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Abstract
Objectives: Cytology and histology are 2 indispensable di-
agnostic tools for cancer diagnosis, which are rapidly in-
creasing in importance with aging populations. We applied 
mass spectrometry (MS) as a rapid approach for swiftly ac-
quiring nonmorphological information of interested cells. 
Conventional MS, which primarily rely on promoting ioniza-
tion by pre-applying a matrix to cells, has the drawback of 
time-consuming both on data acquisition and analysis. As an 
emerging method, probe electrospray ionization-MS (PESI-
MS) with a dedicated probe is capable to pierce sample and 
measure specimen in small amounts, either liquid or solid, 

without the requirement for sample pretreatment. Further-
more, PESI-MS is timesaving compared to the conventional 
MS. Herein, we investigated the capability of PESI-MS to 
characterize the cell types derived from the respiratory tract 
of human tissues. Study Design: PESI-MS analyses with 
DPiMS-2020 were performed on various type of cultured 
cells including 5 lung squamous cell carcinomas, 5 lung ad-
enocarcinomas, 5 small-cell carcinomas, 4 malignant meso-
theliomas, and 2 normal controls. Results: Several character-
istic peaks were detected at around m/z 200 and 800 that 
were common in all samples. As expected, partial least 
squares-discriminant analysis of PESI-MS data distinguished 
the cancer cell types from normal control cells. Moreover, 
distinct clusters divided squamous cell carcinoma from ad-
enocarcinoma. Conclusion: PESI-MS presented a promising 
potential as a novel diagnostic modality for swiftly acquiring 
specific cytological information. © 2021 S. Karger AG, Basel
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Introduction

Cytology is an indispensable tool for diagnostic screen-
ing cancer and postoperative follow-up. In addition to 
conventional exfoliative cytology and fine-needle aspira-
tion cytology, a new cell collection method such as endo-
scopic ultrasound-guided fine-needle aspiration has been 
developed, and its diagnostic significance is increasing. 
Cytology has facilitated the acquisition of cell-based mor-
phological information by immunostaining in general. 
However, it is both of cost and time-consuming when 
multi-staining needed. To decrease cost and save time but 
without compromising diagnostic reliability, herein, we 
report a rapid mass spectrometry (MS) application to ac-
quire additional nonmorphological diagnostic informa-
tion.

MS is a highly sensitive technology that can be used for 
analyzing various substances. Substances are ionized us-
ing an electron beam and then could be separated based 
on mass differences. In clinical settings, MS has been ap-
plied to the toxicological analysis, biochemical assays, 
metabolites screening, and recently has been used for the 
rapid identification of microorganisms [1]. MS has been 
used to detect metabolites derived from cultured cells as 
well. Moreover, MS has attracted attention as a new meth-
od for biomarker identification due to its achievement in 
distinguishing the cell types [2–7]. Furthermore, MS ap-
plication has been expanded to a comprehensive imaging 
analysis on tissue sections and to visualize the data 2 di-
mensionally for basic pathology research [8, 9]. However, 
certain obstacles remain unsolved in the application of 
MS to pathological diagnosis. A significant concern is in-
strument cost, which mainly prevents most hospitals 
from implementing MS application. Also, the optimiza-
tion of pretreatment for increasing ionization efficiency 
and enhancement of analytical competency need to be 
improved.

To date, probe electrospray ionization-MS (PESI-MS) 
has been developed as a versatile and inexpensive tech-
nology with an exquisite probe piercing sample and at the 
same time spraying a voltage-based solvent to induce ion-
ization [10]. The promising advantages of PESI-MS in-
clude the capability of measurement on a small amount 
of the specimen, either liquid or solid based, without the 
demand of sample pretreatment, and the measurement 
can be accomplished in a short time. Recently, PESI-MS 
was reported with an impressive data in which a signifi-
cant difference was observed by the mass spectra of can-
cer tissues compared to the normal regions in a hepato-
cellular carcinoma model mouse [8]. In human cohorts, 

PESI-MS was used in the diagnosis of head and neck 
squamous cell carcinoma, renal cell carcinoma, breast 
cancer, and hepatocellular carcinoma [11–15]. Therefore, 
PESI-MS has been considered as a potential diagnostic 
application for distinguishing malignant from benign tis-
sues. In this study, we investigated the capability of PESI-
MS to characterize various types of cultured cells origi-
nally derived from human respiratory tracts.

