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Abstract Automatic understanding of human emotion in a wild setting using audiovisual signals is

extremely challenging. Latent continuous dimensions can be used to accomplish the analysis of human

emotional states, behaviors, and reactions displayed in real-world settings. Moreover, Valence and Arousal

combinations constitute well-known and effective representations of emotions. In this paper, a new Non-

inertial loss function is proposed to train emotion recognition deep learning models. It is evaluated in

wild settings using four types of candidate networks with different pipelines and sequence lengths. It is

then compared to the Concordance Correlation Coefficient (CCC) and Mean Squared Error (MSE) losses

commonly used for training. To prove its effectiveness on efficiency and stability in continuous or non-

continuous input data, experiments were performed using the Aff-Wild dataset. Encouraging results were

obtained.

Keywords: deep emotion recognition, emotion recognition, emotion, body language, intonation

1. Introduction

To understand each other, emotions have played an
important predictive role. Emotions are an extremely
complex brain function that reacts to previous actions
based on the human brain functional system, called
the ”Limbic System”. Recently, there has been an
enormous interest in this emotion recognition field.

Emotion can be recognized using many methods
including voice intonation, body pose, and more com-
plex ones such as electroencephalography (EEG) [1],
etc. Facial emotion can be visualized by the expan-
sion and contraction of the muscles located around
the mouth, nose, and eyes [6]. Previous studies of fa-
cial emotion recognition concentrated on seven basic
categories: anger, fear, disgust, happiness, sadness,
surprise, and contempt [5]. Moreover, Action Units
(AUs) [2], [3], [4] were proposed to model facial be-
havior, and the combination of AUs could also be uti-
lized for facial expression recognition. Most studies
are based on the seven basic categories [7], [8], [9],
[10], [11], [12] with some researchers using triplet ex-
pression recognition [13].

Consequently, facial expression recognition has at-
tracted renewed attention owing to recent advanced
network architectures. In facial expression recogni-

tion, real-time automated analysis of facial expres-
sion in video plays an essential role in implementing
human-computer interaction interfaces.

The 2-D Emotion Wheel [22], shows valence rang-
ing from extremely positive to negative and arousal
ranging from extremely active to passive. Based on
the data from the activity a person is engaged in, dis-
criminating information on the valence of a person’s
emotions may be known. Emotion sensing parame-
ters can be distinguished as to whether they provide
information on qualification of the valence aspect or
the arousal aspect. There are many related works in
this field depending on data sets used and models pro-
posed [20], [21]. There are also previous studies on
emotion recognition in videos [18], [25]. Valence and
Arousal (V-A) are not separated values; binding these
two parameters describe an emotion.

For most emotion recognition methods so far, the
Concordance Correlation Coefficient (CCC) loss and
the Mean Squared Error (MSE) loss are widely used
during training. FATAUVA-Net Chang et al. [25] has
provided the best-confirmed results using mean CCC
and mean MSE for valence and arousal. The authors
concentrated on the connection between V-A estima-
tion and Action Unit such as the face and its parts.
Moreover, their research environment was based on a
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wild setting. Yang et al. [15] concentrated on feature
extraction. A network was assembled that extracted
features with a Recurrent unit and was trained on
MSE loss. Vielzeuf et al. [14] trained audiovisual en-
semble network on emotion video classification. MI-
MAMO Net Deng et al. [18] trained a spatial, tempo-
ral network with CCC loss.

Two criteria were measured for evaluating the per-
formance of the networks; Valence and Arousal frac-
tional range is between [−1, 1]. The main problem is
that no loss function that can quickly train a given
network on less data. Moreover, Valence and Arousal
are not separated values, and it is usually considered
important to train them together in a coordinate sys-
tem points.

Therefore, in this paper, the unit circle map of the
V-A is used. Annotated targets are moving objects in
the unit circle map of Valence and Arousal. Predic-
tions of the model should be the small difference value
of targets. Moreover, there are 3 dynamical physi-
cal calculation formulas used in the proposed method.
This is the basis of the proposed loss function that we
call ”Non-Inertial”. Experiments were conducted on
multiple model architectures and sequence lengths in
training.

