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We propose a method of automatically selecting appropriate responses in conversational spoken dialog systems
by explicitly determining the correct response type that is needed first, based on a comparison of the user’s
input utterance with many other utterances. Response utterances are then generated based on this response
type designation (back channel, changing the topic, expanding the topic, etc.). This allows the generation
of more appropriate responses than conventional end-to-end approaches, which only use the user’s input to
directly generate response utterances. As a response type selector, we propose an LSTM-based encoder-decoder
framework utilizing acoustic and linguistic features extracted from input utterances. In order to extract these
features more accurately, we utilize not only input utterances but also response utterances in the training
corpus. To do so, multi-task learning using multiple decoders is also investigated.

To evaluate our proposed method, we conducted experiments using a corpus of dialogs between elderly
people and an interviewer. Our proposed method outperformed conventional methods using either a point-
wise classifier based on Support Vector Machines, or a single-task learning LSTM. The best performance was
achieved when our two response type selectors (one trained using acoustic features, and the other trained
using linguistic features) were combined, and multi-task learning was also performed.

1. Introduction The primary aim of non-task-oriented conversation systems is for
users to enjoy the conversation itself, thus it is more important for chat-
bots to be able to prolong natural conversations as long as possible than
to satisfy a user’s specific demands. To achieve this, a balanced corpus
of everyday conversation is developed for the analysis of turn-taking
during conversations (Koiso et al., 2017). During conversation, human
speakers choose from a range of possible types of responses, such
as back-channel responses (e.g., “uh-huh”, “hmm?”, “really?”, “wow”,

Spoken dialog systems are being more widely used, in a variety
of different applications. Task-oriented spoken dialog systems that
attempt to fulfill a user’s verbal requests, which include personal as-
sistants such as Amazon’s Alexa,! Apple’s Siri,”> Microsoft’s Cortana®
and Google’s Now,* are already being widely used by the public. Non-
task-oriented spoken dialog systems, such as conversation robots (Roy

et al., 2000) (also known as ‘chatbots’), are currently being used to
answer frequently asked questions, for entertainment and in toys, and
are expected to be widely used in the future in applications such as
cognitive training and to increase communication opportunities for
elderly people (Saczynski et al., 2006; Fratiglioni et al., 2000). It is
likely that these interfaces will also be used for communication with
humanoid robots (Inoue et al., 2016) in the future.

* Corresponding author.

etc.), changing the topic, expanding the topic, etc. Chat-like spoken
dialog systems also need to be able to imitate this behavior in order to
maintain natural conversations. To achieve this, the architecture of our
proposed spoken dialog system first determines the appropriate type
of response using a response-type selector, then a response utterance
which is consistent with that response type is synthesized. We believe
this will enable our system to generate more appropriate and coop-
erative responses than conventional end-to-end architectures (Vinyals
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and Le, 2015; Ritter et al., 2011; Sordoni et al., 2015; Shang et al.,
2015), which tend to generate highly generic responses (known as “dull
responses”), such as “I don’t know”, regardless of the context (Serban
et al., 2016; Li et al., 2015).

Therefore, in this paper we propose a method of selecting the
correct type of system response in non-task-oriented, conversational
dialog systems, using acoustic and linguistic features extracted from the
user’s utterances, in a manner which is likely to prolong a conversation.
We introduce a novel framework which employs an encoder-decoder
model based on recurrent neural networks (RNNs Robinson and Fall-
side, 1988) with long short-term memory units (LSTMs Hochreiter
and Schmidhuber, 1997), which are suitable for evaluating the word
sequence in each utterance. In order to enhance feature extraction, we
utilize both input utterances and response utterances in the training
corpus.

Multi-task learning using multiple decoders is also investigated as
a further extension of our proposed framework. An encoder and two
decoders share states of their hidden layers, and these components are
trained using the interpolated loss function of the two decoders. One of
the decoders selects the type of response, and the other estimates the
word sequence of the response utterance.

Our proposed method has two advantages over conventional meth-
ods. First, our LSTM-based classifier is superior to point-wise classifiers
used by methods such as support vector machine (SVM) (Vapnik,
2013) when solving sequence classification problems, such as those
in which previous samples affect succeeding samples, or when the
word order in each utterance sample is being analyzed. Second, our
framework employs an encoder—decoder model which uses multi-task
learning (Caruana, 1993, 1997) and multiple decoders, allowing it to
utilize not only input utterances but also response utterances from
the training corpus. This results in robust and efficient training of the
framework, even when using a training corpus of limited size.

