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Radiomics analysis of [18F]-fluoro-2-deoxyglucose positron emission tomography for the prediction 

of cervical lymph node metastasis in tongue squamous cell carcinoma 

Abstract 

Objectives 

This study aimed to create a predictive model for cervical lymph node metastasis (CLNM) in patients with 

tongue squamous cell carcinoma (SCC) based on radiomics features detected by [18F]-fluoro-2-

deoxyglucose (18F-FDG) positron emission tomography (PET). 

Methods 

A total of 40 patients with tongue SCC who underwent 18F-FDG PET imaging during their first medical 

examination were enrolled. During the follow-up period (mean 28 months), 20 patients had CLNM, 

including six with late CLNM, whereas the remaining 20 patients did not have CLNM. Radiomics features 

were extracted from 18F-FDG PET images of all patients irrespective of metal artifact, and 

clinicopathological factors were obtained from the medical records. Late CLNM was defined as the CLNM 

that occurred after major treatment. The least absolute shrinkage and selection operator (LASSO) model 

was used for radiomics feature selection and sequential data fitting. The receiver operating characteristic 

curve analysis was used to assess the predictive performance of the 18F-FDG PET-based model and 

clinicopathological factors model (CFM) for CLNM. 

Blinded Manuscript Click here to view linked References
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Results 

Six radiomics features were selected from LASSO analysis. The average values of the area under the curve 

(AUC), accuracy, sensitivity, and specificity of radiomics analysis for predicting CLNM from 18F-FDG 

PET images were 0.79, 0.68, 0.65, and 0.70, respectively. In contrast, those of the CFM were 0.54, 0.60, 

0.60, and 0.60, respectively. The 18F-FDG PET-based model showed significantly higher AUC than that of 

the CFM. 

Conclusions 

The 18F-FDG PET-based model has better potential for diagnosing CLNM and predicting late CLNM in 

patients with tongue SCC than the CFM. 

Keywords 

tongue squamous cell carcinoma; cervical lymph node metastasis; radiomics; [18F]-fluoro-2-deoxyglucose, 

positron emission tomography 
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Introduction 

Cervical lymph node metastasis (CLNM) is a major cause of mortality in patients with tongue squamous 

cell carcinoma (SCC). Diagnostic imaging has played an important role in the detection of CLNM in 

patients with tongue SCC. Routine radiological diagnosis of CLNM upon first medical examination has 

become more effective when used in combination with computed tomography (CT), ultrasonography (US), 

magnetic resonance imaging (MRI), or [18F]-fluoro-2-deoxyglucose (18F-FDG) positron emission 

tomography (PET) [1-4]. Regarding the management of CLNM, therapeutic neck dissection (ND) is 

adopted for clinically CLNM-positive neck patients, and elective ND for clinical T (cT)3-4N0M0 patients 

and sometimes for cT1-2N0 patients according to the National Comprehensive Cancer Network (NCCN) 

clinical practice guidelines [5]. Additionally, D’Cruz et al. [6] reported a survival benefit of elective ND 

compared with the wait-and-see policy in patients with early-stage oral SCC. 

There is currently no method for evaluating the probability of CLNM or late CLNM occurrence. Patients 

with early-stage oral SCC on the wait-and-see policy have a CLNM rate of 20–40% [7-9]. In other words, 

approximately 60–80% of patients with early-stage oral SCC undergoing elective ND would experience 

unnecessary operative stress. Furthermore, clinically CLNM-positive patients who undergo therapeutic ND 

might be pathologically CLNM-negative (pN0) because routine radiological CLNM diagnosis for patients 

with oral SCC is not 100% accurate. As a result, pN0 patients could undergo an unnecessary ND operation, 

thus adding unwarranted operational stress. Therefore, a modality that facilitates both an accurate diagnosis 
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of CLNM and a prediction of late CLNM is required.  

In recent years, the use of data characterization algorithms to extract information from radiological images 

for radiomics analysis has been highlighted. For example, Zhong et al. [10] and Cui et al. [11] predicted 

lymph node metastasis with high accuracy using images of primary lesions in patients with lung and breast 

cancer. Therefore, we hypothesized that radiomics analysis of medical images from the initial examination 

of primary lesions in patients with tongue SCC could predict CLNM.  