The contributions of the proposed method are as
follows:

1. The new loss function allows for Valence and
Arousal to be viewed together

2. Ability to train on less data

3. Better results

4. Faster training times

As shown in Table 1, emotion recognition model in-
put parameters can be linked to whether they provide
the Valence or Arousal aspect quantification informa-
tion [27]. This research uses the following relations:
Facial expression, facial muscle activity around the
lip, eye, and nose, voice, and intonation. Body pose
relation is not engaged.

Table 1 Emotion related parameters

Emotion-related effect Arousal Valence

Emotion induced sweating +
Breathing rhythm variations + +
Heart rate variability + +
Blood pressure +
Core body temperature +
Heart rate +
Facial expression +
Facial muscle activity +
Voice intonation + +
Questionnaire + +

The rest of the paper is organized as follows: Sec-
tion 2 explains the proposed method. Experimental
result and their analysis are presented in Section 3
and finally, in Section 4, the paper is concluded and
future works discussed.

2. Proposed Method

Many learning models and training loss functions
have already been proposed for emotion recognition.
This work introduces an additional new loss func-
tion and performs experiments using multiple existing
model architectures and sequence lengths in training
to prove its effectiveness. The ResNet50 model is se-
lected as the proposed loss function evaluation model.
One of the main emotion recognition problems in se-
quence data is defining interrupted and continuous
data. Based on our previous paper [17], in the cur-
rent work, a new specific loss function is introduced
to deal with the issue. Fig.1 shows the flow of the
proposed method.

Input
Video

Detect
face and
body pose

Convert
audio
to mel

Pre-
processing

Network
and Loss
functions

Arousal,
Valence

Fig. 1 Flow chart

In this work, after video input, multi-modal fea-
tures including face landmarks and the mel-spectrum
data are extracted. This is followed by pre-processing
steps like facial bounding box expansion and fea-
ture vector construction. Four selected networks are
trained using the proposed loss function and the two
other existing ones (CCC and MSE) for comparison.
The results of Arousal and Valence obtained provide
a means for evaluating the loss functions.

2.1 Loss functions

Before discussing the proposed non-inertial loss
function, for comparison purposes, two other largely
used loss functions are briefly introduced.
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2.1.1 Mean squared error
The first most comparative metric criterion is the

Mean Squared Error (MSE), defined as:

MSE =
1

N

N∑
i=1

(xi − yi)
2 (1)

where xi predictions including (valence-arousal) val-
ues and yi annotations (valence-arousal), and N is
the total number of samples. The MSE calculates an
approximate indication of how the obtained training
model is performing. A small value of MSE is desir-
able.

2.1.2 Concordance correlation coefficient
The second one is the Concordance Correlation Co-

efficient (CCC) [23]. It is widely used to measure
the performance of dimensional emotion recognition
methods, e.g., in the Aff-Wild challenge [26]. CCC
calculates the similarity between two time-series (e.g.,
all video annotations and predictions) by scaling their
correlation coefficients with their mean square differ-
ence. The predictions that are well correlated with
the annotations but shifted in value are penalized in
proportion to the deviation. CCC values are in the
range [−1, 1], where +1 indicates perfect concordance
and −1 denotes discordance. The higher the value of
the CCC, the better the fit between annotations and
predictions. The mean value of CCC for valence and
arousal estimation was used as the main evaluation
criterion.

CCC is defined as follows:

ρc =
2sxy

s2x + s2y + (x̂− ŷ)2
=

2sxsyρxy
s2x + s2y + (x̂− ŷ)2

(2)

where ρxy is the Pearson Correlation Coefficient
(Pearson CC), sx and sy are the variances of all va-
lence or arousal video annotations and predicted val-
ues, respectively and sxy is the corresponding co-
variance value, x̂ and ŷ are mean values of predictions
and annotations.

2.1.3 Proposed non-inertial loss function
Two criteria are measured for evaluating the per-

formance of networks. Valence and Arousal’s frac-
tional range is between [−1, 1]. The problem is that
there is no loss function to quickly train the networks
on less data. Moreover, Valence and Arousal are not
separated values, and it is usually considered impor-
tant to train them together in a coordinate system of
points. This work uses the unit circle map of V-A.
This new definition is named the ”Non-Inertial loss”.

The new loss function for the V-A is defined by the
following equations.