To experimentally evaluate our proposed framework, we used a self-
developed conversation corpus consisting of dialogs between elderly
study participants and an interviewer (Kitaoka et al., 2018). The utter-
ances of the elderly participants are used to represent the user’s input
utterances to the dialog system, and the interviewer’s responses serve
as references for the selection of appropriate types of responses. We
collected the utterances of elderly people for use in this study because
one of our research goals is to develop a reminiscence therapy (Butler,
1963) dialog system for the elderly. However, it should be noted that
our proposed method can be applied to any kind of conversational
dialog system that is not task-oriented, i.e., not only to dialog systems
for the elderly.

In previous studies (Ohta et al., 2017, 2019), we performed inde-
pendent evaluations of an SVM-based classifier using acoustic features,
and an LSTM-based classifier using linguistic features, respectively. In
this paper, we:

Systematically compare the performance of response selection
models using acoustic features with that of models using linguistic
features.

Systematically compare the performance of response selection
models based on SVM with that of models based on LSTM.
Systematically compare the performance of response selection
models based on LSTMs with and without attention.

Evaluate selection performance when interpolating multiple re-
sponse selection models.

Discuss the results of these evaluations.

The contributions of this work are as follows. First, we propose a
novel framework for dialog systems which explicitly classifies the types
of responses which are required. This framework allows us to avoid, in
a natural manner, the dull responses that occur in conventional end-to-
end dialog systems. Second, we propose a sophisticated response-type
selector based on an LSTM with multi-task learning, which outper-
forms conventional methods using an SVM-based point-wise classifier
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or a single-task-based LSTM. Third, we present the results of detailed
experiments which include comparisons of the effectiveness of using
acoustic features versus linguistic features, as well as using both types
of features, with or without attention, using various metrics such as
classification accuracy, precision, recall and F-measure, for each class
as well as for the entire evaluation data.

We have organized the rest of this paper as follows. In Section 2, we
discuss related studies, and in Section 3 we describe the development of
our corpus of interview dialog speech. In Section 4, we explain in detail
our proposed response selection method, as well as the architecture of
our spoken dialog system. We describe our evaluation of the proposed
method in Section 5, and then conclude the paper in Section 6.

2. Related work

In recent years, response generation methods for chat dialog sys-
tems have gradually evolved from simple, example-based approaches
to sequence-to-sequence approaches. For example, several example-
based approaches have been proposed (Nisimura et al., 2005; Seto
et al., 2018) which retain pairs of input and response utterances, and
retrieve the appropriate responses using input similarity metrics. As an
enhancement of such example-based approaches, dialog systems which
are composed entirely of modules based on natural language process-
ing techniques (Higashinaka et al., 2014) have also been developed.
Sequence-to-sequence generation approaches based on neural models,
which maximize the probability of generating an appropriate response
given the context, have also been proposed (Vinyals and Le, 2015;
Ritter et al., 2011; Sordoni et al., 2015; Shang et al., 2015). Although
these end-to-end approaches enable us to incorporate rich context when
generating a response, a problem arises, which is that these systems
tend to generate dull responses, such as “I don’t know”, regardless of
the context (Serban et al., 2016; Li et al., 2015). This is due to the high
frequency of such generic responses in the training set, which can be
associated with a diverse range of contexts. Therefore, we believe that
it is more effective to determine the type of response needed before
generating the response utterance (Ohta et al., 2019), in order to gen-
erate more appropriate responses. Using our approach, we can quickly
generate responses which should be immediate, such as backchannel
responses, while using more computational time when generating more
fluent responses. Additionally, our approach enables us to avoid the
previously mentioned dull responses in a natural manner.

The context information used for response generation are the acous-
tic and linguistic features of dialog speech, which have been explored
in previous studies. As examples of methods which use the acoustic
features of user speech to select the type of response in spoken dia-
logue systems, Ohsuga et al. (2005) proposed a method of determining
whether or not speakers observe turn-taking in conversations, based
on prosodic features of the participants’ speech, such as fundamental
frequency (FO), power and duration, which are extracted from their
utterances. Kitaoka et al. (2005) used decision trees to determine timing
for system-generated back-channel responses, as well as for turn-taking.
Prosodic information, such as pitch and power gradients at the end of
user utterances, and linguistic information, such as the part of speech of
the last word spoken, as well as the identity of the last content word in
the last utterance, are used as features of a decision tree. These studies
demonstrate that acoustic information can be used for estimating the
timing of turn-taking and back-channel responses. On the other hand,
approaches which use distributed representations of words as linguistic
features, such as word2vec (Mikolov et al., 2013), are also being used
in various modules of dialog systems. In this study, we evaluate the
effect of using both acoustic and linguistic features for response type
selection.