The current radiologic modalities for patients with tongue SCC are CT, MRI, and 18F-FDG PET/CT. 18F-

FDG PET/CT is often used in tongue cancer for locoregional diagnosis and for screening distant metastases 

or other malignancies because oral SCC can easily progress into multiple cancers in the oral cavity, pharynx, 

larynx, and esophagus [12, 13]. Moreover, 18F-FDG PET images of primary lesions can be clearly 

delineated using the standardized uptake value (SUV) as a threshold. However, the images of oral sites are 

often affected by metal artifacts because dental metals are often used for oral restorations. Therefore, we 

hypothesized that radiomics analysis of the initial 18F-FDG PET images of primary lesions in patients with 

tongue SCC would predict CLNM. Clinicopathological factors, depth of invasion (DOI) [5, 12, 13], and 

the Yamamoto–Kohama (YK) classification [14] were also assessed to predict CLNM occurrence in 

patients with tongue SCC, thereby verifying the prediction of CLNM for patients with tongue SCC using 

18F-FDG PET imaging of the primary lesions. 

This study aimed to investigate initial medical examinations and follow-up data of patients with tongue 
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SCC on the wait-and-see policy, to establish appropriate treatment planning for patients with tongue SCC 

at the initial medical examination. Additionally, we verified the ability of radiomics analysis to predict 

CLNM in patients with tongue SCC by comparing the 18F-FDG PET-based model with the 

clinicopathological factor model (CFM). 

Materials and Methods 

Ethics 

This study was approved by the ethical committee of our hospital. The medical treatment protocol used by 

our hospital followed the Japanese Society of Oral Oncology guidelines or Japanese Society for Head and 

Neck Cancer Guidelines for the Treatment of Oral Cancer, and informed consent was obtained from all 

participants [12, 13]. 

Study participants 

Patients with histologically diagnosed tongue SCC who underwent 18F-FDG PET examination before major 

treatment between September 2015 and January 2019 at our hospital were reviewed. Major treatment 

referred to definitive therapy, surgery, or definitive radiotherapy [12, 13]. No patient received any previous 

treatment. Forty tongue SCC patients were enrolled for the study. The patient characteristics are shown in 

Table 1. There were 27 male patients and 13 female patients. The mean age of the patients was 66 years. 

Patients’ distribution by cT classification and stage are shown in Table 1. Regarding the stage, patients who 

were staged according to the UICC TNM Classification of Malignant Tumours (7th edition), were restaged 
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using the 8th edition, for the purpose of this study. The mean DOI of the patients was 9 mm. The treatment 

modalities according to the neck status are summarized in Table 2. Of the 33 patients that underwent radical 

surgery for primary lesions, eight and six underwent therapeutic and elective ND, respectively. The 

remaining 19 patients who underwent radical surgery for primary lesions followed a wait-and-see policy 

and did not undergo ND. Of these 19, six patients had late CLNM while seven patients underwent definitive 

radiotherapy. Of the seven, six were CLNM-positive at the initial radiologic and/or clinical examination. 

Overall, CLNM occurred in 20 patients on the ipsilateral side. This study was designed based on a predictive 

AUC for CLNM of 0.75 (both 20 CLMN-positive and 20 CLMN-negative patients), using a receiver 

operating characteristic (ROC) curve, one-tailed, a sample power of 0.90, and at a significant level of 0.05. 

The median follow-up period was 28 months (range 1–61 months). 

18F-FDG PET/CT scan and data acquisition 

18F-FDG was synthesized by the nucleophilic substitution method using an 18F-FDG-synthesizing 

instrument (F100, Sumitomo Heavy Industries, Ltd., Tokyo, Japan) at our hospital. All patients fasted for 

at least 6 h before undergoing 18F-FDG PET/CT and were administered a dose of 3.0 MBq/kg of body 

weight 1 h before the scan. All imaging procedures were performed using an in-line PET/CT system on 

Aquiduo (PCA-7000B, Toshiba Medical Systems, Otawara, Tochigi, Japan). Images from eight-bed 

positions for two minutes each were obtained using a three-dimensional (3D) high-sensitivity mode. 
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Patients were scanned from the top of the skull to the upper thigh. The 18F-FDG PET images were 

reconstructed into a 192 × 192 matrix using an ordered-subset expectation maximization iterative 

reconstruction algorithm called VUE Point FX (GE Healthcare, Milwaukee, WI, USA) with time-of-flight 

and sharp infrared spectroscopy (16 subsets, two iterations each). Noise in the resultant images was reduced 

through Gaussian smoothing at 4.0 mm full-width at half-maximum (F100, Sumitomo Heavy Industries, 

Ltd., Tokyo, Japan). Emission PET images were reconstructed using a default vender-implemented iterative 

reconstruction algorithm.  