Δlc =
√
x2
c − y2c (3)

Δlx,y = (
√

(xc(v)− xp(v))2 + (xc(a)− xp(a))2

−
√

(yc(v)− yp(v))2 + (yc(a)− yp(a))2)/t

(4)

Δα = tan−1 ax
vx

− tan−1 ay
vy

= abs(ax ∗ vy − ay ∗ vx)
(5)

losst = mean(Δlc +Δlx,y +Δα) (6)

Equation (3) is referred to as norm 2, Euclidean
distance or RMSE of the annotations and predictions,
which calculates how far away in V-A unit map the
prediction is. A small value for the distances is de-
sired. Equation (4), where t is time, xc(v) is the cur-
rent prediction valence, and xp(a) is the previous pre-
diction arousal, calculates the difference of prediction
and annotation V-A velocities. To avoid the network
parameters exploding, t = 1 is assumed. Velocity will
be enhanced in the recurrent section of the training
model, which in our network is the LSTM layer. Equa-
tion (5) is the direction. It calculates the differences
of angles. The difference between annotation and pre-
diction angles are expected to become zero; ax is the
projection of prediction arousal and vy, is the pro-
jection of annotation valence. Differences of angles
are converted to avoid subtraction because of zero de-
nominators and value more than 1 is overlooked in the
arcsin function. The proof of the Equations (5) is in
Appendix A.

Fig. 2 Non-inertial loss function illustration

The non-inertial loss function works with the form
[batch, sequence, 2], which is our annotation size. If
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the annotation size is more than 2, then an accelera-
tion parameter can be added and the circle of angle
difference can be extended from the first column to
the end.

Fig.2 shows an illustration of an example loss func-
tion annotation and prediction sequence in arousal
and valence map.

2.2 Proposed training model

The proposed model (Full Net) is illustrated in
Fig.3. It consists of three stages. The first stage in-
puts the openPose features. The second stage consists
of the Linear layers, and the last stage is a Recurrent
stage LSTM, which is widely used and already proven
effective in Action Recognition [16]. The first stage
extracts a feature representation of a snippet, which
consists of a facial RGB image, face landmarks, body
pose, and Mel spectrogram features. The RGB im-
age is fed into the ResNet50 network. The sequence
of extracted features of openPose outputs is fed di-
rectly into the second stage linear layers. The output
of the linear layers feeds the last stage of the LSTM
network and classifier. For low-cost training, features
were extracted using a pre-trained ResNet50 in our
previous study [17]. In this work, only openPose and
pre-trained ResNet50 are not trainable. All other pa-
rameters are trained. Moreover, to test the proposed
loss functions in different network parameter sizes, the
Full network is split into 3 additional models; ”With-
out mel Network”, ”Audio Network”, and ”Pose Net-
work”. For interrupted data network, ”Without mel
Network” and ”Pose Network”, are used because of
input data interruption, that is, when there is no de-
tected pose estimation and face features from open-
Pose. For ”Full Network” and ”Audio Network”, rep-
resentation of continuous networks is assumed. All
these candidate networks are trained using the 3 loss
functions.

2.3 Training data

Mollahosseini et. al. [20] deal with the largest
database for Emotion Recognition in a Wild setting
referred to as Aff-Wild [26]. The database contains
more than 30 hours of footage in 298 videos. To sat-
isfy the ”in the wild” concept, data videos specifically
not made for any specific task of emotions recogni-
tion are required. Hence, the videos were gathered
from YouTube using the keyword ”Reaction”. Most
contained people who naturally reacted to unexpected
plots, exciting situations, etc. The data also contains
the Training and Test videos, facial bounding box, fa-
cial landmark, and target, in two dimensions, Arousal
and Valence. From the training data, the following
two features are extracted for training, Mel spectro-

gram, and openPose. They are briefly described be-
low.

2.3.1 Mel spectrogram
Frequency Mel-scale describes the perceptual dis-

tance between pitches of different frequencies. A clas-
sical approximation is to define the frequency-to-mel
transform function for a frequency f as

m = 2595 ∗ log10(1 + f

700
) (7)

Our method uses Mel-frequency Spectrogram as
input to the Linear layers. Spectrograms are gener-
ated when Short Term Fourier Transform (STFT) is
applied on windowed audio or speech signal. The au-
dio is sampled at 22050Hz. Windowing is then carried
out on each audio frame using a ”Hann” window of
length 2048. Fast Fourier Transform (FFT) windows
of length 2048 are then applied on the said windowed
audio samples with an STFT hop-length equal to
512. The obtained Spectrogram magnitudes are then
mapped to the Mel-scale to get Mel-spectrograms. 128
Spectrogram coefficients per window are used in this
model. The Mel-frequency scale emphasizes the lower
end of the frequency spectrum over the higher ones,
thus, imitating the perceptual hearing capabilities of
humans. The ”librosa” python package, along with
the above-mentioned parameters are used to compute
the Mel-spectrograms. In speech emotion recognition,
Chan et al. [19] previously researched this topic. A
sample Spectrogram corresponding to Aff-Wild train-
ing 110.avi audio is shown below in Fig.4.