LSTMs are now being used in many natural and spoken language
processing applications, while encoder-decoder frameworks based on
RNNs have demonstrated good performance in the field of machine
translation (Kalchbrenner and Blunsom, 2013; Bahdanau et al., 2015).
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When used in a machine translation framework, the encoder receives
the word sequence of a speaker’s utterance in chronological order and
embeds this sequence in a fixed-length feature vector. The decoder
then converts the feature vector into an output sentence in the target
language. A similar approach is also being used in dialog systems for
the task of response generation (Vinyals and Le, 2015) and response
re-ranking (Inaba and Takahashi, 2016), where the RNN encoder is
trained to embed the needed information into the vector used for
generating the target sentences. In contrast, our proposed method
applies an encoder to extract the information necessary for selecting
the appropriate type of response in a spoken dialog system (Ohta et al.,
2019).

Multi-task learning is another trend in the area of deep learning
research, in which parameters or loss functions are shared among
multiple networks. Such learning strategies have shown promising
results in the areas of natural and spoken language processing (Luong
et al., 2016; Kim et al., 2017). In our proposed method, we use three
learning networks; an encoder to extract the needed information from
the language corpus, a decoder for selecting the appropriate type of
response, and a decoder for estimating the proper word sequence of the
response utterance. For more effective training, these three networks
share the cell states of hidden layers, as well as a loss function.

Regarding possible applications, our proposed method can be used
in various spoken dialog systems, especially chat systems. The use of
such systems by elderly people has attracted attention recently, for
example as a method of dementia prevention. Reminiscence therapy,
proposed by Butler (1963), involves prompting users to talk about their
life histories, and has become widely accepted. Since speech has been
found to be a simpler and more natural modality for human-computer
interaction (Acartiirk et al., 2015), spoken dialog systems which can
conduct reminiscence therapy are expected to play an important role in
delaying or mitigating dementia in the elderly. Although such a spoken
dialog system has been developed using Japanese (Shitaoka et al.,
2017), the types of responses which can be generated by this system are
limited to just a few types, such as backchannel or empathy. A similar
system was also proposed in Su et al. (2017), however the types of
responses the system can generate are limited to several question-and-
answer patterns. Our proposed method allows such a system to respond
in a less structured, more diverse manner.

3. Conversation corpus

One of the goals of our research is to build a reminiscence therapy
dialog system for elderly Japanese users, so we compiled a Japanese
language conversation corpus containing dialogs between elderly peo-
ple and an interviewer, in cooperation with a nursing facility, in
order to train and evaluate the response selection performance of our
classifier.

In each dialog, all of which were recorded in a low-noise environ-
ment, an elderly person speaks freely in response to ten questions asked
by an interviewer, such as, “Have you gone anywhere recently?” After
the study participant responds, the interviewer replies by expanding
on the same topic, giving back-channel responses, expressing empathy,
etc. A total of 3478 utterances were collected from eight speakers and
manually classified. Here, each utterance is a unit of speech preceded
and followed by periods of silence of 200 ms or longer. Based on
the results of a preliminary investigation, we classified the interviewer
responses into nine categories, as shown in Table 1. All of the utter-
ances, of both the interviewer and elderly interviewees, were annotated
with these labels to allow the supervised training of our classifier. The
number of interviewer response segments of each type is also shown in
Table 1. The word sequences of the utterances of both the interviewees
and the interviewer were also manually transcribed, and the number
of interviewer responses associated with each response type for each
interviewee (A-H) is shown in Table 2. For example:
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Table 1

Labels for the nine types of interviewer responses.
Label Response type Frequency
back Back-channel response (neutral) 1,522
p-back Back-channel response (positive) 497
n-back Back-channel response (negative) 136
exp Expand on the current topic 163
gin-up Ginger/Liven up the conversation 142
change Change the topic 74
smile Smile or laugh 196
emp Show empathy 83
non Say nothing 665
Total 3,478