Extraction of radiomics features from 18F-FDG PET images 

Radiomics features of the primary lesions were analyzed using 18F-FDG PET images obtained before major 

treatment. The 18F-FDG PET images were extracted semi-automatically from picture archiving and 

communication systems. The region of interest (ROI) was set semi-automatically with an SUV of 2.5, 

indicating manual deletion of the normal physiological uptake, such as the tonsils by an oral radiation 

oncologist (TK), and an additive margin of 15 mm by automatically using VelocityTM (Varian Medical 

Systems, Palo Alto, CA) for compensation of the so-called clinical target volume (CTV) area (Fig. 1). 

Quantitative imaging features were evaluated using the ROI. Additionally, 18F-FDG PET images were 

standardized as a preprocessing step for radiomics analysis. The voxel size of the 18F-FDG PET images was 

2 × 2 × 2 mm and resized to 3 × 3 × 3 mm. Thereafter, a 3D wavelet transform was applied to each image. 

The re-quantization with the 10- and 20-bin widths was performed in the 3D wavelet-transformed images, 
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as well as in the original image. Thus, four combinations of ROIs (2 mm-10-bin, 2 mm-20-bin, 3 mm-10-

bin, and 3 mm-20-bin) were evaluated. We modified MATLAB programming tools 

(https://github.com/mvallieres/radiomics/) to extract 476 radiomics features from the 18F-FDG PET images 

[15, 16]. Table 3 presents the radiomics features used in this study. Features based on eight shapes/sizes 

were calculated using MATLAB programming tools; 10 global, 11 GLCM (gray-level co-occurrence 

matrix), 13 GLRLM (gray-level run-length matrix), 13 GLSZM (gray-level size zone matrix), and 5 

NGTDM were calculated using the SUV value, and 3D wavelet transformation was performed on the PET 

images using MATLAB programming tools. These radiomics features were labeled by the low-pass and/or 

high-pass functions used in the 3D wavelet transform. For example, ‘‘LHH_X’’ is the feature X with the 

image filtered with the low-pass function for the x (left-right) direction, the high-pass function for the y 

(antero-posterior) direction, and high-pass function for the z (head-tail) direction. Eight 3D wavelet features 

were generated from 52 features. The total features were eight shapes/sizes, 10 global, 11 GLCM, 13 

GLRLM, 13 GLSZM, and 5 NGTDM (neighborhood gray-tone difference matrix). Finally, we modified 

MATLAB programming tools (https://github.com/mvallieres/radiomics/) to extract 476 radiomics features 

from the 18F-FDG PET images (Table 3) and normalized the features using two statistical methods: min-

max and z-score [15, 16].  

Radiomics feature selection and multivariate analysis of 18F-FDG PET-based model  

Not all extracted radiomics features are always effective in predicting late CLNM in patients with tongue 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

SCC. Thus, we used the least absolute shrinkage and selection operator (LASSO) model to select only the 

effective radiomics features for use in the analysis. The LASSO model is an embedded method that 

simultaneously performs radiomics feature selection and data fitting, providing the radiomics features 

selected during the fitting, as well as the classification model fitted to the training data. Furthermore, five-

fold cross-validation was employed to avoid overlearning, a common problem in model fitting. The 

prediction model was used in the training cohort (32 data points) and was evaluated in the test cohort (eight 

data points). The area under the ROC curve, accuracy, sensitivity, and specificity were analyzed. The 

hyperparameters were optimized with leave-one-out (LOO) validation in the training cohort. Furthermore, 

with the five-fold cross-validation using the LASSO method, radiomics feature selection was also 

performed five times with the different training cohorts. We used the glmnet and ROCR libraries of the R 

2.7.0 software (https://cran-archive.r-project.org/bin/windows/base/old/2.7.0/) to evaluate the effective 

radiomics features for predicting late CLNM by counting the number of selections.  

