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ABSTRACT
Aims/introduction: Double C2 domain protein b (DOC2b), one of the synaptotag-
mins, has been shown to translocate to the plasma membrane, and to initiate mem-
brane-fusion processes of vesicles containing glucose transporter 4 proteins on insulin
stimulation. However, the mechanism by which DOC2b is regulated remains unclear.
Herein, we identified the upstream regulatory factors of DOC2b in insulin signal transduc-
tion. We also examined the role of DOC2b on systemic homeostasis using DOC2b knock-
out (KO) mice.
Materials and Methods: We first identified DOC2b binding proteins by immunopre-
cipitation and mutagenesis experiments. Then, DOC2b KO mice were generated by dis-
rupting the first exon of the DOC2b gene. In addition to the histological examination,
glucose metabolism was assessed by measuring parameters on glucose/insulin tolerance
tests. Insulin-stimulated glucose uptake was also measured using isolated soleus muscle
and epididymal adipose tissue.
Results: We identified an isoform of atypical protein kinase C (protein kinase C iota) that
can bind to DOC2b and phosphorylates one of the serine residues of DOC2b (S34). This
phosphorylation is essential for DOC2b translocation. DOC2b KO mice showed insulin
resistance and impaired oral glucose tolerance on insulin and glucose tolerance tests,
respectively. Insulin-stimulated glucose uptake was impaired in isolated soleus muscle and
epididymal adipose tissues from DOC2b KO mice.
Conclusions: We propose a novel insulin signaling mechanism by which protein
kinase C iota phosphorylates DOC2b, leading to glucose transporter 4 vesicle translocation,
fusion and facilitation of glucose uptake in response to insulin. The present results also
showed DOC2b to play important roles in systemic glucose homeostasis.

INTRODUCTION
In humans, glucose homeostasis is largely dependent on insulin
actions1,2. This hormone stimulates the translocation of glucose
transporter 4 (GLUT4) from the intracellular compartments to
cell surface membranes, and enhances glucose transport into fat
and muscle cells3,4. This redistribution of GLUT4 protein
(GLUT4 translocation) is thought to be a key step in the

insulin action. In the past two decades, numerous studies have
been carried out in an effort to reveal the molecular mechanism
of insulin signaling leading to the GLUT4 translocation. Insulin
activates the insulin receptor tyrosine kinase, which recruits and
phosphorylates substrate adaptors, such as the insulin receptor
substrate family of proteins. Tyrosine phosphorylated insulin
receptor substrate binds many molecules. Among them, p85/
p110-type phosphatidylinositol (PI) 3-kinase plays a major role
in insulin-dependent glucose transport. Insulin receptor tyrosineReceived 25 January 2018; revised 25 September 2018; accepted 11 October 2018
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kinase activity activates PI3-kinase through recruitment of SH2
domains of the p85 subunit to phosphotyrosine sites on insulin
receptor substrate proteins. The 30-phosphoinositide products
of insulin-stimulated PI3-kinase are essential mediators of the
insulin actions in GLUT4 translocation. Numerous studies sup-
ported a major role of these lipids in membrane trafficking.
Consequently, much effort has been expended in attempting

to identify downstream targets of the PI3-kinase products that
might connect insulin receptor signaling to GLUT4 glucose
transporter trafficking. Many researchers have reported the pos-
sibility that the downstream targets might be factors such as
Akt/protein kinase B (PKB)5–7, protein kinase C (PKC) iso-
forms8–10, 3-phosphoinositide 111,12 and ADP ribosylation fac-
tor proteins13. Among these molecules, recent studies have
provided evidence supporting Akt/PKB and the atypical PKCs
as possible downstream targets of PI3-kinase. In particular,
Akt/PKB has been widely implicated as being involved in
GLUT4 regulation. Other possible targets, atypical PKCs,
include calcium- and diacylglycerol-independent serine/thre-
onine protein kinases, and are involved in many cellular func-
tions, such as cellular proliferation, migration, apoptosis,
cytoskeletal regulation and glucose metabolism14,15. Among
them, the PKC-iota/lambda isoform reportedly plays roles in
glucose transport and glucose metabolism16–18. However, the
downstream targets of atypical PKCs remain unknown.
Double C2 domain protein b (DOC2b) is a member of the