Table 2

Number of utterances linked to each type of response for each speaker.
Speaker A B C D E F G H
back 211 396 131 307 50 256 136 34
p-back 77 96 62 109 27 35 82 9
n-back 14 49 19 17 2 15 19 1
exp 46 33 27 13 11 9 19 5
gin-up 35 19 18 21 10 7 25 7
change 10 8 10 10 10 10 7 9
smile 41 38 35 19 9 27 24 3
emp 15 10 8 19 7 7 13 2
non 87 190 64 117 33 71 88 15
Total 536 839 374 632 159 437 413 85

Speaker: “My dog died a year ago”.

Interviewer: “I'm sorry to hear that”.(emp)

Speaker: “I left my bank card in the cash machine”.

Interviewer: “Oh, no!” (emp)

These interactions would count as two empathy responses elicited
from the interviewer by that particular elderly speaker.

4. Proposed method
4.1. System architecture

Fig. 1 shows the system architecture of our proposed spoken dialog
system, which operates as follows. An input utterance is first recognized
by the speech recognizer. The response-type selector then decides
which type of response should be given, based on the recognition
result, while the dialog manager tracks the state of the dialog. The
response generator generates multiple responses of various types, based
on the dialog state. A response which matches the response type
determined by the response type selector is then synthesized by the
speech synthesizer as the dialog system’s next utterance.

The model architecture of the response-type selector (the bold,
central block in Fig. 1) will be described in detail in the following
section.

4.2. Response-type selection

Our proposed method selects the appropriate type of response to
a user’s input utterance using an LSTM-based encoder-decoder model,
an overview of which is shown in Fig. 2. The encoder is constructed
using an attention-based, bidirectional LSTM, while the decoder is
constructed using a unidirectional LSTM. Each LSTM contains a hidden
layer whose size is set to 200.

We then train our encoder-decoder model as follows. First, the
word sequence in the user’s input utterance is converted into a word
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Fig. 1. Architecture of the proposed spoken dialog system.
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T’ Utterance Type

Fig. 2. Model architecture of proposed response type selector.

sequence in the form of distributed representations using word2vec,®
which is an implementation of Mikolov’s method (Mikolov et al., 2013).
We trained the word2vec converter using all of the articles from the
Japanese edition of Wikipedia® as it appeared on July 1st, 2017. The
articles were tokenized using MeCab (ver. 0.996) (Kudo et al., 2004),
a Japanese morphological analyzer with a custom dictionary (mecab-
ipadic-NEologd ver. 0.0.5) (Sato et al., 2017) containing all of the new
words extracted from the web documents. For training, we used a skip-
gram model, and set the number of dimensions of the representation at
200. The distributed word sequence of an input utterance, along with
the reference label for the appropriate response type, are then fed into
the encoder and the decoder.

4.3. Multi-task learning

As a further extension of our proposed framework, we introduce
multi-task learning to our model by including an additional decoder
in our encoder—decoder model. The details of the architecture of the
extended model and its learning strategy are described in the following
sections.

5 https://code.google.com/p/word2vec/.
6 https://ja.wikipedia.org/.
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Fig. 3. Overview of the architecture of our proposed response-type selector model
using multi-task learning. Each of the input words is embedded in a 200-dimensional
vector, and each of the LSTMs in the encoder and decoder have 200 hidden nodes.
The “projection (cell)” has a fully connected feed-forward layer which contains 400
= 200 x 2 inputs and 200 outputs, which are used to integrate the LSTM’s forward
and backward internal states. Likewise, each “projection” also has a fully connected
feed-forward layer with 400 = 200 x 2 inputs and 200 outputs. Note that the output
word sequence decoder is only used in the training stage of multi-task learning.

4.3.1. Encoder—decoder model for multi-task learning

An overview of the architecture of our encoder—decoder model
for multi-task learning is shown in Fig. 3. The encoder contains an
attention-based, bidirectional LSTM, while the two decoders each con-
tain unidirectional LSTMs. One decoder (the “tag decoder”) is used to
select the type of response, and the other decoder (the “word decoder”)
is used to estimate the word sequence of the response utterance. The
hidden layer of each LSTM is set to a size of 200 nodes.