Multivariate analysis of CFM 

Regarding clinicopathological factors, sex, age, cT classification, and radiological DOI (rDOI) were 

obtained from the medical records. rDOI was selected because pathological DOI (pDOI) could only be 

obtained after surgery. Tumor differentiation and YK classification were performed by an experienced oral 

pathologist (YK). Clinicopathological factors are listed in Table 4. There was no need to select the radiomics 

features in the CFM; therefore, the ridge model was applied. The ridge model differs from the LASSO 
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model in the penalty term only; the ridge model has an L2 norm, whereas the LASSO model has an L1 

norm. The CFM was created using the same techniques as the 18F-FDG PET-based model: five-fold cross-

validation was performed, LOO validation was used for hyperparameter optimization, and R 2.7.0 software 

was utilized. 

Multivariate analysis of radiomics features from 18F-FDG PET images and the clinicopathological 

factors 

We used six clinicopathological factors and 476 radiomics features of 18F-FDG PET that were selected and 

analyzed using the aforementioned methods. The ROC curve and integrated discrimination index (IDI) 

were calculated to compare the predictive performance of the radiomics features and CFM of CLNM in 

patients with tongue SCC. 

 

Results 

Radiomics feature selection and multivariate analysis of 18F-FDG PET-based model 

Regarding histogram-based radiomics features from 18F-FDG PET images, LHLMax as a global type 

feature was selected five times in the five-fold cross-validation from LASSO analysis. LHLMax is the 

feature of the highest SUV filtered with the low-pass function for the x (left-right) direction, high-pass 

function for the y (antero-posterior) direction, and low-pass function for the z (head-tail) direction. The 

following global type features were selected two times: (1) HHHMean and LHHMean and (2) HHHZLV, 

HHHRLV, and HHHLRHGE as GLRLM type features. The mean is the feature of the mean SUV, and 
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GLRLM comprises counting the number of pixel segments having the same intensity in a given direction. 

Thus, we determined LHLMax to be the radiomics feature with the strongest correlation with late CLNM. 

Based on five-fold cross-validation, data from 32 participants were used as training data, whereas data from 

8 participants were used as testing data. The average area under the curve (AUC) in the ROC curve, 

accuracy, sensitivity and specificity with one standard deviation of radiomics analysis are shown in Table 

5. The AUC, accuracy, sensitivity, and specificity ranged from 0.65 to 0.79, 0.53 to 0.68, 0.50 to 0.70, and

0.55 to 0.70, respectively. 

Multivariate analysis of CFM 

The neck status according to each clinicopathological factor is summarized in Table 6. The average AUC, 

accuracy, sensitivity, and specificity curves of all six clinicopathological factors were lower than those of 

the radiomics features from 18F-FDG PET images (Table 7). 

Multivariate analysis of radiomics features from 18F-FDG PET images and the clinicopathological 

factors 

The six clinicopathological factors were not selected in the LASSO analysis, whereas the radiomics features 

were. The AUC, accuracy, sensitivity, and specificity of multivariate analysis of both the radiomics and 

clinicopathological factors were the same as those of only the radiomics features. The ROC curves of both 

radiomics features and all six clinicopathological factors were plotted to validate their predictive ability of 
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neck status (Fig. 2). Radiomics analysis of 18F-FDG PET images had a significantly higher AUC than the 

CFM (IDI 0.02).  

 

Discussion 

In this study, we aimed to verify the ability of radiomics analysis of 18F-FDG PET images of primary lesions 

to predict the occurrence of CLNM in patients with tongue SCC by comparison with a CFM. The first stage 

of our investigation was the evaluation of the radiomics analysis of 18F-FDG PET. The very high sensitivity 

of primary lesions to 18F-FDG PET has been reported in head and neck cancers, including tongue SCC [17, 

18]. In particular, SUV is reported to be the primary quantitative indicator for tumor detection using 18F-

FDG-PET [19, 20], and the smallest SUVmax of the primary lesions in all 40 patients was 3.2 in this study. 

