論 文 内 容 要 旨

題 目

Volume Magnetic Susceptibility Estimation of $\,\alpha$ - and $\,\beta$ -Phases in Titanium Alloys for Biomedical Applications

(生体医用応用を目的としたTi合金中のα相とβ相の体積磁化率の評価)

著者

吉村 宗之

内容要旨

【緒言】

磁気共鳴画像法(MRI)の欠点の1つに、生体内の金属製デバイスとその周囲組織の体積磁化率(χv)の差に起因するアーチファクト(偽像)が挙げられる。アーチファクトの解消には生体組織と同等の約-9ppmの体積磁化率を示すデバイスが必要である。しかし、生体親和性の高いTiの χv は182ppmとはるかに大きい。そこで本研究では、 $\alpha+\beta$ 型Ti合金と β 型Ti合金を対象として、その相構成を変化させて磁化率の変化を調べ、 α 相と β 相の χv を評価し、純Tiよりも低い χv を示すTi合金の作製が可能か検討した。

【材料・方法】

 α + β 型合金としてTi-6Al-4V合金(64Ti)、 β 型合金としてTi-Mo合金(TiMO)とTi-Nb合金(TiNB)を対象とし、それぞれの市販線材の相構成を様々な熱処理により変化させ、磁気 天秤を用いて χ Vを調べた。相構成はX線回折法で解析し、 β 相の体積分率(V_{β})を求めた。

【結果】

熱処理前後の64Tiはいずれも α + β 型合金であり、 V_{β} は5.6~51.2%、 χ vは181~216 ppmであった。550°Cでの熱処理後のTiMOは α 相が僅かに存在するnear β 型合金で、800°Cの熱処理後には β 単相となり、 V_{β} は58.0~100%、 χ vは187~261ppmであった。800°Cでの熱処理後のTiNBは β 単相で、 V_{β} は100%、 χ vは279 ppmであった。

【考察・結論】

64Ti、TiMOの V_{β} と χv を直線回帰した結果、 β 相(V_{β} =100%)の χv は α 相(V_{β} =0%)より大きいと推定された。両合金とも V_{β} =0%に外挿した χv 、すなわち α 型合金の χv は純Tiと同程度と推定され、 β 型合金(V_{β} =100%)の χv はさらに大きくなると推定された。 β 型合金であるTiNBの磁化率が純Tiよりも大きいことと併せると、純Tiよりも磁化率の低いTi合金を開発する上では、 β 型合金や β 相の比率の高い α + β 型合金は不利であることが分かった。