During the training of this model, word sequences in the user’s input
utterances, as well as those in the corresponding response utterances,
are converted into word sequences in the form of distributed repre-
sentations, in the same manner as previously described for single-task
learning in Section 4.2. The distributed word sequences of the input
and response utterances, as well as the reference label indicating the
type of response which is needed, are then fed into the encoder, word
decoder and tag decoder, respectively. The three networks, which each
contain shared hidden layers and a shared loss function, are trained
using the training corpus, the details of which will be described in the
next section.

During testing, only the user’s input utterance is fed into our model.
The type of response utterance needed is then directly estimated using
the encoder and the tag decoder.

4.3.2. Loss function for multi-task learning
During the training of the encoder-decoder model, as described in
the previous section, back propagation is performed using the global
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loss function L, which is defined using a linear interpolation of L
(loss of the word decoder) and L
in the following equation:

word

tag (loss of the tag decoder) as shown

L=aL,,,+(1-a)L €y

tag

Here, « represents an interpolation weight between 0 and 1, and L,,,,,
is defined as the sum of mean square errors used to output word
embeddings. The tag decoder should output one-hot vectors, so L
is a cross entropy loss.

tag

5. Evaluation experiment
5.1. Experimental set-up

In order to evaluate our proposed method, we conducted evaluation
experiments using the conversation corpus described in Section 3.
Our classification results were evaluated on the basis of classification
accuracy, precision, recall, and F-measure, using the nine types of
response labels shown in Table 1.

We conducted three experiments as follows. In the first experiment,
we compared classification performance when using only acoustic in-
formation and when using only linguistic information. As baselines,
we used an SVM-based classifier with acoustic features, based on the
Interspeech 2010 paralinguistic challenge feature set (Schuller et al.,
2010), and the same SVM-based classifier with linguistic features based
on distributed representation, and compared their performance with
that of the proposed method using only acoustic features, or only
linguistic features, respectively. We also evaluated naive classifiers such
as a blind classifier which selects the response type randomly (based on
uniform distribution or frequency distribution in the training data), and
a majority guess classifier which always selects the response type with
the highest frequency in the training data. Additionally, we investigated
the effect of using attention in our proposed, LSTM-based model.

In the second experiment, we compared a standard classification
method using single-task learning, in which « = 0 in Eq. (1), with
our proposed methods when using multi-task learning, in each of three
configurations; where « = 0.7, a = 0.8 or « = 0.9, respectively.

In the third experiment, we evaluated classification accuracy when
the proposed method using acoustic information and the proposed
method using linguistic information were combined, using the linear
interpolation of the output probabilities for each response-type label.

We used 8-fold cross validation in each experiment, where the data
of seven speakers was used for training data and the data of the one
remaining speaker was used as evaluation data.

5.2. Experimental results

5.2.1. Experiment 1: Comparison of models using acoustic features and
models using linguistic features

The results of our first experiment are shown in Table 3. When only
acoustic features were used, the baseline SVM method (No. 1) achieved
better performance than the proposed method using LSTM, even when
attention was applied (No. 3). We believe that this is because the
baseline method uses richer information, acquired from the Interspeech
2010 paralinguistic challenge feature set, than the proposed method
using only MFCC-based features.

The confusion matrices of methods No. 1 and No. 3 are shown
in Table 4 and Table 5, respectively. Precision, recall, and F-measure
for each class are also shown at the bottom of these matrices. We
can see from this comparison that by using rich acoustic features,
classification performance for “p-back”, “exp” and “gin-up” were par-
ticularly improved. This suggests that it is difficult to capture the
context characteristics of such low frequency labels using only MFCC
features, even when a sophisticated classifier is being used. On the
other hand, when only linguistic features were used, our proposed
method (No. 5) achieved better performance than the baseline method

27

Speech Communication 133 (2021) 23-30

Table 3
Comparison of performance using acoustic features, linguistic features or Naive
classifiers.

