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ABSTRACT   

Enlargement of the pulmonary artery is a morphological abnormality of pulmonary hypertension patients. Diameters of 

the aorta and main pulmonary artery (MPA)  are useful for predicting the presence of pulmonary hypertension. A major 

problem in the automatic segmentation of the aorta and MPA from non-contrast CT images is the invisible boundary 

caused by contact with blood vessels. In this study, we applied U-Net to the segmentation of the aorta and MPA from 

non-contrast CT images for normal and chronic thromboembolic pulmonary hypertension (CTEPH) cases and evaluated 

the robustness to the contacts between blood vessels. Our approach of the segmentation consists of three steps: (1) 

detection of trachea branch point, (2) cropping region of interest centered to the trachea branch point, and (3) 

segmentation of the aorta and MPA using U-Net. The segmentation performances were compared in seven methods: 2D 

U-Net, 2D U-Net with pre-trained VGG-16 encoder, 2D U-Net with pre-trained VGG-19 encoder, 2D Attention U-Net, 

3D U-Net, an ensemble method of them, and our conventional method. The aorta and MPA segmentation methods using 

these U-Net achieved higher performance than a conventional method. Although the contact boundaries of blood vessels 

caused lower performance compared with the non-contact boundaries, the mean boundary distances were below about 

one pixel. 
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1. INTRODUCTION  

Enlargement of the pulmonary artery is a morphological abnormality of pulmonary hypertension patients. Diameters of 

the aorta and main pulmonary artery (MPA)  are useful for predicting the presence of pulmonary hypertension [1]-[4]. 

Several methods for automatic segmentation of aorta and MPA of non-contrast CT images have been proposed. Kurugol 

et al. [5],[6] proposed an automated aorta segmentation and aortic calcification detection method using circular Hough 

transformation and three-dimensional level sets. Xie et al. [7],[8] proposed an automated aorta and pulmonary trunk 

segmentation method using a cylinder-tracking algorithm, pre-computed anatomy label maps, and refinement by a 

triangular mesh model. Gamechi et al. [9],[10] proposed the aorta and main pulmonary artery segmentation using 

optimal surface graph cuts and the multi-atlas registration method. They also proposed an aortic diameter measurement 

method at multiple cross-sectional slices perpendicular to the aortic centerline. Suzuki et al. [11] proposed a 

segmentation method using mediastinal vascular centerlines and the probabilistic atlases of the aorta and MPA. They 

also proposed a three-dimensional measurement method of the vascular diameters. A major problem in the automatic 

segmentation of the aorta and MPA from non-contrast CT images is the invisible boundary caused by contact with blood 

vessels. However, the segmentation performance focused on the contact parts has not been evaluated. In this study, we 

applied U-Net [12],[13] to the segmentation of the aorta and MPA from non-contrast CT images for normal and chronic 

thromboembolic pulmonary hypertension (CTEPH) cases. Furthermore, we evaluated their robustness to the contacts of 

the blood vessels.   
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2. MATERIALS AND METHODS 

2.1 Non-contrast CT image datasets 

This study used two datasets of non-contrast chest CT images: normal cases (dataset A) and CTEPH cases (dataset B). 

Collection and analysis of data were approved by the Institutional Review Board at these institutions. The CT images of 

dataset A were acquired on Aquilion Lightning scanner with 30 mA at 120 kVp, plane resolution: 0.625 mm, 

reconstruction matrix: 512 x 512, convolution kernel: FC01, slice thickness: 1.0 mm, and reconstruction interval: 1.0 mm. 

The CT images of dataset B were acquired on Aquilion ONE scanner with 112-295 mA at 120 kVp, plane resolution: 

0.570-0.698 mm, reconstruction matrix: 512 x 512, convolution kernel: FC07, slice thickness: 0.5 mm, and 

reconstruction interval: 0.5 mm. The number of cases in datasets A and B was 100 and 24.  

2.2 Manual annotation of ground truth 

Manual annotation of the ground truth of the aorta and main pulmonary artery was performed separately in the axial 

plane. The vertical interval of this annotation was 10 slices. The window level and width for the annotation were 

adjusted to 50 and 300, respectively. Manual annotation of contact boundary pixels in the aorta was performed for each 

ground truth slice as shown in Fig. 2. This annotation consisted of three types: contacts of the aorta with MPA, contacts 

of the aorta with vena cava, and contact of the aorta with the esophagus. Contact surface ratios (CSR) were calculated as 

a ratio of contact boundary pixels per whole boundary pixels. 

2.3 Cropping region of interest centered to trachea branch point 

Region of interest (ROI) centered to a trachea branch point is cropped from the original CT volume as follows. First, 

body, bone, lungs, and airway were segmented using our previous methods using intensity and anatomical features 

[14][15]. Then, the centerline of the airway was extracted by a thinning method. The centerline was classified into three 

classes based on the anatomical position: trachea, right bronchus, and left bronchus. Finally, ROI centered to the cross 

point of three branches was cropped. The size of ROI was set to 256x256x256. 