Materials and Methods

Cultured Cell Lines
A total of 21 human cell lines were investigated: 5 of lung squa-

mous cell carcinomas (H520, H1703, H2170, LC-A1, and H1869), 
5 of lung adenocarcinomas (A549, PC9, PC14, H441, and H358), 
5 of small-cell carcinomas (SBC3, SBC5, H211, H1048, and H69), 
and 4 of malignant mesotheliomas (Y-MESO-14, H28, H2373, and 
H2052). Airway epithelial cells (BEAS2B) and mesothelial cells 
(MeT5A) were applied as normal controls.

Cell Culture
Ten milliliter of a liquid medium containing 10% of FBS and 

1% (w/v) of penicillin were added in a culture dish, and the culture 
medium was allowed to equilibrate in a 37°C 5% CO2 incubator. 
Three types of media, BEBM (Lonza) for BEAS2B, D-MEM 
(Wako) were used for A549, SBC3, SBC5, and MeT5A, respec-
tively, and RPMI1641 (Wako) was used for the rest cell lines other 
than the above. The medium was prepared freshly for use and cells 
were cultured up to 80% of confluence and then cells were treated 
with trypsin for collection, passage, and/or cryopreservation which 
was stored at −80°C.

MS Analysis
Frozen cell lines were thawed, and the supernatant was re-

moved following centrifugation, and cells were washed in PBS 3 
times. The resultant cell pellet was placed in a mass spectrometer 
DPiMS-2020 (Shimadzu Corporation, Kyoto, Japan) to perform 
PESI-MS analysis. Each sample was applied to MS 3 times (Fig. 1). 
The driving and analyzing condition of DPiMS-2020 were as fol-
lows: ionization position at −37 mm, ionization stop time at 200 
ms, sample collection position at −46.3 mm, sample collection stop 
time at 50 ms, probe speed at 250 mm/s, probe acceleration at 0.63 
G, DL temperature at 250°C, heat block temperature at 30°C, in-
terface voltage at 2.45 kV (positive mode), scan speed at 5,000 u/s, 
scan range at m/z 10–2,000, and data collection time at 1 min (pos-
itive mode).

Data Analysis
The PESI-MS data were acquired by an elaborate software, eM-

STAT Solution (Shimadzu Corp.). Multivariate analysis (partial 
least squares-discriminant analysis [PLS-DA]) was performed for 
the mass spectrum of each sample to enable two-dimensional clus-
tering of different groups. The dataset was also processed through 
MetaboAnalyst 4.0, a comprehensive tool for metabolomics analy-
sis and data interpretation (https://www.metaboanalyst.ca; 
RRID:SCR_015539). Mass data were uploaded as a csv file in un-
paired columns and normalization was achieved by the log trans-
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Fig. 1. Illustration of the PESI-MS mechanism and cell line analysis. PESI-MS, probe electrospray ionization mass 
spectrometry.

Fig. 2. Representative mass spectral patterns of each cell type. Normal cell lines, airway epithelial cell, BEAS2B 
and mesothelial cell, MeT5A. Lung squamous cell carcinoma cell line, H520 and H2170. Lung adenocarcinoma 
cell line, A549 and H441. Small-cell carcinoma cell lines, SBC3 and H1048. Malignant mesothelioma cell lines, 
Y-MESO-14 and H28.
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formation and auto scaling. eMSTAT conducted automatic wave-
form processing and missing the mass spectral value could occur 
when the waveform could not be detected. Setting to 1/5 of the 
minimum value could possibly avoid missing the mass spectral 
value according to the reported example of processing Metabo-
Analyst [13].