2.3.2 OpenPose
Human 2D pose estimation is a method for lo-

calizing human body parts such as the shoulders, el-
bows, and ankles from an input image or video. open-
Pose [24], developed by researchers at the Carnegie
Mellon University can be considered as the state of
the art approach for real-time human pose estimation.
A sample Body and Face key points corresponding
to Aff-Wild training video number 110.avi and frame
5389 is shown below in Fig.5 and 6.

The two green crosses in Fig.5 and 6 are the nose
key points, at same location. A previous study also
used body pose in video emotion recognition [15].

3. Experiments and Results

The four training networks used for evaluation
of the proposed Non-inertial loss function are imple-
mented as follows:

3.1 Training network details

1. Full Network: The network architecture is
shown in Fig.3. The flow is as follows.
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Fig. 3 Network architecture

Fig. 4 Aff-Wild training 110.avi audio spectrogram

Fig. 5 OpenPose face key points 110.avi frame 5389

Fig. 6 OpenPose body key points 110.avi frame 5389

The Input(Batch(B), Sequence(S), Height(H),
Width(W), Channel(C)) feed the openPose to
get pose estimation and face features. Face fea-
ture coordination is used to calculate and pre-
process the face with a bounding box and then
feed into ResNet50 network. The previous layer
output is concatenated with the face landmarks
(B×S, 2048+ 140) and fed into the linear layer
named Landmark. The landmark layer directly
feeds into the Pose layer (B × S, 1024 + 36).
After the Pose layer, Mel layer continuous in-
put is (B × S, 512 + 128). Mel layer output

is (B × S, 256) which is directed as input into
the LSTM layer (B,S, 256). The LSTM layer
requires additional Sequence dimension, the di-
mension of Batch, Sequence, and output of pre-
vious layers. At the end of the classifier layer
(B,S, 2) the final outputs are calculated.

2. Without mel Network: This network does not
include continuous input Mel spectrogram and
Mel layer. Other parameters are the same as
the previous Full Network.

3. Audio Network: Input(B × S, 128) continuous
audio data is fed into Mel layer and output
is (B × S, 256). Before the LSTM layer, a
new dimension of sequence (B,S, 256) is added.
The end Classifier linear layer (B,S, 2) classifies
arousal and valence.

4. Pose Network: As non-continuous data, Pose
data Input(B×S, 36) is fed into the Pose layer.
Also, the dimension of sequence (B,S, 256) is
added and fed into LSTM (B,S, 256) layer. This
is the same as the previous networks. The classi-
fier layer (B,S, 2) also classifies arousal and va-
lence.

All the network configurations used batch normal-
ization 1D and dropout 0.5 after every fully connected
layer.

3.2 Data pre-processing

Initially, for all the train and test sets, all body
pose and facial landmarks are extracted using open-
Pose [24]. From this output, objective personal data is
obtained, using landmarks, by calculating a new facial
bounding box expanded 5 pixels and then resizing it to
224x224 pixels. This facial bounding box was applied
to extract features on the sequential image using the
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ResNet50 network. The ResNet50 network obtained
the final linear layer output and saved 2048x1 features
with facial landmarks (70x2) and body pose (18x2).
Moreover, from the video, the audio signal was sepa-
rated and converted to the Mel-Spectrogram features.
All training and validation data are normalized to be-
tween 0 and 1.

