the influences of the numbers of
hidden layers on the proposed method, we also compare the
results between 1- and 2-layer TM-RNN. Table. III provides
the experimental results.

Table. III shows that even the 1-layer TM-RNN can obtain
results that are comparable to the baseline model. However,
by training a deeper model, the 2-layer TM-RNN achieves
much better results and further improves the overall F-scores
by 3.02. Moreover, we test the 3- and 4-layer TM-RNN
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FIGURE 6. Comparison with other conventional SML-based methods.

and the F-score results are shown in Fig. 5. Fig. 5 illustrates
that the results of the 3- or 4-layer TM-RNN are almost
the same as the 2-layer TM-RNN. The probable explana-
tion is that the 3- or 4-layer TM-RNN requires further data
for training. Hence, the 2-layer TM-RNN seems to be an
appropriate choice, considering the limited data in the current
DDIExtraction 2013 dataset.

C. COMPARISON WITH OTHER METHODS

In this subsection, we compare the performance of the pro-
posed method with other conventional SML-based and neu-
ral network methods. Fig. 6 lists the performance of Kim’s
linear SVM-based method [1], FBK-irst [4], WBI [8] and
UTurku [29].

For these conventional SML-based methods, manually
generated features (i.e. parser tree, dependency parser tree
and POS) still account for a large percentage. All four models
use SVM to classify the drug—drug interaction types. The
distinction is mainly focused on the classification strategy.
WBI [8] and UTurku [29] regard DDI extraction as a stan-
dard multi-classification problem, whereas FBK-irst [4] and
Kim [1]’s systems firstly detect the interaction (binary classi-
fication) and then classify the interaction into a specific type.
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FIGURE 7. Comparisons with other neural networks based methods.

Results also indicate that FBK-irst [4] and Kim [1]’s models
outperformed WBI [8] and UTurku [29]. In this study, we
avoid feature engineering and classification strategy choice
problems by using the neural network methods. Compared
with Kim’s linear kernel method [1], the proposed TM-RNN
improves overall F-scores by 5.4.

We also compare the performance of the proposed method
with other neural network methods, as shown in Fig. 7. Liu
et al. [13] and Zhao et al. [30] firstly utilised CNN with word
embedding for DDI tasks. Quqan et al. [28] proposed the
use of multichannel word embedding to capture rich seman-
tic information. They slightly improved the overall F-scores
by 0.46 compared with Liu’s work [13], which indicated
that a single channel word embedding might contain enough
information for a DDI task. For this reason, we focus on
the structure of the model rather than external resources in
the study. From Fig. 7, we can see that CNN based models
can achieve better accuracy. This is mainly because CNN
based models are constructed based on the word window. For
positive samples, more accurate information can be extracted
by max-pooling operation, however for negative sample data,
the word window lacks contextual information, CNN based
models are more sensitive to noise data. Considering the large
number of negative samples in the DDI task, in this paper,
we use LSTM to model the input sentences.

Sahu and Anand [3] reported the results of using RNN for
DDI task. Our study differs, because we introduce the mem-
ory network and propose to use attention in separate spaces,
namely, attention and memory spaces. Moreover, a multilayer
bidirectional LSTM with transfer weight matrix is designed
in our method. Hence, compared with Sahu’s method [3],
the proposed TM-RNN further improves the overall F-scores
by 3.04. Our experiments indicate that certain intuitive obser-
vations and design from the neural network structure can help
improve the results.

D. EFFECT OF PREPROCESSING

As shown in Table. I, although we have adopted the pre-
processing rules, the negative sample continues to occupy a
large ratio of the training set. Therefore, the DDI extraction
task is an unbalanced classification problem. A robust system
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TABLE 4. Performance Improvement After Preprocessing.

Methods Before After A

CNN [13] 65.00 69.75 4.75
MCCN [28] 67.80 70.21 2.41
SCNN [30] 64.50 68.43 4.10
RNN [3] 67.28 69.39 2.11
TM-RNN 70.82 72.43 1.61
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FIGURE 8. The heatmap of attentive weight for sampled data of each
interaction type.

should be insensitive to negative samples to eliminate inter-
ference from preprocessing rules. In this section, we com-
pare the performance of the proposed method with CNN- or
RNN-based methods in the original datasets (without pre-
processing rules), as shown in Table. IV (A indicates the
gain of F-scores from preprocessing). According to Table. IV,
we find that our method is less affected by negative instances
compared with other models, which suggests that our model
has better generalisation. Conversely, CNN seems to be
more sensitive to noise instances compared with RNN-based
methods.

E. VISUALISATIONS OF ATTENTIVE WEIGHT
One advantage of splitting w[k, ] into memory and atten-
tion spaces is that we can visualise the most important
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features by tracking the attentive weight a[¢], as described
in (8). Fig. 8 shows the visualisation of attentive weight.
We found that words (i.e. synergistic, increase and inter-
action), which strongly indicate drug—drug interaction, can
be correctly marked (with high weights in Fig. 8) by our
proposed model. Compared with other conventional black
box methods, our proposed model can measure the contribu-
tion of each word to the final SoftMax classifier. Meanwhile,
the special symbol DRUGTI is always assigned with high
weight in our experiments, as shown in Fig. 8 (all attentive
weights are multiplied by a constant value of 100 for display
convenience). An intuitive explanation is that in most cases,
the words between a pair of drug entities are enough to decide
the interactions between two drug entities instead of entire
sentences. By assigning DRUG1 with a high weight, the pro-
posed TM-RNN is equivalent to the extraction of boundary
information and the learning of certain manual features to a
certain extent.

V. CONCLUSION

In this study, we propose a multilayer bidirectional LSTM
with transfer weight matrix and memory network to solve the
DDI classification problem. Results highlight the following
points: a multilayer bidirectional LSTM with transfer weight
and attention mechanism should be considered as a powerful
structure in a DDI task. The transfer weight matrix is an
effective mean to prevent overfitting, whereas the memory
network, which decomposes input information into memory
and attentive spaces, ensures that the proposed model can
completely access all stored memory. In addition, our model
is less sensitive to negative samples compared with other
methods, considering that many irrelevant samples exist in
drug—drug relation extraction tasks. This advantage helps
us discard artificial features completely (or pretreatments).
Although our proposed TM-RNN has been able to achieve
comparable results, a reliable and precise DDI classifica-
tion system should be further improved from the following
aspects: (1) Although the LSTM can encode any sentence
length, an extremely long sentence and two target drug enti-
ties that are too far from each other will still introduce noise
information. This aspect will hinder the performance of the
TM-RNN. To solve this problem, the most straightforward
way is to introduce parser tree information, because drug
entities may be structurally close to each other although far
away in word sequence. (2) A typical error is that the input
sample will be misclassified as ‘Other’, which is equivalent to
noise in the datasets. Punishing the ‘Other’ label or modifying
the loss function to release the problem will be the next step
in our future work.
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