Results

Each cell sample was detected by mass spectra at range 
of m/z 0–2,000 with DPiMS-2020. Several characteristic 
peaks were detected at the area around m/z 200 and 800 that 
were found in all samples. Representative mass spectra of 
normal cell lines and squamous cell carcinoma cell lines 
were presented in Figure 2. In this study, samples were 
stored at −80°C until measurement, and the cryopreserva-
tion period differed among the samples. Eleven samples 
(BEAS2B, MeT5A, H520, H1703, A549, PC9, PC14, SBC3, 
SBC5, H211, and Y-MESO-14) had a long cryopreservation 
period and the total number of peaks in each sample ranged 
from 128 to 356. In contrast, the samples with a relatively 
short cryopreservation duration exhibited a total number 
of peaks ranging from 597 to 1,105. There was a likelihood 
of a negative correlation between the total number of de-
tected peaks and the cryopreservation duration (Table 1).

PLS-DA analysis was performed with the mass spec-
trum for each sample. The mass spectrum of each sample 
was displayed as a point on a graph in PLS-DA. When the 
distribution of plot conducted by the mass spectrum for 
each sample was distinct from the others, the difference 
among the samples was defined. In this experiment, triple 
mass spectra for each sample were plotted concurrently. 
The identification of malignant cells was determined by 
the distinct plots’ distribution from that of normal cells 
(Fig. 3). The mass spectrum of BEAS2B, a normal airway 
epithelial cell line, was plotted at the top of the graph, and 
the mass spectrum of cancer cells, groups of squamous 
cell carcinoma, adenocarcinoma, and small-cell carcino-
ma was plotted at the bottom of the chart (Fig. 3a–c). A 
similar tendency was confirmed on MeT5A, which was a 
normal mesothelial cell line. MeT5A was distinguished 
from each type of cancers, including malignant mesothe-
lioma, although several plots of malignant cells were dif-
ficult to cut off from normal cells (Fig. 3d–g).

The data were then analyzed by contrasting each tissue 
type to verify among the distinguished tissue types 
(Fig.  4). We then compared the metabolites (m/z) be-
tween those of squamous cell carcinoma and adenocarci-
noma. Among the differently expressed metabolites iden-
tified by PESI-MS, only the top 25 metabolites were se-

Table 1. Total number of detected peaks in each sample

Origin Cell line Total peak Cryopreservation 
period, weeks

Squamous cell carcinoma H520 159 33
Squamous cell carcinoma H1703 192 33
Squamous cell carcinoma H2170 867 15
Squamous cell carcinoma LC-A1 1,105 15
Squamous cell carcinoma H1869 844 15
Adenocarcinoma A549 231 35
Adenocarcinoma PC9 246 33
Adenocarcinoma PC14 128 33
Adenocarcinoma H441 858 15
Adenocarcinoma H358 897 15
Small-cell carcinoma SBC3 326 35
Small-cell carcinoma SBC5 346 35
Small-cell carcinoma H211 223 33
Small-cell carcinoma H1048 890 15
Small-cell carcinoma H69 597 15
Malignant mesothelioma Y-MESO-14 139 33
Malignant mesothelioma H28 704 15
Malignant mesothelioma H2373 770 15
Malignant mesothelioma H2052 963 15
Benign airway epithelial cell Met5A 167 35
Benign mesothelial cell Beas2B 356 30
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lected and constructed into a heat map (Fig. 5). The heat 
map exhibited the distinctive patterns of metabolites be-
tween squamous cell carcinoma and adenocarcinoma. 
The volcano plots highlighted metabolites with a raw p 
value <0.05 (p < 0.05) and fold change of threshold great-
er than 2 in adenocarcinoma/squamous cell carcinoma 
ratio (Fig. 6a). Those of top 26 to 50 metabolites high-
lighted by the volcano plots distinguishing each cell type 
but with a low p value, as candidates were listed in Ta-
ble 2. For example, selected boxplot of metabolites, m/z 
1,569.28 is a candidate for distinguishing squamous cell 
carcinoma from adenocarcinoma (Fig. 6b).