Lee et al. reported that patients with an SUV threshold of 2.5 or higher showed a worse prognosis [21]. 

Therefore, a threshold value of 2.5 was considered to be appropriate to depict the primary lesion. Regarding 

the margin setting, the Radiation Therapy Oncology Group protocols expand the gross tumor volume 

(GTV) area by 10–20 mm to predict the CTV area [22]. Merlotti et al. reported that a 15 mm margin around 

the GTV was preferable [23]. Therefore, we evaluated the region that provided a margin of 15 mm to the 

18F-FDG uptake area.  

Moreover, we observed and selected six radiomics features for LASSO analysis. Of these, LHLMax was 

the most significant radiomics feature for predicting CLNM in patients with tongue SCC as the global type 

of feature. LHLMax and the other Max features, except HHHMax, showed a correlation coefficient greater 
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than 0.7 and similar tendencies. This may suggest that primary lesions with a higher SUV in 18F-FDG PET 

images are more likely to indicate CLNM in patients with tongue SCC because Max expresses the highest 

SUV. Additionally, H of LHL is the y-direction, which indicates the antero-posterior dimension. In this 

study, the maximal diameter at the y-dimension was observed in 34 of 40 patients, although the reason 

remains unclear. 

Regarding the application of radiomics analysis of 18F-FDG PET images in head and neck cancer [24-27], 

this study is the first to report the use of 18F-FDG PET imaging of the primary lesions to predict CLNM. 

Although the application of radiomics analysis of CT images of head and neck cancer has been reported 

previously [28-30], these reports focus mostly on the prognosis and distant metastasis of head and neck 

cancer, not CLNM. Romeo et al. [30] achieved a predictive accuracy for CLNM of 90% by radiomics 

analysis of CT images of primary lesions of 40 patients with oropharyngeal and oral SCC. However, the 

primary lesions in the CT images could not be delineated in our 19 / 40 (47.5%) patients owing to the 

presence of metal artifacts, and Romeo et al. also excluded 10 (25.0%) patients with motion or beam-

hardening artifacts and those with no detection of tumor lesions. Therefore, the practicality of the 

application of radiomics analysis of CT images of head and neck cancer has a problem. To improve the 

quality of CT images when metal artifacts are present, image processing, such as single-energy metal 

artifact reduction (SEMAR), has been recently used [31]. SEMAR has been used in our hospital for 

diagnostic CT scans. However, quantitative analysis of SEMAR images is difficult because the metal 
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artifact is imperfectly removed, and the comparison between SEMAR and non-SEMAR images is not yet 

been compared. Metal artifacts are also an obstacle in diagnosis using MRI [32, 33]. 

We used clinicopathological factors, including rDOI, cT classification, tumor differentiation, YK 

classification, gender, and age, as controls. pDOI was the best predictor of late CLNM according to the 

NCCN clinical practice guidelines [5]. ND is only recommended in highly selective situations where the 

pDOI is less than 2 mm; clinical judgment (regarding the reliability of follow-up, clinical suspicion, and 

other factors) must be exercised to determine the appropriateness of ND for a pDOI of 2–4 mm [5]. Huang 

et al. reported a DOI cut-off of 4 mm as the best predictive value for CLNM in patients with tongue SCC, 

with a pooled negative predictive value of > 95% [34]. However, Bur et al. [35] developed and validated 

machine learning algorithms to predict pathological CLNM using pDOI in 1961 patients with T1-2N0 oral 

SCC from the National Cancer Database and 71 patients with T1-2N0 oral SCC from their institution. They 

reported that these machine learning algorithms had a predictive AUC of 0.657 for pathologic CLNM in 

patients with cT1-2N0 oral SCC, similar to our results. In addition, the correlation between CLNM and T 

stage remains controversial [36-41]. Nevertheless, the T stage is considered the most reliable predictor of 

survival and locoregional control in NCCN clinical practice guidelines [5]. Regarding tumor differentiation, 

patients with poorly differentiated tumors had a higher incidence of CLNM than those with well-

differentiated tumors [39, 42, 43]. In this study, only one of the 40 patients with tongue SCC presented with 

a poorly differentiated tumor. Additionally, Kurokawa et al. [44] reported that moderately differentiated 
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tongue SCC with a tumor depth of at least 4 mm had predictive value for late CLNM. However, Shin et al. 

reported no correlation between tumor differentiation and the incidence of late CLNM (P = 0.698) [41]. 