synaptotagmin family of proteins that have tandem C2
domains at the C-terminus19. DOC2b has been identified as a
calcium sensor protein that regulates vesicle fusion in neurons
and is expressed throughout the body20,21.
Previously, we investigated the functional role of DOC2b in

exocytosis in 3T3L-1 adipocytes, and found that DOC2b
translocated to the plasma membrane and bound to syntaxin-4
on insulin stimulation in an intracellular Ca2+-dependent man-
ner22. This complex mediated GLUT4 vesicle fusion in 3T3L-1
adipocytes. In MIN6 cells, we also found that DOC2b was nec-
essary in the step by which insulin secretory granules fuse to
the cell membrane23. These observations suggested DOC2b to
be highly involved in glucose metabolism. However, it is
unclear whether DOC2b is essential for whole-body glucose
metabolism in vivo, and which signaling molecules are involved
in the regulation of DOC2b.
The major aim of the present studies was to determine the

precise molecular mechanism that regulates DOC2b transloca-
tion to the plasma membrane in response to insulin using
3T3L-1 adipocytes. We also examined the role of DOC2b in
systemic glucose homeostasis using DOC2b KO mice.

METHODS
Constructs and antibodies
Wild-type DOC2b was subcloned into the pGEX-6P1 vector
(GE Healthcare, Buckinghamshire, UK). Munc interacting
domain (MID) and mutant (S34A) were subcloned into
p3 9 FLAG-CMV 8.0 vector (Sigma-Aldrich, St. Louis, MO,

USA). All chemically synthesized and polymerase chain reac-
tion-derived deoxyribonucleic acids were verified by deoxyri-
bonucleic acid sequencing. Rabbit polyclonal DOC2b antibody
was generated against the peptide sequence CGARDD-
DEDVDQL. The other antibodies were commercially available
and are listed in the Supplemental Methods (Appendix S1).

Cell culture
3T3-L1 fibroblasts were grown in Dulbecco’s modified Eagle’s
medium with 10% fetal bovine serum at 37°C. The cells
(3–5 days after reaching confluence) differentiated into adipo-
cytes with incubation in the same Dulbecco’s modified Eagle’s
medium, containing 0.5 mmol/L isobutylmethylxanthine,
0.25 mmol/L dexamethasone and 4 lg/mL insulin, for 3 days
and were then grown in Dulbecco’s modified Eagle’s medium
with 10% fetal bovine serum for an additional 5–8 days.

In vitro kinase assay
GST fusion proteins of wild-type (WT) MID, S34A MID and
GST alone were purified according to the manufacturer’s
instructions (Promega, Madison, WI, USA). After protein con-
centration adjustment, these GST fusion proteins were pulled
down with glutathione-sepharose beads (GE Healthcare). Precip-
itates were mixed with active PKC iota (Merck Millipore,
Burlington, MA, USA) and c-[32P] adenosine triphosphate. After
a 10-min incubation at 30°C, samples were washed with 0.75%
phosphoric acid. Radioactivity was counted using an ALOKA
LSC-5100 counter (Hitachi-Aloka Medical, Tokyo, Japan).

Immunofluorescence microscopy
Differentiated 3T3-L1 adipocytes were transfected by electro-
poration. The cells were then re-plated onto coverslips and
allowed to recover for 48 h. Cells were incubated with or
without insulin for 20 min at 37°C, and then fixed with 3.7%
formaldehyde in phosphate-buffered saline, permeabilized with
buffer A (0.5% triton X-100, 1% fetal bovine serum in phos-
phate-buffered saline) for 15 min and finally incubated for
2 h with primary antibodies at room temperature. The cells
were washed and incubated with an appropriate secondary
antibody for 30 min. The coverslips were washed thoroughly
and mounted on glass slides. Immunostained cells were
observed at room temperature with a LSM 5PASCAL laser
scanning confocal microscope and its two channel-scanning
module (Carl Zeiss, Oberkochen, Germany) equipped with an
inverted Zeiss Axiovert 200M using the 63X oil objective lens
(numerical aperture 1.4) run by LSM 5 processing software
(Carl Zeiss) and Adobe Photoshop CS2 (Adobe, San Jose,
CA, USA).