Discussion

Pathologic diagnosis is primarily based on the mor-
phology of cells and tissues. Cytopathology is an alterna-
tive approach to evaluate the tissue origin from exfoliated 
cells based on the cell-specific morphology. However, the 

bias and variation of morphological analysis amongst cy-
topathologists have brought up the subjective argument. 
Therefore, a double-check system by multiple cytopa-
thologists was recommended in clinical settings. While 
that significantly reduced subjective bias, cytopatholo-
gists have been bearing the redundant workload for it. 
Recently, the application of using artificial intelligence for 
auxiliary morphological diagnosis has progressed [16], 
however, this approach is still morphology dependent. A 
morphology-independent technology for assessing tis-
sues and cells is yeaned to develop for complementary to 
current diagnostic approach. MS is a technology to enable 
the identification of substances contained in tissues and 
cells. Due to emerging technology innovations, MS has 
been widely applied in the medical field. Besides the par-
ticular benefits of MS, both sample pretreatment for ion-
izing targets and data analysis are time-consuming. 
Moreover, the expensive cost of detection devices hinders 
the application of MS in pathological and cytological di-
agnosis. In this study, we investigated the applicability of 

Fig. 3. Differences in mass spectra of normal and cancer cells by 
PLS-DA analysis. a Airway epithelial cell versus squamous cell car-
cinoma. b Airway epithelial cell versus adenocarcinoma. c Airway 
epithelial cell versus small-cell carcinoma. d Mesothelial cell ver-

sus squamous cell carcinoma. e Mesothelial cell versus adenocar-
cinoma. f Mesothelial cell versus small-cell carcinoma.  
g Mesothelial cell versus malignant mesothelioma. PLS-DA, par-
tial least squares-discriminant analysis.
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a rapid mass spectrometer (PESI-MS) in cytological diag-
nosis. In operation, PESI-MS is a relatively easier and 
faster than conventional MS. In addition, the detection 
device of PESI-MS is cheaper than those of conventional 
MS, making it well suited in clinical settings. Because of 
different ionization methods, detectable substances with 
conventional MS may not be able to detect by PESI-MS, 
therefore, it is pivotal to validate the reliability of data 
generated by PESI-MS. We investigated the feasibility 
and reliability of PESI-MS in cytology application by an-
alyzing various cultured cell lines originally derived from 
the human respiratory system. As expected, distinctive 
mass spectra of various cultured cell lines were swiftly de-
tected by PESI-MS. Particularly, PESI-MS could distin-
guish the benign cells from malignant ones, as well as dis-

tinguish different histological types. Notably, some spe-
cific peaks such as m/z 1,569.28 were able to discriminate 
the squamous cell carcinoma from the adenocarcinoma. 
In the positive mode, the masses of sodium, potassium, 
and hydrogen ions were added, and in the negative mode, 
they were omitted. The actual candidate substance was 
expected to have a value smaller than m/z 1,569.28. How-
ever, the identified peak (m/z 1,569.28) was not registered 
in the human metabolome database even several species 
of major ion adduct were taken into consideration. Nev-
ertheless, the strategy directed here showed the possibil-
ity of the identification of novel biomarkers.

This indicated that coupling MS data to morphological 
analyses enables the improvement of the quality and ca-
pacity of pathological diagnosis. Furthermore, intracel-

Fig. 4. Differences in mass spectra of various tissue types by PLS-
DA analysis. a Squamous cell carcinoma versus adenocarcinoma. 
b Squamous cell carcinoma versus small-cell carcinoma. c Adeno-
carcinoma versus small-cell carcinoma. d Squamous cell carcino-

ma versus malignancy mesothelioma. e Adenocarcinoma versus 
malignant mesothelioma. f Small-cell carcinoma versus malignant 
mesothelioma. PLS-DA, partial least squares-discriminant analy-
sis.
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Fig. 5. Heatmap of identified metabolites (m/z) showing the 25 differentially expressed metabolites between squa-
mous cell carcinoma and adenocarcinoma with the smallest t test p values. Euclidean distance metric and Ward’s 
clustering method was used for the hierarchical clustering of samples.