The YK classification used in this study is a modified version of that used by Jakobsson et al. [45] and 

Willen et al. [46]; these studies focused on the pattern of invasion at tumor margins. The YK classification 

was reported as a predictor of CLNM [47, 48] and has been widely used in Japan for oral cancers since 

1984, when Yamamoto et al. [14] reported that grades 4C and 4D had a high frequency of metastasis (4C: 

11/18,61.1%; 4D: 9/12,75.0%; total: 20/30,66.7%). They also revealed that the presence of metastasis 

indicates a poorer prognosis than did the absence of the mode of invasion in each grade, especially in grades 

4C and 4D. However, in 2014, Shinozaki et al. reported no significant differences between YK grades with 

respect to CLNM occurrence [49]. Other clinicopathological factors of CLNM, such as CD105 and vascular 

endothelial growth factor [50], low expression of E-cadherin [51], matrix metalloproteinase-2 [52], CD31 

and PROX1 [53], lymphocytic host response, and tumor budding [54], have been previously reported in 

patients with oral SCC. Mermod et al. [53] assessed the overall performance of CD31, PROX1, and relevant 

histological parameters in 168 patients with early-stage oral SCC (AUC = 0.89, accuracy = 0.88). 

Meanwhile, Shan et al. reported the predictive performance of pDOI, pattern of invasion, lymphocytic host 

response, and tumor budding (AUC = 0.96) for CLNM before surgery in 145 patients with early-stage 

tongue SCC [54]. The predictive performance of the six clinicopathological factors used in this study was 

less satisfactory than that in the previous report. Further studies, including variables, such as tumor budding, 
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are warranted to improve the predictive performance of multivariate analysis of radiomics features from 

18F-FDG PET images and the clinicopathological factors. However, our results indicate that the AUC, 

accuracy, sensitivity, and specificity of CFMs were significantly lower than those of the 18F-FDG PET-

based model.  

To our knowledge, this is the first study to evaluate the predictive performance for CLNM of radiomics 

analysis of primary lesions from 18F-FDG PET images in patients with tongue SCC. Our findings 

demonstrated that the probability of the CLNM, including that of late CLNM, in patients with tongue SCC 

could be quantified using radiomics analysis of the initial 18F-FDG PET examination. Additionally, we 

showed that radiomics analysis could predict the occurrence of CLNM in patients with tongue SCC. 

This study had some limitations. The difference in the predictive performance between CLNM-positive at 

the initial medical examination and late CLNM occurrence in patients could not be examined because the 

sample size was small. To increase the sample size, studies conducted in multi-institutional cohorts should 

be performed using our radiomics analysis model. Furthermore, standardization of both 18F-FDG PET/CT 

scanning and data acquisition is warranted to improve the predictive ability of radiomics analysis [55]. 

In conclusion, this study demonstrated that radiomics analysis of primary lesions using 18F-FDG PET 

imaging, which is not affected by metal artifacts, has better potential for diagnosing CLNM and predicting 

late CLNM in patients with tongue SCC than the CFM. 
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Figure captions 

Fig. 1 Primary lesion analyzed using 18F-FDG PET images. (a) The 18F-FDG PET CT image, (b) the 

region with SUV ≥2.5 (red area), and the region with a margin of 15 mm (blue area). CT, computed 

tomography; 18F-FDG, [18F]-fluoro-2-deoxyglucose; PET, positron emission tomography; SUV, 

standardized uptake value. 