                 (a)                                                                                                        (b)  

                       (c)                                                                                                       (d) 

Fig. 1. Manual annotation results of non-contact and contact boundaries of ascending aorta (a),(b) and descending aorta 

(c),(d). Red, green, and blue colors show contact boundaries: a boundary of the aorta with main pulmonary artery, a 

boundary of the aorta with vena cava, and a boundary of aorta with esophagus. Contact surface ratios (CSR) in (a) and (b) 

were 53.1% and 51.9%, respectively. CSRs in (c) and (d) were 31.7% and 33.6%, respectively. 
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2.4 Automatic segmentation of aorta and MPA using U-Net 

We used five architectures of U-Net and an ensemble method: 2D U-Net, 2D U-Net with pre-trained VGG-16 [16] 

encoder, 2D U-Net with pre-trained VGG-19 [16] encoder, 2D Attention U-Net [17], and 3D U-Net [13]. The ensemble 

was performed by majority vote by the above five architectures. These network architectures are shown in Fig. 2. The 

input size for 2D and 3D U-Net were 256x256 and 256x256x256, respectively. Epoch was set to 40. Mini-batch sizes for 

2D and 3D U-Net were set to 4 and 1, respectively. Training and testing processes were performed by 10-fold cross-

validation using a mixed dataset of 100 normal cases and 24 CTEPH cases. In the training process, 10% of the training 

dataset was used for the validation dataset. The network was trained using the Adam optimization algorithm, with Dice 

loss function, using a single graphical processing unit  (NVIDIA GeForce RTX 3090). These network architectures were 

implemented using TensorFlow [18].  

 

3. RESULTS 

3.1 Segmentation performance of the aorta and MPA 

We evaluated the segmentation performance of seven methods: (a)conventional method [11], (b)2D U-Net, (c)2D U-Net 

with pre-trained VGG-16 encoder, (d) 2D U-Net with pre-trained VGG-19 encoder, (e)2D attention U-Net, (f)3D U-Net, 

and (g)the ensemble method of (b) to (f). Dice similarity coefficient (DSC) was employed as the evaluation metric. The 

results are shown in Table 1 and Table 2. These results were compared using pairwise Wilcoxon rank-sum test adjusted 

by Bonferroni correction. For all vascular parts, 2D U-Nets, 3D U-Net, and the ensemble method achieved significantly 

higher performance than the conventional method (p-values<0.05). In addition, the ensemble method achieved the 

highest performance (p-values<0.05).  

 

Table 1 Mean Dice similarity coefficients and standard deviations for segmentation of the aorta and main 

pulmonary artery of normal cases (dataset A).  

 Aortic arch Ascending aorta Descending aorta MPA

(a) Conventional method [11] 0.952±0.024 0.960±0.013 0.957±0.016 0.935±0.019

(b) 2D U-Net 0.969±0.009 0.978±0.005 0.977±0.004 0.965±0.010

(c) 2D U-Net (VGG-16) 0.967±0.017 0.977±0.006 0.977±0.006 0.962±0.018

(d) 2D U-Net (VGG-19) 0.967±0.014 0.976±0.006 0.976±0.004 0.963±0.016

(e) 2D Attention U-Net 0.969±0.010 0.976±0.006 0.977±0.005 0.962±0.015

(f) 3D U-Net 0.970±0.010 0.977±0.005 0.975±0.005 0.965±0.012

(g) Ensemble (b～f) 0.973±0.009 0.980±0.004 0.979±0.003 0.969±0.009

(a)                                      (b)                                       (c)                                      (d)                                       (e) 

Fig. 2. 2D and 3D U-Net architectures. (a) 2D U-Net, (b) 2D U-Net with pretrained VGG-16 encoder, (c) 2D U-Net with 

pretrained VGG-19 encoder, (d) 2D attention U-Net, (e) 3D U-Net. Blue, red, and gray lines mean max pooling, transposed 

convolution, and copy. Black line means input or output. Gray circle means attention gate [17]. 
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3.2 Evaluation of robustness to the contacts of blood vessels 

We focused on the two types of contact parts, (1)contact of the ascending aorta with MPA, (2)contact of the descending 

aorta with the esophagus. As the evaluation metrics, mean boundary distance (MBD) was employed, which is average of 

the distances from the boundary of ground truth to the boundary of the segmentation result. The comparison results of 

the MBDs in non-contact and contact boundaries are shown in Table 3 and Table 4. The U-Nets achieved high 

segmentation performance, whereas the performance significantly decreased in the contact boundaries compared with 

non-contact boundaries for any methods (p-values<0.05, Wilcoxon rank-sum test). This trend was observed in both of 

normal and CTEPH cases.  

Fig. 3 shows the relations of the MBD and CSR for 2D U-Net, 3D U-Net, and the ensemble method. The MBDs were 

increased as the CSR increased. For CTEPH cases, the contact boundaries caused substantially lower segmentation 

performances. Examples of the aortic segmentation results of a CTEPH case are shown in Fig. 4. It is difficult to 

determine the correct boundary because of the contact of the ascending aorta and MPA, however, some U-Net 

architectures achieved almost accurate segmentation. A method for the ensemble using advantages of the network 

architectures would be developed in the future.  