Fig. 6. a The volcano plots highlight metabolites with raw p values <0.05 and fold change threshold >2 in adeno-
carcinoma/squamous cell carcinoma ratio. The volcano plots highlight candidate metabolites distinguishing each 
cell type. For example, selected boxplot of metabolites, m/z 1,569.28 is a candidate to differentiate squamous cell 
carcinoma from adenocarcinoma (b).
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Table 2. Top 50 features identified by fold change analysis

Peaks, m/z FC log2 (FC) Raw p value −log10 (p value)

1 1,569.28 0.28192 −1.8266 0.000435 3.3615
2 225.01 0.34331 −1.5424 0.001493 2.8261
3 855.67 0.32011 −1.6433 0.00156 2.8068
4 360.34 0.14684 −2.7677 0.002093 2.6793
5 791.53 0.32344 −1.6284 0.004478 2.3489
6 83.13 0.35225 −1.5053 0.004977 2.303
7 843.68 0.34081 −1.553 0.004994 2.3015
8 115.13 0.31555 −1.6641 0.005184 2.2853
9 295.02 0.12642 −2.9838 0.005344 2.2721

10 253.02 0.092669 −3.4318 0.005798 2.2368
11 909.79 0.23756 −2.0736 0.005844 2.2333
12 271.01 0.22531 −2.15 0.009182 2.0371
13 303 0.073433 −3.7674 0.011068 1.9559
14 311.01 0.10248 −3.2866 0.012556 1.9011
15 702.55 2.6493 1.4056 0.013427 1.872
16 759.63 0.28382 −1.817 0.013451 1.8712
17 857.65 0.38585 −1.3739 0.013477 1.8704
18 1,571.28 0.35743 −1.4843 0.013553 1.868
19 829.59 0.35918 −1.4772 0.013609 1.8662
20 131.16 0.36848 −1.4404 0.013815 1.8597
21 930.04 0.3725 −1.4247 0.013864 1.8581
22 839.65 0.32631 −1.6157 0.013876 1.8577
23 454.7 0.36107 −1.4696 0.013893 1.8572
24 1,155.73 2.7884 1.4794 0.013916 1.8565
25 892.66 0.34254 −1.5456 0.013953 1.8553
26 949.6 0.31769 −1.6543 0.014164 1.8488
27 835.58 0.30999 −1.6897 0.014352 1.8431
28 1,040.37 0.288 −1.7959 0.014846 1.8284
29 639.51 4.4581 2.1564 0.01498 1.8245
30 860.6 0.42051 −1.2498 0.016331 1.787
31 641.52 3.0661 1.6164 0.019887 1.7014
32 1,570.2 0.33015 −1.5988 0.020262 1.6933
33 251.01 0.2375 −2.074 0.022922 1.6398
34 167.08 0.38809 −1.3656 0.024135 1.6174
35 325.04 0.11808 −3.0822 0.024744 1.6065
36 205.04 3.5969 1.8468 0.025227 1.5981
37 458.82 0.40753 −1.295 0.026176 1.5821
38 302.18 0.43014 −1.2171 0.026337 1.5794
39 149.05 0.41924 −1.2541 0.026516 1.5765
40 229.01 0.11435 −3.1285 0.026973 1.5691
41 265.04 0.10515 −3.2494 0.027297 1.5639
42 69.27 0.37744 −1.4057 0.028664 1.5427
43 751.51 0.47261 −1.0813 0.032067 1.4939
44 426.74 0.4392 −1.187 0.032298 1.4908
45 153.03 0.444 −1.1714 0.032304 1.4907
46 576.57 0.45289 −1.1428 0.032375 1.4898
47 634.59 0.44329 −1.1737 0.032389 1.4896
48 678.49 2.2683 1.1816 0.032396 1.4895
49 1,535.18 0.44754 −1.1599 0.032423 1.4891
50 189.03 0.45781 −1.1272 0.032439 1.4889
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lular metabolites such as lipids and amino acids, which 
are generally unable to be identified by conventional 
pathological techniques, could be detected by PESI-MS. 
This may lead to the discovery of novel diagnostic mark-
ers based on the unique patterns of mass spectra of tissue 
types. Further back-to-back studies such as MS/MS anal-
ysis are necessary to identify the substances detected by 
PESI-MS herein. Currently, by combining with other 
methods we are identifying the candidate substances 
which could define the characteristics of cells.