No. Model Attention Accuracy Precision Recall F-Measure
1 SVM (Acoustic) n/a 0.534 0.418 0.282 0.337
2 . 0.493 0.259 0.195 0.223
3 LSTM (Acoustic) 0.495 0.278 0.202 0.234
4 SVM(Linguistic) n/a 0.497 0.307 0.193 0.237
5 . . 0.536 0.328 0.282 0.303
g  LSTM (Linguistic) 0.539 0.458 0.269 0.339
7 Random (Uniform) 0.111 0.111 0.111 0.111
8 Random (Weighted) n/a 0.258 0.112 0.112 0.112
9 Majority 0.438 0.091 0.111 0.100

(No. 4). This suggests that an LSTM-based classifier enables us to more
effectively capture time sequence information, such as the order of the
words in each utterance. Additionally, the classification performance
of the proposed method was further improved by introducing attention
(No. 6). The confusion matrices for methods No. 4 and No. 6 are
shown in Table 6 and Table 7, respectively. By comparing these results,
we can see that by using LSTM, classification accuracy for “p-back”
and “smile” are particularly improved. This suggests that time series
information is important when determining when to actively engage
with users.

The performance of naive classifiers, such as random classifiers
based on uniform distribution (No. 7), or on the frequency of distri-
bution in the training data (No. 8) was clearly low, according to all
of the evaluation metrics. Although the majority guess classifier (No.
9) achieved better accuracy than the random classifiers, its precision,
recall and F-measure performance were all low. These results highlight
the advantage of using trained classifiers which consider input features
when addressing the response-type classification problem.

5.2.2. Experiment 2: Comparison of models using multi-task learning and
models using single-task learning

The results of our second experiment are shown in Table 8. We
can see how classification performance is improved for both single-task
and multi-task learning approaches by introducing attention. The best
performance was achieved when both attention and multi-task learning
were used, and when a = 0.8 (No. 6). This result suggests that the
proposed method using multi-task learning with an appropriate weight
can more effectively utilize the information extracted from the response
utterances in the training corpus than standard, single-task learning.

5.2.3. Experiment 3: Interpolation of multiple models

The results of our third experiment are shown in Fig. 4. Here, the
output label is determined using the interpolated likelihood of our
proposed classifiers, one of which uses acoustic features while the other
uses linguistic features, which can be represented by the following
equation:

L= ﬁLacousric +(1- ﬁ)L/inguisfic 2

As shown in Fig. 4, the performance of our proposed method is
improved by using both acoustic and linguistic features for classifi-
cation. The best performance observed in our experiments for this
study was a classification rate of 0.549, which was achieved when
using the interpolated likelihood of two classifiers, using acoustic or
linguistic features, respectively, while applying multi-task learning,
with interpolation weight § set to 0.4 or 0.5.

6. Conclusions
In this study, a novel method of selecting the correct type of

response by a spoken dialog system was proposed. Since the target ap-
plication of our proposed method is a reminiscence therapy system for
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Table 4
Confusion matrix for SVM using acoustic features (Method No. 1).
Classification results

True back p-back n-back exp gin-up change smile emp non
class
back 1235 90 0 10 14 3 11 0 159
p-back 352 71 0 3 17 2 16 0 36
n-back 102 17 0 3 3 0 2 0 9
exp 75 15 0 15 12 7 11 0 28
gin-up 40 10 0 1 66 1 23 0 1
change 27 4 0 4 5 3 9 0 22
smile 58 20 0 4 35 2 70 0 7
emp 63 10 0 0 1 0 0 3 6
non 222 23 0 7 3 8 7 0 395
Precision 0.568 0.273 0.000  0.319 0.423 0.115 0.470  1.000  0.596
Recall 0.811 0.143 0.000  0.092 0.465 0.041 0.357 0.036  0.594
F-Measure 0.668 0.188 0.000 0.143 0.443 0.060 0.406 0.069 0.595
Table 5
Confusion matrix for LSTM using acoustic features (Method No. 3).
Classification results
True back p-back n-back exp gin-up change smile emp non
class
back 1276 32 0 6 6 0 14 0 188
p-back 337 35 0 5 5 0 23 0 92
n-back 98 5 0 2 0 0 5 0 26
exp 87 6 0 7 2 2 8 0 51
gin-up 87 11 0 3 8 1 14 0 18
change 40 2 0 2 2 0 5 0 23
smile 109 13 0 2 4 0 60 0 8
emp 58 8 0 0 2 0 2 0 13
non 302 13 0 6 2 0 5 0 337
Precision 0.533 0.280 0.000 0.212 0.258 0.333  0.441 0.000  0.446
Recall 0.838 0.070 0.000  0.043 0.056 0.000 0.306 0.000 0.507
F-Measure 0.652 0.112 0.000 0.071 0.092 0.000 0.361 0.000 0.475
Table 6
Confusion matrix for SVM using linguistic features (Method No. 4).
Classification results
True back  p-back n-back exp gin-up change smile emp non
class
back 1428 12 0 0 0 1 1 0 80
p-back 471 12 0 0 0 0 0 1 13
n-back 132 4 0 0 0 0 0 0 0
exp 131 7 0 1 3 0 7 1 13
gin-up 124 4 0 3 1 0 3 0 7
change 46 7 0 1 1 0 1 0 18
smile 166 5 0 6 2 0 8 0 9
emp 45 5 0 0 0 0 0 29 4
non 391 13 0 3 1 6 2 1 248
Precision 0.487 0.174 0.000  0.071 0.125 0.000 0.364 0.906  0.633
Recall 0.938 0.024 0.000  0.006 0.007 0.000  0.041 0.349  0.373
F-Measure 0.641 0.042 0.000 0.011 0.013 0.000 0.074 0.504 0.469
Table 7
Confusion matrix for LSTM using linguistic features (Method No. 6).
Classification results
True back  p-back n-back exp gin-up change smile emp non
class
back 1249 126 0 1 1 0 7 0 138
p-back 290 149 0 0 0 0 17 2 39
n-back 91 40 0 0 1 0 1 0 3
exp 72 41 0 3 0 0 21 0 26
gin-up 70 39 0 0 0 0 23 0 10
change 35 12 0 0 0 0 9 0 18
smile 81 45 0 1 0 0 56 0 13
emp 21 35 0 0 2 0 1 15 9
non 223 31 0 0 0 0 5 0 406
Precision 0.564 0.351 0.333  0.167 0.318 0.500 0.420 0.911 0.561
Recall 0.846 0.235 0.000  0.025 0.049 0.014 0.189 0.494 0.573
F-Measure 0.677 0.282 0.000 0.043 0.085 0.027 0.261 0.641 0.567

