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Abstract: In this study, we have focused on the two-to-one maps and developed the numerical

method to calculate the unstable periodic points (UPPs), based on the theory of the symbolic

dynamical system. The core technique of the method is the definition of a non-deterministic

map G. From the experimental result of three typical maps: logistic map, tent map, and

Bernoulli map, we have confirmed the proposed method works very well within the defined

errors. Our method has the following advantages: the method converges rapidly as the period of

the target UPP is larger; we can choose the target UPP regardless of its cause (any bifurcation

is not a matter); we can find the UPPs that are always unstable in the given parameter

range. The convergence of the method is guaranteed by two standpoints: the corresponding

symbolic dynamical system, and the asymptotic stability of UPP of G. Hereby, the error of

the convergence is scalable according to the numeric precision of the software.

Key Words: two-to-one map, unstable periodic point, symbolic dynamical system

1. Introduction
There are many pieces of research focusing on chaos in the nonlinear dynamical system. As an

achievement of such research, Smale [1] has proposed chaos includes infinite unstable periodic points

(UPPs). The existence of UPPs affects not only the behavior of chaos but also the steady states of

the system. For those reasons, finding UPPs plays a very important role in the analysis of nonlinear

systems. As the conventional method, Kawakami [2] has suggested the method, based on Newton’s

method, to calculate the location and stability of a UPP. However, such methods require an initial

point coordinate near the corresponding UPP, which is often unknown in many cases, e.g., when the

UPP has a larger period.

On the other hand, symbolic dynamics have contributed to analyzing the qualitative characteristics

215

Nonlinear Theory and Its Applications, IEICE, vol. 13, no. 2, pp. 215–220 ©IEICE 2022 DOI: 10.1587/nolta.13.215



of chaos [3] [4]. We can interpret the dynamical system showing chaos with a symbolic system called

a full 2-shift and analyze the original system from the standpoint of symbolic dynamics.

In this study, we focus on the two-to-one maps and discover a novel method to calculate their UPPs

based on the symbolic dynamical system. The core technique of our method is the definition of a

non-deterministic map G whose inverse is the target two-to-one map.

2. System description

2.1 Two-to-one map and dynamical system
We consider the one-dimensional two-to-one map, which is the map having single extreme value:

F : X → S; x 7→ F (x), such that X = X0 ∪X1, F (X0) = F (X1) = S, (1)

where Xi ⊂ R and S = {x ∈ R | x < F (α)}. A two-to-one map is non-invertible, however, we can

consider two maps whose inverses construct it:

G0 : S → X0; x 7→ G0(x), X0 = {x ∈ X | x ≤ α} , (2)

G1 : S → X1; x 7→ G1(x), X1 = {x ∈ X | x > α} . (3)

From these maps, let us alternatively define an inverse of F as a non-deterministic map G:

G : S → X = X0 ∪X1; x 7→ G(x) = Gm(x), m = 0, 1. (4)

For some examples, logistic map and tent map are typical two-to-one maps, as shown in Fig. 1.

Focusing on the discrete-time dynamical system xn+1 = F (xn), n ∈ Z, we consider the unstable

periodic point (UPP) of this system. We write the trajectory of this system through x0 as

{. . . , x−2, x−1, x0, x1, x2, . . .} . (5)

This trajectory is deterministic for the time-forward direction: x1, x2, and further, but is not for

the time-backward direction: x−1, x−2, and so on, because F is deterministic but G is not. This

definition allows us to choose the backward image of x∗ by choosing G0 or G1.

An ℓ-periodic point of F is the point x∗ satisfying x∗ = F ℓ(x∗) with x∗ 6= F k(x∗) for 1 ≤ k < ℓ,

and µ = dF ℓ/dx(x∗) determines the asymptotic stability of x∗, i.e. x∗ is stable if |µ| < 1 and unstable

otherwise. This x∗ of F ℓ is also the periodic point of Gℓ with the proper choice of each m. Let

ν = dGℓ/dx(x∗), which determines the stability of x∗ from the standpoint of G. As a trivial fact of

the algebraic theory, ν = µ−1 since Gℓ is invertible regardless of the choice of m.
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Fig. 1: Example of two-to-one maps F (x) and corresponding G0(x) and G1(x).
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2.2 Symbolic dynamical system
Let AZ be a sequence space defined by AZ = {s = (si)i∈Z | si ∈ A, ∀i ∈ Z}, and σ be a shift map

σ : AZ → AZ; (σs)i = si+1, then the pair of AZ and σ defines a symbolic system. We call AZ a full

2-shift if A = {0, 1}. Richer explanation for the symbolic dynamical system is available on Ref.[5].