On the other hand, certain issues remained in PESI-
MS application to cytology assessments, such as the status 
of sample storage before measurement. In this study, the 
samples were stored frozen before measurement and then 
were performed the analyses in one session as required. 
Considered various sample storage duration, the likeli-
hood of a negative correlation between the sample storage 
duration and the number of detected peaks was implied. 
The possible reason for small number of detected peaks 
in samples with a long cryopreservation period was spec-
ulated that the cells were disrupted during cryopreserva-
tion and resulted in intracellular substances leaking out 
of the cell and being washed away by PBS. Therefore, it is 
recommended to apply MS on clinical samples immedi-
ately after collection. Liquid-based cytology, which is cur-
rently widespread in use on the sample with long period 
of storage at room temperature, is expected to apply for 
PESI-MS analysis.

Another challenge for PESI-MS application in cytol-
ogy is to detect small numbers of atypical cells in the spec-
imen containing a large number of normal cells. Most 
specimens submitted for cytological diagnosis in clinical 
practice contained a large number of normal cells such as 
red blood cells, white blood cells, and normal epithelial 
cells, but a small number of atypical cells. In this kind of 
scenario, the signals from abnormal cells might be buried 
in the signals from normal cells, especially in the speci-
mens with high viscosity such as cervical smear or spu-
tum. Also, noncellular components such as mucus raising 
the concern that peaks from noncellular components 
may obscure the cellular peaks. In fact, there are reports 
that the number of tumor cells in the sample affects the 
mass spectrum [17]. Therefore, to obtain the distinct 
peaks derived from atypical cells by PESI-MS for cyto-
logical diagnosis requires a pretreatment to remove nor-
mal cells and noncell components as much as possible 
before measurement.

PESI-MS has been effectively applied in rapid on-site 
evaluation (ROSE) of cytological samples for cytological 
diagnosis [18]. Since most specimens for ROSE were col-

lected from tumor regions, the proportion of tumor cells 
in the sample was generally high. The greater proportion 
of tumor cells in a specimen, the easier it is to detect dis-
tinct mass spectra from tumor cells compared to that 
from normal cells. PESI-MS application to ROSE for cy-
tological diagnosis provided a practical solution to en-
hance the tumor specificity. The conventional histologi-
cal evaluation requires 5 steps to reach the achievement, 
namely: (1) specimen collection, (2) smearing, (3) fixa-
tion, (4) staining, and (5) microscopic examination. In 
comparison, PESI-MS only requires 2 steps: (1) collection 
and (2) measurement. Moreover, the measurement of 
PESI-MS is more efficient on difficult-to-distinguish cells 
in a specimen. It has been reported that mass spectra 
could be detected at a single-cell level from microdissect-
ed samples using a refined ionization technology with 
PESI-MS [19]. PESI-MS with this developed technology 
enables collecting individual cells and cell clumps but 
only detecting mass spectra of target cells.

Deep learning belongs to machine learning technology 
and allows analyzing the entire mass spectrum data rath-
er than assessing individual substances. Deep learning 
has been widely utilized for analyzing massive informa-
tion of mass spectrum data. By accumulating mass spec-
trum data linked to clinical and pathomorphological in-
formation, it has the potential to classify samples accord-
ing to disease features and their unique mass spectrum 
[20]. Furthermore, the development of PESI-MS probes 
could lead to a revolution of novel medical device that can 
be attached to endoscope or other diagnostic equipment 
to ensure more accurately reaching tissues or cells in the 
body. Rapid MS in the future could be applied simultane-
ously with tissue sampling, and MS information could be 
collected along with morphological evaluation during di-
agnosis.

Taken together, this study represented here a pioneer-
ing perspicacity with a great potential for applying rapid 
MS by PESI-MS toward pathological and cytological di-
agnosis. Further investigation will be taken by applying 
PESI-MS on the specimens preserved for liquid-based cy-
tology in clinical practice to further prove the concept.
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