Generation of Doc2 beta-deficient mice
The DOC2b KO mice were generated by replacing the DOC2b
gene exon 1 with the neomycin resistance gene24. Details are
given in the Supplemental Methods (Appendix S1). Male
DOC2b KO mice and C57BL/6J mice, at 8–12 weeks-of-age,
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were used. We maintained the DOC2b KO mice on a C57BL/
6J background. Animal studies were approved by the Ethics of
Animal Experimentation Committee at Yamaguchi University
School of Medicine.

Immunoprecipitation and immunoblotting
Mouse tissues (muscle, fat, isolated islets) were lysed in a lysis
buffer (Thermo Fisher Scientific, Waltham, MA, USA). Cells
were lysed in another lysis buffer (20 mmol/L HEPES [pH 7.2],
100 mmol/L NaCl, 1 mmol/L ethylenediaminetetraacetic acid,
25 mmol/L NaF, 1 mmol/L sodium vanadate, 1 mmol/L benza-
midine, 5 mg/mL leupeptin, 5 mg/mL aprotinin, 1 mmol/L
phenylmethyl sulfonyl, 1 mmol/L dithiothreitol), and the protein
concentrations were measured with BCA protein assay reagent
(Thermo Fisher Scientific). For immunoprecipitation, the lysates
were incubated with primary antibodies at 4°C for 8–12 h fol-
lowed by incubation with protein-G/A-Sepharose. Lysates and
immunoprecipitates were resolved by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis and transferred to a
polyvinylidene difluoride membrane (GH Healthcare). The
membranes were incubated with appropriate antibodies.

Glucose uptake ex-vivo in isolated skeletal muscles and
adipocytes
Mice were fasted overnight. Tissues were isolated and cut into
pieces, then incubated in oxygenated incubation buffer (Krebs–

HEPES buffer with 8 mmol/L 2-deoxy-glucose, 32 mmol/L
mannitol, 2 mmol/L of sodium pyruvate and 0.1% bovine
serum albumin). The tissues were then stimulated with or with-
out 100 nmol/L of insulin for 1 min, followed by the addition
of 100xHOT solution (8 mmol/L 2-[3H] deoxy-glucose,
32 mmol/L [14C] mannitol) and incubation for another
20 min. After incubation, the tissues were washed with cold
Krebs–HEPES buffer, then mixed with 1% Triton X-100 and
boiled for 10 min. Radioactivity was counted employing an
ALOKA LSC-5100 counter. The 2-[3H] deoxy glucose uptake
rates were corrected for extracellular trapping using [14C]
mannitol.

Pancreas perfusion
Overnight-fasted 12–16-week-old male mice were used in per-
fusion experiments as described previously25. The perfusate was
infused through a catheter placed in the abdominal aorta and
collected from the portal vein. The perfusate was Krebs–Ringer
bicarbonate HEPES buffer supplemented with 4.6% dextran
and 0.25% bovine serum albumin, and bubbled with a 95%
O2–5% CO2 gas mixture. The flow rate of the perfusate was set
at 1 mL/min. The experimental mouse pancreata were perfused
with Krebs–Ringer bicarbonate HEPES buffer containing 2.8 or
16.7 mmol/L glucose. The glucose concentration was changed
from 2.8 to 16.7 mmol/L at 5 min. The perfusion protocols
began with a 10-min equilibration period with the same buffer
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Figure 1 | Double C2 domain protein b (DOC2b) serine 34 is phosphorylated in response to insulin stimulation. (a) 3T3L-1 adipocytes re-seeded
onto glass bottom dishes were serum-starved in Krebs–HEPES buffer for 2 h at 37°C, followed by incubation with 1 μmol/L of fura-2AM for
25 min at 37°C in 10% CO2. At the end of the incubation, the cells were washed with Krebs–HEPES buffer, and a basal reading of [Ca2+]i before
stimulation with either 100 nmol/L insulin or 1 μmol/L ionomycin was started. The ratio images (340 nm/380 nm excitation wavelengths) were
calculated for each 3.6-s interval. (b) 3T3L-1 adipocytes were electroporated with eGFP-DOC2b (wild-type [WT] or S34A) and treated with or
without 100 nmol/L insulin, and then observed by confocal microscopy. Experiments were repeated four times. Transfection efficiency was 50–60%
in each experiment. At the basal condition (without insulin stimulation), very few cells had eGFP-DOC2b (both WT and S34A) green fluorescence
signal on the rim of the cells. On insulin stimulation, approximately 60% of the WT DOC2b transfected cells showed rim fluorescent signal. In
contrast, very few eGFP-S34A DOC2b cells had rim signal. A representative cell is shown. (c) FLAG-tagged DOC2b constructs were expressed in
HEK 293 cells. After preincubation for 2 h in Krebs–HEPES buffer, the cells were treated with 1 μmol/L insulin for 7 min. Immunoprecipitation was
carried out using polyclonal anti-FLAG sepharose beads. Precipitates were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis
and blotted with anti-phosphoserine antibody.
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as that used in the initial step (i.e., from 1 to 5 min), as shown
in the figures. The insulin levels in the perfusates were mea-
sured using an enzyme-linked immunosorbent assay kit (Mori-
naga, Yokohama, Japan).