In this study, we interpret the dynamics of F and G as a symbolic system. Let us assign the symbol

si with following rules: si = 0 if xi ∈ X0; si = 1 if xi ∈ X1. Then, a point x0 ∈ R of the trajectory

(5) corresponds to the bi-infinite symbol sequence s(x0) ∈ AZ: s(x0) = · · · s−2s−1.s0s1s2 · · · , where
the point ‘.’ located between s−1 and s0 divides the symbol sequence into two parts, si, i < 0 and

si, i ≥ 0. In general, s(xn) = · · · sn−2sn−1.snsn+1 · · · and this leads to

s (F (x0)) = s (x1) = · · · s−2s−1s0.s1s2 · · · = σs (x0) , (6)

s (G(x0)) = s (x−1) = · · · s−2.s−1s0s1s2 · · · = σ−1s (x0) . (7)

Hence, F and G on R are topologically conjugate to the left and right shift map σ and σ−1 on AZ,

respectively. From the topologically conjugate property, the ℓ-periodic point x∗ of F corresponds to

the symbol sequence s∗ of σ, which is the sequence that infinitely repeats a basic sequence having the

length of ℓ. For example, Tab. I shows the correspondence of them.

Table I: Relationships of the ℓ-periodic points between F and its corresponding symbolic system.

ℓ bi-infinite sequence s∗ = s(x∗) basic sequence of s∗

1 · · · 0000.0000 · · · , · · · 1111.1111 · · · 0, 1

2 · · · 1010.1010 · · · 10

3 · · · 001001.001001 · · · , · · · 011011.011011 · · · 001, 011

3. Method of analysis
As defined in the previous section, we can arbitrary choose G0 or G1 as the inverse map G. Conse-

quently, we also arbitrary choose the symbols si for the time-backward direction i < 0. As a simple

example, we can get the following symbol sequence if we always choose G0 as G:

s(x0) = · · · 0000︸ ︷︷ ︸
arbitrary

. s0s1s2 · · · .

In this case, the symbol sequence conjugate to GN (x0) is

s
(
GN (x0)

)
= σ−N (x0) = · · · . 0000 · · · 0000︸ ︷︷ ︸

Nsymbols

s0s1s2 · · · ,

for an arbitrarily large N , i.e., the larger N becomes the longer the symbol ‘0’ continues. This fact

naturally implies the trajectory of G0 asymptotically converges to the 1-periodic point that has the

basic sequence of ‘0’ in Tab. I. For another example, when we choose G0 and G1 alternatively, the

symbol sequence is s(x0) = · · · 01010101.s0s1s2 · · · , thus, the trajectory of G2 = G1 ◦ G0 converges

to the 2-periodic point that has the basic sequence of ‘01‘. Let us generalize these principles for an

arbitrary ℓ-periodic point.

Step 1. Choose a basic sequence of an ℓ-periodic point;

e.g.) 001, 011

Step 2. Construct the composed inverse map G(x0);

e.g.) Gℓ(x0) = G0 ◦G0 ◦G1(x0), G
ℓ(x0) = G0 ◦G1 ◦G1(x0)

Step 3. Iterate xN+1 = Gℓ(xN ) with an arbitrarily large N ;

if |xN+1 − xN | < ϵ with a desired tolerance ϵ, xN is the obtained periodic point.
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The trajectory of G is convergent if |ν| < 1. Bringing the formula ν = µ−1 in Sec. 2.1, |µ| > 1

is the required condition for the convergence of this method. This is the condition for the UPP and

thus the method goes well with the unstable cases of the periodic point, but not for the stable cases.

This limitation is not a critical issue because we can use F with the proper initial condition x0 to see

the stable cases.

4. Result of experiment

We have conducted numerical experiments for three systems: logistic map, tent map, and Bernoulli

map. In all experiments, we set ϵ = 1× 10−15 and x0 = 0.7. We can choose arbitrary ϵ according to

the numeric precision of the software since the UPP always has |µ| > 1 regardless of the precision.