3.3 Experimental configuration

Training: All the following configurations were
similar in the 4 candidate networks. The Aff-Wild
dataset was split into 2 Train and Validation sets as
70%:30% and 90%:10% respectively to make sure that
our loss function and models are accurate for both
standard or less training and validation data propor-
tions. During training, the 3 loss functions and the
standard stochastic gradient descent optimizer, with
momentum (0.9) and weight decay (5e−4) were used.
The number of epochs was set to 70. Early stop-
ping (15 epochs) was used to prevent over-fitting. The
Learning rate was 0.01 with the scheduler (patience 10
epochs). Batch size was set at 64, with the Sequence
length varied in Validation:30% [32, 64, 128, 256, 384]
and Validation:10% [128, 256, 512]. However, because
different experiments had different GPU consumption,
the largest batch size that fits in Train and Validation
set video length and our GPU memory (11GB) was
chosen. However, some of Validation:30% video se-
quences were less than 512, the max sequence length
was reduced to 384. Iteration of data-loader, drop
last, and shuffle parameters were set to False. Train
and validation video sets were shuffled at the begin-
ning of each epoch. The pre-trained ResNet50 model
weights were fixed during training; all the other lay-
ers were trainable. Batch normalization and dropout
were used after every fully connected layer.

Validation: The losses of MSE, Non-Inertial, and
CCC were calculated in each video and sample out-
put of arousal and valence saved using TensorBoard
SummaryWriter. Additionally, all the best losses of
the model were saved for the rest of the test set.

3.4 Results

Due to comparison difficulty, the base unit in the
CCC loss score was set as the base, which in training,
V A = −2 is the best loss, and in validation, 2 is the
best score. The 3 loss functions trained on the Aff-
Wild dataset was observed in 2 ways; 5 times trained
for stability check-in 4 networks and split/trained can-
didates of the 4 networks in training and validation
data set proportions 70% : 30% and 90% : 10% among
the configuration sequence length.

3.4.1 Validation 30%, 10%
In the train and validation, pipeline batch itera-

tion took around 0.01sec, which as expected, was fast
enough even though it was the same when max se-
quence length 512 was used.

Fig.7 shows the comparison of our loss function,
MSE, and CCC in various network parameter size
space. From this result, the new loss function was sen-
sitive for network parameter size like the MSE func-
tion. In our candidate four networks, ”Pose Net”
input size is [B,S, 36] normalized pose coordinates,
which is small enough. The relation between pose and
emotion is 0.163, which shows a very weak correlation.

Fig. 7 Parameter size vs loss (average sequence length
val 10%)

Another expectation of the result in the ”Audio
Net” mean was 0.206, which shows intonation and
emotion as weakly correlated. ”Without Mel” and
”Full Net” did not produce any notable difference in
the CCC correlation. The results of these two net-
works’ were 0.339 and 0.324, respectively. On the
other hand, in these networks’ training, our loss func-
tion shows the best result.

Fig. 8 Sequence length vs loss (full networks val 10%)

In Fig.8, the four networks were trained using var-
ious sequence length 128, 256, 512 and validation 10%
proportion with the 3 loss functions. The result is
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the average of four candidate networks. From the re-
sult, the CCC loss shows the top result, because the
CCC calculation uses [std,mean] values of prediction,
which is more advanced. On the other hand, these
values showed some disadvantage if sequence length
were not comfortable, as shown in Fig. 8 and 9.

Fig. 9 Sequence length vs loss (full networks Val 30%)

Fig. 10 Parameter size vs loss (average sequence length
val 30%)

Next, the Validation:30% proportion was experi-
mented on to verify that the result is the same as the
previous experiment with additional sequence lengths.
In Fig.10, for the training mean sequence length in
”Full Net” and ”Without mel”, our loss function
shows the best result and is 0.07 lower than 10% pro-
portion. In Fig.9 the lower sequence length was ex-
tended to prove that the CCC loss has a disadvantage
if sequence length in a small range is chosen. The loss
would be worse than the other losses, which shows that
in GPU memory a trade-off between sequence length
with parameter size and accuracy may be necessary.
Fig.11 shows the average of the previous two train-
ing sessions in different proportions of the Validation
set. In the results of ”Without Mel” and ”Full Net”
there is no big difference. In addition, the other two
loss functions especially our new loss was shown to be
stable and produced the best results among different

Fig. 11 Parameter size vs loss (total)

sequence lengths.

3.4.2 5-fold training
The Full network was trained five times, with a

sequence length of 256, which was shown as optimal
in previous training and the result of this training are
shown in Table 2, where rows represent validation’s
main loss function and column shows parallel calcu-
lated losses. In Fig.12, the 5 training Average Line
of Non-Inertial and MSE losses were nearly constant.
It should be noted that the CCC loss average rapidly
increased, which shows it is less stable than our new
loss function. The other 3 networks training results
are also shown in Table 4 Appendix B.