Isolation of mice islets
Islets isolated from age-matched WT and DOC2b KO mice at
10–12 weeks-of-age were isolated by injection of collagenase P

(Roche Diagnostics, Mannheim, Germany) into the pancreatic
duct according to standard procedures.

Immunofluorescent staining
Pancreata were isolated from 12-week-old mice, fixed overnight
in 4% paraformaldehyde at room temperature and processed
for paraffin embedding. Then, 3-lm sections were cut and
mounted on glass slides, immunostained with antibody to
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insulin (Dako Cytomation, Glostrup, Denmark), and then
counterstained with hematoxylin–eosin.

Ribonucleic acid isolation and reverse transcription
polymerase chain reaction
Total ribonucleic acid (RNA) extraction was carried out with
TRIzol (Invitrogen, Thermo Fisher Scientific) and the RNeasy
mini kit (Qiagen, Venlo, the Netherlands) or the RNA isolation
kit (Life Technologies, Thermo Fisher Scientific). Purified RNA
was converted to complementary deoxyribonucleic acid with a
High Capacity RNA-to-cDNA Kit (Applied Biosystems, Thermo
Fisher Scientific).
All primers were designed for mouse genes. Sequences are

listed in the supplemental information (Appendix S1).

Oxygen consumption and activity amount analyses
Oxygen consumption was measured with an O2/CO2 metabolism
measuring system (model MK-5000; Muromachikikai, Tokyo,
Japan). Each mouse was placed in a sealed chamber (560-mL vol-
ume) with an airflow of 0.60 L/min for 24 h at 26°C. Air was
sampled every 3 min, and the consumed oxygen concentration
was converted to milliliters per minute by multiplying it by the
flow. Oxygen consumption was normalized according to

kilogram0.75 bodyweights of the mice. Activity amounts were
measured using a cage with a running wheel (Model MK-700;
Muromachikikai). We counted total wheel rotations for 24 h.

Statistical analysis
Results are expressed as the mean – standard deviation. Differ-
ences between means were evaluated using Student’s t test, as
appropriate. A 5% level of probability was considered to be sig-
nificant.

RESULTS
Serine 34 DOC2b was phosphorylated by insulin stimulations
In cultured adipocytes, as we showed previously, DOC2b
translocates from the cytoplasm compartment to the cell mem-
brane in response to insulin stimulation, and it regulates the
GLUT4 vesicle fusion process at the plasma membrane in an
intracellular Ca2+-dependent manner22. However, the mecha-
nism whereby DOC2b results in translocation to the plasma
membrane remains unclear. Thus, we carried out the following
experiments. Because DOC2b is a Ca2+ sensor, [Ca2+]i might
be elevated by insulin stimulation. However, as previously
shown26, insulin did not increase [Ca2+]i in cultured adipocytes,
whereas ionomycin clearly raised the [Ca2+]i (Figure 1a). We
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previously confirmed deletion of the MID region to change
intracellular DOC2b localization to the plasma membrane, even
in the absence of insulin. Therefore, we hypothesized that the
MID region is essential for DOC2b activation by insulin. By
scanning the amino acid sequence of the MID region of
DOC2b using Phospho Motif Finder27, we identified a putative
serine phosphorylation motif termed “KQIS34,″ presumably
phosphorylated by PKC. When the serine 34 of DOC2b was
altered to alanine, DOC2b failed to translocate to the plasma
membrane (Figure 1b), and as shown herein, the WT serine/
threonine residues in the MID region of DOC2b, but not those
in the alanine 34 MID mutant, were phosphorylated on insulin
stimulation (Figure 1c).