28



K. Ohta et al.

0.5

Classification Accuracy

0.49
0.48

0 0.1

02 03 04 05 06

Interpolation Weight(f3)

0.7 08 09 1

=4= Single-task Learning(a=0) —O—Multi-task Learning(a=0.8)

Fig. 4. Results of Experiment 3: Interpolation of acoustic and linguistic models.

Table 8

Comparison of method No. 6 models using single-task learning versus multi-task
learning.

No. Model a Attention Accuracy Precision Recall F-Measure
1 0* X 0.536 0.328 0.282 0.303

2 o 0.539 0.458 0.269 0.339

3 0.7 X 0.532 0.342 0.268  0.300

4 1SIM 7o 053 0428 0273 0333

(Linguistic)

5 08 X 0.535 0.401 0.263 0.318

6 : o 0.541 0.434 0.287 0.346

7 0.9 X 0.536 0.361 0.280 0.315

8 ’ o 0.537 0.373 0.285 0.323

a= Single-task Learning.

the elderly, we used transcription data from conversations with elderly
people being questioned by an interviewer to train our response-type
selector.

The contributions of this work are as follows:

We proposed an LSTM-based response-type selector which han-
dles linguistic information as a time series, allowing it to achieved
better performance than a conventional, SVM-based point-wise
classifier.

We also proposed the use of multi-task learning with multi-
ple decoders in our response-type selector, utilizing not only
input utterances but also response utterances in the training cor-
pus, allowing it to achieved better performance than a standard
LSTM-based classifier employing single-task learning.

We presented the results of detailed performance comparison
experiments, which included comparisons between the use of
acoustic and linguistic features, with and without attention, us-
ing various performance metrics such as classification accuracy,
precision, recall and F-measure for each class, as well as for the
entire set of evaluation data.

We demonstrated that the best performance was achieved when
the likelihood results of our model using acoustic features and the
results of our model using linguistic features were combined using
linear interpolation.

Our proposed response selection framework for dialog systems,
which explicitly classifies responses by type of response, enables
dialog systems to avoid dull responses, such as “I don’t know”
and “I'm OK”, in a natural manner. This improves the quality of
the conversation, as these dull responses are frequently generated
by conventional end-to-end dialog systems (Vinyals and Le, 2015;
Ritter et al., 2011; Sordoni et al., 2015; Shang et al., 2015).
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+ Our proposed dialog system framework and response-type selec-
tor can be applied not only to dialog systems for the elderly (Shi-
taoka et al., 2017; Su et al., 2017), but to any kind of non-task
oriented dialog system.
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