Fig. 12 Full net 5 training CCC loss comparison (se-
quence 256 val 10%)

3.4.3 Example valence and arousal of full network
Figures 13, 14, and 15 show our new loss func-

tion training and sample outputs for arousal and va-
lence. Figures 16, 17 and 18 are the CCC loss training
and sample output of the Validation video 158.avi.
The best loss on ”Full Net” in Validation was 0.86
for Arousal and 0.404 for Valence, for which back-
propagation was done separately. Also, in Fig.17
Arousal was positively correlated but missed the con-
stant value. In Figures 13, and 16 training epochs was

Journal of Signal Processing, Vol. 25, No. 2, March 2021� 79



Table 2 Full network loss of 5 training (sequence length 256)

Train Loss Train MSE CCC
Non-
Inertial

Average Differences Sum

1 0.209 0.331 0.105 0.210 0.0000014
2 0.211 0.346 0.107 0.210 0.0000005
3 0.207 0.366 0.104 0.210 0.0000116
4 0.225 0.337 0.113 0.210 0.0002326

MSE

5 0.199 0.333 0.100 0.210 0.0001291 0.000375
1 0.348 0.309 0.176 0.316 0.0000454
2 0.364 0.282 0.191 0.316 0.0011459
3 0.335 0.321 0.170 0.316 0.0000262
4 0.415 0.319 0.213 0.316 0.0000107

CCC

5 0.271 0.348 0.136 0.316 0.0010367 0.002265
1 0.202 0.411 0.102 0.103 0.0000025
2 0.206 0.355 0.104 0.103 0.0000006
3 0.204 0.414 0.103 0.103 0.0000000
4 0.202 0.415 0.102 0.103 0.0000016

Non-Inertial

5 0.209 0.376 0.105 0.103 0.0000047 0.000009

70 but the training sessions did not reach 40 epochs
in some models because of early stopping.

Fig. 13 Full network validation CCC loss (Non-inertial
training)

Fig. 14 Non-inertial loss example validation of arousal
(158.avi)

Fig. 15 Non-inertial loss example validation of valence
(158.avi)

Fig. 16 Full network validation CCC loss (CCC train-
ing)

4. Discussion

This work shows that the proposed new loss func-
tion has an advantage if we choose the correct network
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Fig. 17 CCC loss example validation of arousal
(158.avi)

Fig. 18 CCC loss example validation of valence
(158.avi)

pipeline. Fig.11 shows the average of the previous two
training sessions in different proportions of the valida-
tion set. In the results of ”Without Mel” and ”Full
Net” there is no big difference. This is because the
Aff-Wild set audio was used directly without any pre-
processing and transcribing.

From Table 1, the emotion parameters relation
used is ”Facial expression”, ”Facial muscle activity”
and ”Voice intonation”. In addition, new relations for
”Body pose” and emotion were added. Consequently,
the representations of interrupted networks ”Without
mel Network” and ”Pose Network” accuracy was lower
than the continuous networks, which shows the data
interruption effect. Moreover, our loss function train-
ing on ”Full net” was acceptable, excluding fitting an-
notation explosion in the vertical axis. It could be
easily fixed by another network design, that is more
deep or wide.

Our promised contributions in Section 1., are as
follows:

1. In the proposed loss function, the angle dif-
ference calculation allowed for more accurate
Arousal and Valence through back-propagation
compared to the other loss functions. The re-

sults are shown in Figures 14, 15, 17, and 18

2. Figures 8 to 9 shows our proposed loss function
trained more accurately on less data.

3. Additionally, as shown in Table 2, our loss func-
tion provides better accuracy training on ”5
training” data.

4. In training and validation, pipeline batch itera-
tion took around 0.01sec, that as expected, was
fast enough even though it was the same for the
max sequence length 512.

5. Conclusion

In this work, we proposed a new loss function
named ”Non-Inertial Loss” and proved its stability
and effectiveness using four networks designed with
different sequence lengths, and validation proportion.
We observed that, in data relation for continuous and
interrupted data, if the network and data were low,
the interruption effect was high. Conversely, if data
and networks were large, the interruption effect was
low.

Our loss function was limited by a smaller network
parameter size, just like the other existing losses (CCC
and MSE). However, in the sequence range, our loss
function showed better results in the lower rank, which
allows better trade-off cost between the network size
and sequence length.