Fig. 2 ROC curves of radiomics features using 18F-FDG PET and clinicopathological factors. Radiomics 

feature analysis is represented by the red line, whereas the clinicopathological factors are represented by 

the black line. ROC, receiver operating characteristic; 18F-FDG, [18F]-fluoro-2-deoxyglucose; PET, 

positron emission tomography 
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Table 1. Patient characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*mean ± standard deviation 

DOI, depth of invasion 

Characteristics Total 

Sex  

Male 27 

Female 13 

Age (years)* 66±14 

Clinical T classification  

1 7 

2 12 

3 13 

4a 7 

4b 1 

Stage   

Ⅰ 6 

Ⅱ 12 

Ⅲ 7 

Ⅳa 13 

Ⅳb 2 

DOI, mm 9±6 

Table 1



Table 2. The neck status of patients according to treatment modalities 

 
Treatment modality Neck status 

 Positive Negative 

Treatment modality   

Therapeutic neck dissection 8 0 

Prophylactic neck dissection 0 6 

Wait and see policy 6 13 

Radiation 6 1 

Table 2



Table 3. Radiomics features analyzed in this study 

GLCM gray-level co-occurrence matrix; GLRLM gray-level run-length matrix; GLSZM gray-level 

size zone matrix; NGTDM neighborhood gray-tone difference matrix 

 

Feature 

type 

Feature name 

Shape/size Compactness1, Compactness2, MaxDiameter, SphericalDisproportion, Sphericity, 

SurfaceArea, SurfaceVolumeratio, Volume 

Global Variance, Skewness, Kurtosis, Energy, Max, Mean, median, Min, Uniformity, 

Entropy 

GLCM Energy, Contrast, Correlation1, Correlation2, Homegeneity1, Homogeneity2, 

variance, SumAverage, Entropy, Dissimilarity, AutoCorrelation 

GLRLM Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level Non-

uniformity (GLN), Run-Length Non-uniformity (RLN), Run Percentage (RP), Low 

Gray-Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), Short 

Run Low Gray-Level Emphasis (SRLGE), Short Run High Gray-Level Emphasis 

(SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run High Gray-

Level Emphasis (LRHGE), Gray-Level Variance (GLV), Run-Length Variance 

(RLV) 

GLSZM Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-Level Non-

uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone Percentage (ZP), Low 

Gray-Level Zone Emphasis (LGZE), High Gray-Level Zone Emphasis (HGZE), 

Small Zone Low Gray-Level Emphasis (SZLGE), Small Zone High Gray-Level 

Emphasis (SZHGE), Large Zone Low Gray-Level Emphasis (LZLGE), Large Zone 

High Gray-Level Emphasis (LZHGE), Gray-Level Variance (GLV), Zone-Size 

Variance (ZSV) 

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength 

Table 3



 

Table 4. Clinicopathological factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factors Total 

Differentiation  

Highly 20 

Moderate 19 

Poorly 1 

Y-K classification  

2 2 

3 14 

4c 17 

4d 7 

Table 4



 

Table 6. Clinicopathological characteristics of patients stratified by neck status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*mean ± standard deviation;  

DOI, depth of invasion 

 Neck status 

Characteristics Positive Negative 

Sex   

Male 13 14 

Female 6 7 

Age (years)* 68±13 64±16 

Clinical T classification   

1 2 5 

2 5 7 

3 7 6 

4a 5 2 

4b 1 0 

Differentiation   

Highly 11 9 

Moderate 8 11 

Poorly 1 0 

Y-K classification   

2 1 1 

3 5 9 

4c 12 5 

4d 2 5 

DOI, mm 10±7 8±5 

Table 6



Table 5. AUC, accuracy, sensitivity, and specificity of the radiomics analysis in predicting CLMN 

 

AUC, area under the curve; CLMN; cervical lymph node metastasis. 

 Dataset AUC Accuracy Sensitivity Specificity 

2-mm 10-bin Z-score 0.75±0.13 0.68±0.13 0.70±0.10 0.65±0.20 

3-mm 10-bin Z-score 0.79±0.10 0.68±0.13 0.65±0.12 0.70±0.19 

2-mm 20-bin Z-score 0.65±0.27 0.53±0.24 0.50±0.27 0.55±0.25 

3-mm 10-bin Z-score 0.75±0.14 0.65±0.12 0.60±0.12 0.70±0.19 

Table 5



 

Table 7. AUC, accuracy, sensitivity, and specificity of the clinicopathological factors model in 

predicting metastasis. 

 

AUC, area under the curve. 

AUC Accuracy Sensitivity Specificity 

0.54±0.08 0.60±0.05 0.60±0.20 0.60±0.12 

Table 7
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