DOC2b was phosphorylated by atypical PKC iota, then
translocated to the plasma membrane
Next, to identify the PKC isoform that phosphorylates serine/
threonine residues in the MID of DOC2b, we examined each
of the PKCs capable of binding to DOC2b. We found that only

atypical PKC iota bound to DOC2b in response to insulin
stimulation (Figure 2a). As atypical PKCs reportedly enhance
glucose uptake in adipocytes and muscle cells10,28,29, we exam-
ined the interaction between PKC iota and DOC2b. We also
carried out an in vitro kinase assay to confirm that MID
DOC2b could be phosphorylated by atypical PKC iota. Atypical
PKC iota dose-dependently phosphorylated WT MID, whereas
the mutant MID phosphorylation was significantly impaired
(Figure 2b). Finally, we examined the role of PKC iota in
DOC2b translocation in 3T3-L1 adipocytes. Overexpression of
a kinase deficient mutant PKC iota inhibited insulin-induced
translocation of DOC2b (Figure 2c). These findings indicated
phosphorylation of DOC2b by PKC iota to be essential for
DOC2b translocation.

Impaired glucose tolerance in DOC2b KO mice
Based on the present results, we concluded DOC2b to be an
insulin-signaling molecule. Therefore, we analyzed DOC2b KO
mice. Neither food intake nor bodyweight differed between WT
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mice and DOC2b KO mice receiving a normal chow diet (Fig-
ure 3a,b). We carried out morphological observations and tissue
weight measurements at 12 weeks-of-age. The epididymal fat
and soleus muscle weights were significantly reduced in DOC2b
KO mice, as compared with WT mice. Weights of other
organs, including the heart and liver, did not differ (Figure 3c,
d). We further examined glucose homeostasis in DOC2b KO
mice at 12 weeks-of-age. Non-fasting blood glucose levels of
DOC2b KO mice were similar to those of WT mice (Fig-
ure 4a). On glucose tolerance tests, blood glucose levels after
overnight fasting were indistinguishable between the DOC2b
KO mice and WT mice. The blood glucose level at 30 min

after oral glucose administration in DOC2b KO mice was sig-
nificantly increased relative to that in WT mice (Figure 4b).
Whereas there was no significant change in the insulin level
after overnight fasting, serum insulin levels at 15, 60 and
90 min after glucose challenge were increased in DOC2b KO
mice as compared with those in WT mice (Figure 4c). In insu-
lin tolerance tests, DOC2b KO mice showed lower insulin sen-
sitivity than WT mice (Figure 4d). In addition, we carried out
the pyruvate tolerance test to evaluate glucose production from
the liver, but there was no difference in the magnitude of the
blood glucose increase between WT mice and DOC2b KO
mice (Figure 4e). These findings suggested that DOC2b KO
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specific for DOC2b, glucose transporter 4 (GLUT4), phosphor-AKT, pan AKT and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data are
representative of three independent sets of tissue homogenates. (c) 2-Deoxyglucose uptake in isolated soleus muscles of WT and DOC2b KO mice
(n = 3 in each group). (d) Hematoxylin–eosin staining of epididymal fat sections from WT and DOC2b KO mice (left). Scale bar, 200 μm.
Distribution of cell sizes in WT (white bar) and DOC2b KO (black bar) mice (right). (e) Immunoblotting of epididymal fat. Epididymal fat lysates were
prepared from non-fasted WT and DOC2b KO mice. The cell lysates were resolved by 10% sodium dodecyl sulphate-polyacrylamide gel
electrophoresis, blotted onto a polyvinylidene difluoride membrane. The membranes were incubated with primary antibodies specific for DOC2b,
GLUT4, phospho-AKT, pan-AKT, VAMP-2 and syntaxin-4. Data are representative of three independent sets of tissue homogenates. (f) 2-
Deoxyglucose uptake in isolated epididymal fat from WT and DOC2b KO mice (n = 3 in each group). All results were expressed as the
mean – standard deviation. *P < 0.05, **P < 0.01.
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mice have impaired glucose tolerance and insulin resistance in
muscle and adipose tissue.