Table 2 Mean Dice similarity coefficients and standards deviation for segmentation of the aorta and main 

pulmonary artery of CTEPH cases (dataset B).  

 Aortic arch Ascending aorta Descending aorta MPA

(a) Conventional method [11] 0.962±0.016 0.960±0.016 0.950±0.019 0.952±0.012

(b) 2D U-Net 0.954±0.051 0.970±0.013 0.971±0.010 0.968±0.009

(c) 2D U-Net (VGG-16) 0.962±0.028 0.969±0.014 0.972±0.010 0.967±0.012

(d) 2D U-Net (VGG-19) 0.968±0.009 0.962±0.035 0.970±0.008 0.966±0.012

(e) 2D Attention U-Net 0.961±0.014 0.967±0.027 0.972±0.008 0.967±0.009

(f) 3D U-Net 0.967±0.011 0.971±0.011 0.968±0.010 0.964±0.008

(g) Ensemble (b～f) 0.971±0.010 0.975±0.008 0.975±0.006 0.973±0.005

Table 3 Mean boundary distance and standard deviation in the aortic contact parts of normal cases  

(* p-value<0.05, Wilcoxon rank sum test). 

MBD of ascending aorta (mm) MBD of descending aorta (mm)

Non-contact
Contact 

with MPA
Non-contact

Contact 

with esophagus

(a) Conventional method [11] 0.667±0.530 0.715±0.529* 0.522±0.364 0.617±0.501*

(b) 2D U-Net 0.346±0.110 0.487±0.262* 0.285±0.086 0.411±0.232*

(c) 2D U-Net (VGG-16) 0.333±0.109 0.497±0.270* 0.277±0.092 0.436±0.258*

(d) 2D U-Net (VGG-19) 0.328±0.111 0.493±0.261* 0.279±0.089 0.413±0.243*

(e) 2D Attention U-Net 0.337±0.124 0.507±0.289* 0.279±0.086 0.415±0.235*

(f) 3D U-Net 0.329±0.096 0.543±0.350* 0.291±0.084 0.504±0.341*

(g) Ensemble (b～f) 0.301±0.090 0.419±0.219* 0.260±0.072 0.376±0.210*

Table 4 Mean boundary distance and standard deviation in the aortic contact parts of CTEPH cases  

(* p-value<0.05, Wilcoxon rank sum test). 

MBD of ascending aorta (mm) MBD of descending aorta (mm)

Non-contact
Contact 

with MPA
Non-contact

Contact 

with esophagus

(a) Conventional method [11] 0.483±0.302 0.958±0.632* 0.461±0.268 0.846±0.476*

(b) 2D U-Net 0.345±0.129 0.626±0.390* 0.292±0.104 0.479±0.348*

(c) 2D U-Net (VGG-16) 0.354±0.154 0.610±0.374* 0.288±0.092 0.439±0.285*

(d) 2D U-Net (VGG-19) 0.363±0.148 0.618±0.336* 0.300±0.105 0.444±0.330*

(e) 2D Attention U-Net 0.346±0.146 0.615±0.347* 0.292±0.092 0.456±0.295*

(f) 3D U-Net 0.347±0.142 0.747±0.486* 0.303±0.093 0.542±0.312*

(g) Ensemble (b～f) 0.318±0.131 0.545±0.252* 0.266±0.080 0.439±0.257*
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4. CONCLUSIONS 

We applied U-Net to the segmentation of the aorta and MPA from non-contrast CT images for normal and chronic 

thromboembolic pulmonary hypertension (CTEPH) cases. Furthermore, we evaluated their robustness to the contacts of 

the blood vessels. The aorta and MPA segmentation methods using these U-Net achieved higher performance than a 

conventional method. Although the contact boundaries of blood vessels caused lower performance compared with the 

non-contact boundaries, the mean boundary distances were below about one pixel. 

Fig 4 Segmentation results of the aorta using U-Net. Red and yellow boundaries are an automatic segmentation result and ground 

truth, respectively.  (a) A cropped CT image (CSR of the ascending aorta and MPA is 30%), (b) 2D U-Net (MBD in the contact 

part of the ascending aorta: 1.20mm), (c) 2D U-Net with pre-trained VGG-16 encoder (MBD: 1.46mm), (d) 2D U-Net with pre-

trained VGG-19 encoder (MBD: 0.83mm), (e) 2D attention U-Net (MBD: 0.68mm), (f) 3D U-Net (MBD: 0.44mm). 

(a)                                               (b)                                               (c) 

(d)                                               (e)                                               (f) 
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Fig 3 Relation of mean boundary distance and contact surface ratio for contacts of the ascending aorta with 

main pulmonary artery in (a) normal and (b) CTEPH cases. Black and gray lines show an ensemble method and 

2D U-Net. Black dashed line shows 3D U-Net. 

(a)                                                                           (b)    
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