In the future, we will continue to test the new
loss function with acceleration detailed in Appendix
A. We will also evaluate this new loss function using
other states of the art networks to see how it improves
emotion recognition accuracy.

Appendix

Extended proposed loss function

Distance =
1

N

N∑
i=1

(xi − yi)
2 (8)

V elocity = | 1

NM

N∑
i=1

M∑
j=1

∂xi,j

∂t
− ∂yi,j

∂t
| (9)

Alpha = tan−1 ax
vx

− tan−1 ay
vy

= | 1

N(M + 1)

N∑
i=1

M+1∑
j=1

(
∂xi,j

∂t

∂yi,j+1

∂t
− ∂xi,j+1

∂t

∂yi,j
∂t

)|
(10)

Acceleration = | 1

NM

N∑
i=1

M∑
j=1

∂2xi,j

∂2t
− ∂2yi,j

∂2t
| (11)
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loss =
D + V +A+Ac

4
(12)

Proof of Equation 5:

Δα = tan−1 ax
vx

− tan−1 ay
vy

=>

lim
Δα→0

Δα = 0 =>

Δα = 0 =>

0 = tan−1 ax
vx

− tan−1 ay
vy

∗ /tan

tan(0) =
ax
vx

− ay
vy

=>

0 =
ax ∗ vy − ay ∗ vx

vx ∗ vy =>

0 = ax ∗ vy − ay ∗ vx =>

Δα = ax ∗ vy − ay ∗ vx

(13)

Proof of Equation 5 in an example:

assume

∠annotation = 90◦

∠prediction = 30◦

Δα = 90◦ − 30◦ = 60◦ =>

ax = sin(π/2) = 1 vx = cos(π/2) = 0

ay = sin(π/6) = 1/2 vy = cos(π/6) =
√
3/2

sin(A−B) = sin(A) ∗ cos(B)− cos(A) ∗ sin(B)

Δα = arcsin(ax ∗ vy − ay ∗ vx)
Δα = arcsin(1 ∗

√
3/2− 0 ∗ 1/2)

Δα = arcsin(
√
3/2) = 60◦

60◦ = 60◦

(14)

Training tables

Table 3 Validation: 10% training

Network Train Loss
Sequence
Length

MSE CCC
Non-

Inertial

Full Network

MSE
128 0.233 0.334 0.117
256 0.245 0.312 0.123
512 0.229 0.288 0.115

CCC
128 0.293 0.307 0.155
256 0.303 0.338 0.161
512 0.380 0.262 0.195

Non-
Inertial

128 0.216 0.404 0.109
256 0.214 0.334 0.108
512 0.217 0.343 0.109

Without mel
Spectrogram

MSE
128 0.217 0.319 0.109
256 0.226 0.277 0.115
512 0.223 0.254 0.112

CCC
128 0.287 0.426 0.147
256 0.321 0.342 0.163
512 0.330 0.292 0.182

Non-
Inertial

128 0.214 0.430 0.108
256 0.210 0.375 0.106
512 0.214 0.335 0.108

Audio
Network

MSE
128 0.213 0.151 0.107
256 0.199 0.202 0.100
512 0.218 0.139 0.110

CCC
128 0.231 0.300 0.116
256 0.252 0.349 0.126
512 0.256 0.274 0.129

Non
Inertial

128 0.208 0.131 0.105
512 0.213 0.165 0.107

Pose
Network

MSE
128 0.234 0.103 0.118
256 0.232 0.150 0.117
512 0.222 0.134 0.112

CCC
128 0.335 0.230 0.180
256 0.329 0.255 0.179
512 0.457 0.176 0.247

Non-
Inertial

128 0.222 0.126 0.112
256 0.229 0.151 0.115
512 0.225 0.144 0.113
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Table 4 5 Training (sequence 256 val 10%)

Network
Train
Loss

Fold MSE CCC
Non-

Inertial

Full Network

MSE

1 0.209 0.331 0.105
2 0.211 0.346 0.107
3 0.207 0.366 0.104
4 0.225 0.337 0.113
5 0.199 0.333 0.100

CCC

1 0.348 0.309 0.176
2 0.364 0.282 0.191
3 0.335 0.321 0.170
4 0.415 0.319 0.213
5 0.271 0.348 0.136

Non-
Inertial

1 0.202 0.411 0.102
2 0.206 0.355 0.104
3 0.204 0.414 0.103
4 0.202 0.415 0.102
5 0.209 0.376 0.105