4.1 Logistic map
Let F (x) = rx(1 − x) be logistic map where r is an arbitrary parameter. Figure 2 shows the result

of experiments in one-parameter bifurcation diagram. From the figure, we can see the proposing

method is valid not only for the UPP after period-doubling bifurcation but also for that after tangent

bifurcation (see the period-doubling window of a 3-periodic point). Table II is the numerical results of

the obtained points with r = 4. Conventional methods such as Newton’s method take a lot iterations

to converge when the period of UPP is larger. However, our method quite quickly converges to the

desired point even though the UPP has a great period, as shown in the column N (counts of numerical

iterations) in Tab. II. Moreover, we can find the UPP having quite large period such as ℓ = 20 or

more. Figure 3 shows the obtained x∗ and the trajectory through it in the return map.
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Fig. 2: Bifurcation diagram and UPPs of logistic map with r ∈ [0, 4]. Each colored curve represents

the UPP with ℓ = 1 (orange), ℓ = 2 (blue), ℓ = 3 (magenta), ℓ = 4 (green), and ℓ = 5 (black).

Table II: Numerical result for logistic map with r = 4, x0 = 0.7.

ℓ basic sequence x∗ error N ν

1 0 0.000 000 000 000 000 8.327× 10−16 27 2.500× 10−1

1 0.750 000 000 000 000 9.992× 10−16 48 −5.000× 10−1

2 01 0.345 491 502 812 526 4.441× 10−16 27 −2.500× 10−1

3 001 0.116 977 778 440 511 1.665× 10−16 19 −1.250× 10−1

011 0.188 255 099 070 633 1.665× 10−16 19 1.250× 10−1

20 01101110001110111000 0.201 284 361 839 669 0.000 5 −9.537× 10−7
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Fig. 3: Return map of UPP x∗ with period-ℓ in logistic map with r = 4.

4.2 Tent map
Let F (x) = rmin(x, 1−x) be tent map where r is an arbitrary parameter. The result shown in Fig. 4

indicates that the proposing method is valid for the UPPs caused by border-collision bifurcations[6].

Table III is the numerical results of the obtained UPPs with r = 2. As the same as logistic map case,

our method rapidly converges to the desired UPP. In addition, we can see the correspondence of ν

comparing with logistic map. This is a natural result because the tent map with r = 2 is the nonlinear

transformation of the dyadic transformation[7] and the logistic map with r = 4. Figure 5 shows the

obtained UPP in the return map. Comparing Fig. 3 with 5, we can confirm the conjugacy of the

trajectory. As a remarkable fact, we can find the UPPs that always unstable in the given parameter

range even though the conventional method cannot trace such a UPP.
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Fig. 4: Bifurcation diagram and UPPs of tent map with r ∈ [0, 2] (colors are the same as Fig. 2).

Table III: Numerical result for tent map with r = 2, x0 = 0.7.

ℓ basic sequence x∗ error N ν

1 0 0.000 000 000 000 000 2.720× 10−16 19 1.250× 10−1

1 0.666 666 666 666 666 7.772× 10−16 48 −5.000× 10−1

2 01 0.400 000 000 000 000 4.441× 10−16 27 −2.500× 10−1

3 001 0.222 222 222 222 222 2.220× 10−16 19 −1.250× 10−1

011 0.285 714 285 714 286 1.665× 10−16 19 1.250× 10−1

20 01101110001110111000 0.296 188 072 025 230 0.000 5 −9.537× 10−7
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Fig. 5: Return map of UPP x∗ with period-ℓ in tent map with r = 2.

4.3 Bernoulli map
Let F (x) = 2x mod 1 be the Bernoulli map, Tab. IV shows the results of experiment. The values in

the column “fraction” are the approximated fractions for x∗. We can see that they are equivalent to

the analytically derived periodic points. As a result, we have found that our method is adaptive not

only to convex upward maps, like logistic or tent maps, but also to general two-to-one mappings.

Table IV: Numerical result for Bernoulli map with x0 = 0.7.

ℓ basic sequence x∗ fraction error N ν

2 01 0.333 333 333 333 1/3 1.0× 10−15 24 2.500× 10−1

3 001 0.142 857 142 857 1/7 2.2× 10−16 17 1.250× 10−1

011 0.428 571 428 571 3/7 8.3× 10−16 16 1.250× 10−1

20 01101110001110111000 0.430 595 808 597 150504/349525 0.0 3 9.537× 10−7

5. Conclusion
In this study, we have focused on the two-to-one maps and developed the numerical method to

calculate the UPPs, based on the theory of the symbolic dynamical system. The core technique is

the definition of the non-deterministic map G. From the experimental results, we have confirmed the

method works very well with the following advantages: the method converges rapidly as ℓ is larger;

we can find the UPPs that are always unstable in the given parameter range. Symbolic dynamical

system and the asymptotic stability of UPP for G guarantees the convergence of the method. Hereby,

the convergence error is scalable depending on the numeric precision of the software.

In future works, we would like to expand the method to the higher dimension cases.
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