DOC2b KO mice showed reduction of glucose uptake in
insulin sensitive tissues
As impaired glucose tolerance was not caused by insulin
response attenuation in DOC2b KO mice, we investigated the
glucose uptake in insulin-sensitive tissues. Morphological obser-
vation of the epididymal fat in 12-week-old mice showed
shrinkage of epididymal fat in DOC2b KO mice, whereas mus-
cle histology did not differ between WT and DOC2b KO mice
(Figure 5a,d). GLUT4, PKC iota, and AKT expression levels
and AKT phosphorylation in DOC2b KO mice did not differ
from those in WT mice (Figure 5b,e; Figure S1). However,
Insulin-stimulated glucose uptake was significantly impaired in
isolated soleus muscles and epididymal fat tissues (Figure 5c,f).
Thus, it was revealed that DOC2b KO mice show a reduction
of glucose uptake in insulin-sensitive tissues as compared with
WT mice, although the expressions of insulin signaling mole-
cules are unaffected.

Enhanced glucose-stimulated insulin secretion in DOC2b KO
mice
Although DOC2b KO mice show reduced glucose uptake
in insulin-sensitive tissues, insulin secretion shown by the
oral glucose tolerance test seemed to be enhanced. Thus,
we further evaluated glucose-stimulated insulin secretion
in vivo to determine the insulin secretory function of pan-
creatic islets in DOC2b KO mice. DOC2b KO mice showed
significantly increased glucose-stimulated insulin secretion
in perfused pancreata starting with the measurements
obtained after 7 min (Figure 6a). Furthermore, pancreatic
b-cell areas were significantly expanded in DOC2b KO
mice as compared with WT mice (Figure 6b). To clarify
the underlying cause, we investigated the expressions of
DOC2 isoforms in the pancreatic islets by reverse tran-
scription polymerase chain reaction. DOC2a expression
appeared to show a compensatory increase in DOC2b KO
mice as compared with WT mice (Figure 6c).

Increased energy expenditure in DOC2 KO mice
DOC2b KO mice did not differ from WT mice in daily
food intake (Figure 7a). However, the amounts of activity
increased (Figure 7b). Furthermore, oxygen consumption
was also significantly increased in DOC2b KO mice as
compared with WT mice in both the light and the dark
phase (Figure 7c,d).

DISCUSSION
We previously showed that DOC2b promoted the membrane
fusion step of GLUT4-containing vesicles to the plasma mem-
brane in 3T3L-1 adipocytes22. Interestingly, DOC2b was rapidly
translocated to the plasma membrane in response to insulin,
and initiated the membrane fusion processes through its
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binding to syntaxin-4 in a calcium-dependent manner. How-
ever, the precise mechanism whereby insulin regulates DOC2b
has yet to be identified. As DOC2b protein is a member of the
synaptotagmin family of calcium sensor proteins20, we first
hypothesized that intracellular calcium might regulate DOC2b

functions. However, as shown in Figure 1a, insulin did not
raise intracellular calcium concentrations, and ionomycin failed
to initiate translocation of DOC2b (data not shown). These
results suggest that intracellular calcium might be required for
preconditioning DOC2b, and that another mechanism would
be necessary for activation. We have thus developed the alter-
native hypothesis that DOC2b is regulated by phosphorylation
at the KQIS motif in the MID domain of DOC2b. This idea
was supported by the results obtained with the S34A mutant of
DOC2b (Figure 1b). Taken together, the results of these and
other studies have established a potential link between insulin
signaling and DOC2b translocation, prompting the conclusion
that DOC2b is involved in the GLUT4 vesicles membrane
fusion processes in response to insulin.
A key finding of the present study is identification of PKC