Without mel
Spectrogram

MSE

1 0.209 0.328 0.105
2 0.225 0.354 0.115
3 0.227 0.304 0.115
4 0.235 0.326 0.118
5 0.227 0.304 0.114

CCC

1 0.332 0.342 0.176
2 0.344 0.310 0.176
3 0.300 0.353 0.153
4 0.383 0.339 0.199
5 0.292 0.330 0.156

Non-
Inertial

1 0.209 0.398 0.105
2 0.214 0.370 0.108
3 0.206 0.402 0.104
4 0.206 0.379 0.104
5 0.205 0.375 0.103

Audio
Network

MSE

1 0.214 0.180 0.108
2 0.216 0.250 0.109
3 0.219 0.193 0.110
4 0.219 0.172 0.110
5 0.217 0.211 0.109

CCC

1 0.246 0.300 0.124
2 0.239 0.288 0.120
3 0.246 0.314 0.124
4 0.239 0.321 0.120
5 0.239 0.319 0.120

Non-
Inertial

1 0.215 0.221 0.108
2 0.214 0.175 0.108
3 0.212 0.209 0.107
4 0.214 0.187 0.108
5 0.215 0.182 0.108

Pose
Network

MSE

1 0.226 0.097 0.114
2 0.226 0.075 0.114
3 0.228 0.071 0.115
4 0.223 0.071 0.112
5 0.233 0.077 0.117

CCC

1 0.466 0.210 0.239
2 0.389 0.205 0.203
3 0.453 0.143 0.235
4 0.360 0.173 0.187
5 0.360 0.176 0.191

Non-
Inertial

1 0.228 0.069 0.115
2 0.233 0.084 0.117
3 0.227 0.075 0.114
4 0.228 0.091 0.115
5 0.226 0.085 0.113

Table 5 Validation: 30% training

Network
Train
Loss

Sequence
Length

MSE CCC
Non-

Inertial

Full Network

MSE

32 0.203 0.258 0.102
64 0.201 0.251 0.101
128 0.204 0.265 0.103
256 0.198 0.251 0.100
384 0.206 0.230 0.104

CCC

32 2.470 0.000 1.235
64 0.371 0.177 0.192
128 0.291 0.289 0.148
256 0.274 0.287 0.144
384 0.281 0.283 0.149

Non-
Inertial

32 0.202 0.284 0.101
64 0.204 0.346 0.103
128 0.193 0.322 0.097
256 0.194 0.260 0.098
384 0.203 0.271 0.102

Without mel
Spectrogram

MSE

32 0.203 0.249 0.102
64 0.217 0.233 0.110
128 0.202 0.241 0.102
256 0.202 0.223 0.102
384 0.208 0.201 0.105

CCC

32 0.270 0.250 0.137
64 0.359 0.229 0.180
128 0.325 0.262 0.168
256 0.268 0.290 0.140
384 0.287 0.275 0.152

Non-
Inertial

32 0.208 0.243 0.105
64 0.202 0.305 0.102
128 0.191 0.285 0.096
256 0.194 0.234 0.097
384 0.195 0.290 0.098

Audio
Network

MSE

32 0.213 0.202 0.107
64 0.205 0.205 0.103
128 0.201 0.184 0.101
256 0.194 0.192 0.098
384 0.200 0.180 0.101

CCC

32 0.249 0.238 0.125
64 0.244 0.252 0.123
128 0.231 0.278 0.116
256 0.251 0.300 0.126
384 0.234 0.293 0.118

Non-
Inertial

32 0.202 0.184 0.102
64 0.201 0.160 0.101
128 0.199 0.162 0.100
256 0.191 0.177 0.096
384 0.195 0.171 0.098

Pose
Network

MSE

32 0.229 0.059 0.115
64 0.213 0.032 0.107
128 0.209 0.094 0.105
256 0.204 0.129 0.103
384 0.207 0.134 0.104

CCC

32 0.373 0.045 0.194
64 0.432 0.076 0.225
128 0.365 0.157 0.193
256 0.350 0.213 0.179
384 2.265 0.001 1.133

Non-
Inertial

32 0.212 0.046 0.106
64 0.207 0.056 0.104
128 0.205 0.118 0.103
256 0.204 0.151 0.103
384 0.202 0.154 0.101
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