iota as a regulator for DOC2b. This serine/threonine kinase is
one of the atypical PKC isoforms expressed in adipocytes and
interacts with DOC2b, phosphorylating serine residue at the
KQIS34 motif in vivo in response to insulin stimulation. These
interesting observations were confirmed by the experiments
with a kinase-dead mutant of PKC iota, as shown in Figure 2d.
The present data are consistent with those of a previous report
showing that atypical PKCs enhance glucose uptake in adipo-
cytes and muscle cells10,16. Furthermore, atypical PKC iota/
lambda is reportedly required for GLUT4 translocation to the
plasma membrane30. Based on our or other observations, we
propose a simple model whereby insulin-activated PKC iota
regulates soluble N-ethyl-maleimide-sensitive fusion protein
(NSF) attachment protein receptor (SNARE) regulator DOC2b,
followed by interaction with syntaxin-4, initiating membrane
fusion processes of GLUT4 vesicles. DOC2b might be a novel
downstream effector of PKC iota, which regulates glucose trans-
port in response to insulin.
A second significant finding reported herein is the critical

role of DOC2b in whole-body glucose homeostasis. As DOC2b
is known to be a SNARE regulator and facilitate glucose trans-
port in insulin-sensitive tissues, it was expected that DOC2b
deletion would cause insulin resistance in peripheral tissues/or-
gans and would disturb glucose homeostasis. As expected,
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DOC2b KO mice showed impaired glucose tolerance as a
result of attenuation of glucose uptake in insulin-sensitive tis-
sue, such as muscle and fat, but not in the liver. This organ
specificity might be explained by the role of DOC2b as a
SNARE regulator for GLUT4-vesicular transport. In contrast,
insulin action in the liver is regulated in an enzymatic manner;
for example, by phosphoenolpyruvate carboxykinase activity,
which is non-vesicular trafficking steps. These observations
were consistent with those of previous reports31. In contrast,
we observed insulin secretion to be enhanced in DOC2b KO
mice, as shown in Figure 4c (glucose tolerance tests) and in
Figure 6a,b (perfusion experiments and immunostaining of
pancreatic specimens). These results did not appear to be con-
sistent with our previously reported finding that silencing
DOC2b impaired second-phase insulin secretion in MIN6
cells23. Taking these paradoxical observations together, we
hypothesized that some compensations occurred in DOC2b
KO mice. As a candidate for such mechanisms, we focused on
the DOC2a isoform expressed only in pancreatic b-cells and
neurons. As shown in Figure 6c, DOC2a expression in the
pancreas appeared to be slightly increased in DOC2b KO mice,
although the difference was not significant. In addition, the
roles of DOC2b in insulin secretion in model mice remain
controversial. One group suggested that insulin secretion was
decreased in DOC2b KO mice31, whereas another noted that
insulin secretion was markedly impaired in DOC2a/DOC2b
double KO mice, whereas minimum effects were observed in
DOC2b KO mice32. Although these controversial results have
yet to be explained, the present results and those of other
investigators can reasonably be taken to suggest that the effect
of DOC2b loss is modest, or even minimal, and can be partly
compensated by DOC2a. Furthermore, peripheral insulin resis-
tance overwhelms these modest defects, and also leads to com-
pensatory b-cell expansion, resulting in an overall increase in
insulin secretion.
The observations of the effects on the central nervous sys-

tem in DOC2b KO mice obtained in the present study are
also interesting. DOC2b KO mice showed increased energy
consumption with increasing activity. This means that
DOC2b plays an additional role in the central nerve system.
These observations were consistent with those of many
recent studies focusing on brain science. For example,
DOC2b was reported to act as a Ca2+ sensor protein trigger-
ing spontaneous synaptic vesicle fusion33 and asynchronous
exocytosis in neurons34. Interestingly, our DOC2b KO mice
showed increased physical activity and oxygen consumption
all day and night (Figure 7). These properties might affect
the decreased adiposity in DOC2b KO mice (Figure 3c,d). In
the previous report, neurotransmitter release was affected in
DOC2b KO mice33,34. These observations are interesting in
considering the relationship between central nerve activity
and glucose metabolism.
In conclusion, the present results allow us to draw the fol-

lowing two conclusions. First, DOC2b plays an essential role in

systemic glucose homeostasis. Second, PKC iota is likely to reg-
ulate DOC2b translocation and GLUT4 vesicle fusion in
response to insulin. PKC iota-DOC2b might be a novel insulin
signaling mechanism that enhances glucose transport.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Supplemental methods.
Figure S1. Protein expression of protein kinase C iota in epididymal fat.
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