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Abstract

From the beginning of this century, Artificial Intelligence (AI) has evolved to
handle problems in image recognition, classification, segmentation, etc. Al
learning is categorized by supervised, semi-supervised, unsupervised or rein-
forcement learning. Some researchers have said that the future of Al is self-
awareness, which is based on reinforcement learning by rewards based on task
success. Moreover, it is said that the reward would be harvested from human
reactions, specially emotion recognition. On the other hand, emotion recogni-
tion is a new inspiring field, but the lack of enough amount of data for training
an Al system is the major problem. Fortunately, in the near future, it will
be necessary to correctly recognize human emotions because image and video
dataset availability is rapidly increasing.

Emotions are mental reactions (such as anger, fear, etc.) marked by rela-
tively strong feelings and usually causing physical reactions to previous actions
in a short time duration focused on specific objects. In this Work, we are
focusing on emotion recognition using face, body part, and intonation.

As stated earlier, automatic understanding of human emotion in a wild
setting using audiovisual signals is extremely challenging. Latent continuous
dimensions can be used to accomplish the analysis of human emotional states,
behaviors, and reactions displayed in real-world settings. Moreover, Valence
and Arousal combinations constitute well-known and effective representations
of emotions. In this thesis, a new Non-inertial loss function is proposed to train
emotion recognition deep learning models. It is evaluated in wild settings using
four types of candidate networks with different pipelines and sequence lengths.
It is then compared to the Concordance Correlation Coefficient (CCC) and
Mean Squared Error (MSE) losses commonly used for training. To prove its
effectiveness on efficiency and stability in continuous or non-continuous input
data, experiments were performed using the Aff-Wild dataset. Encouraging
results were obtained.

The contributions of the proposed method Non-Inertial loss function are as
follows:

1. The new loss function allows for Valence and Arousal to be viewed to-
gether.



2. Ability to train on less data.
3. Better results.
4. Faster training times.

The rest of this thesis explains our motivation, the proposed methods and
finally presents our results.
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Chapter 1

Introduction, Background
and Related Works

The use of smart technology in society is growing rapidly, and as the industry
develops, so does the need for technology that is able to assess the needs of
potential customers and select the most suitable solutions for them. In human-
machine interaction, to understand each other, emotions have played an impor-
tant predictive role. Emotions are an extremely complex brain function that
reacts to previous actions based on the human brain functional system, called
the “Limbic System”. Recently, there has been an enormous interest in this
emotion recognition field.

As shown in Table 1.1[1], emotion recognition model input parameters can
be linked to whether they provide the Valence or Arousal aspect quantification
information. Emotional valence describes the extent to which an emotion is
positive or negative, whereas arousal refers to its intensity or the strength of
the associated emotional state.

Table 1.1: Emotion related parameters.

Emotion-related effect Arousal Valence
Emotion induced sweating +
Breathing rhythm variations + +
Heart rate variability + +
Blood pressure +
Core body temperature +
Heart rate +
Facial expression +
Facial muscle activity +
Voice intonation + +
QQuestionnaire + +

The following relations are used in this study: facial expressions, facial
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muscle motion (around the lips, eyes and nose), voice intonation and body
posture.

1.1 Emotion recognition from images

1.1.1 Limbic system

The limbic system [2] takes a leading role in emotional regulation. It is also
responsible for the regulation of reflexive and endocrine function in response to
emotional stimuli. It consists four main parts: the amygdala, the hippocampus
the thalamus, and the hypothalamus.

Thalamus - collects sensory inputs like visual, audio and modality and its
neurons can deliver project impulses to amygdala and better cortical regions
for processing.

Amygdala - collects sensory inputs from the thalamus and coordinates re-
sponses to the environment, largely contributing to the processing of fear and
anger. When the amygdala switches to the hypothalamus state, hormones e.g.
adrenaline are released. In addition, the amygdala has a primary role in fear
learning by the association between particular situations when fear is developed.

Hippocampus - Its functions are maintaining memories and transforming
immediate memory to episodic memory. Essentially, memory (episodic memory,
in particular) contributes abundantly to decision-making as emotions instance
by memories assist upcoming behavior, immediate or episodic. Even if the
hippocampus is broken, the brain loses the ability to make new memories but
is still able to retain its episodic term memory.

Hypothalamus (less than 1% of brain weight), plays a huge role in adjust-
ing various functions in the body muscle system. Dependent on emotions, it
adjusts the Autonomic Nervous System (ANS) by adjusting the endocrine sys-
tem which is engaged in the ease of different hormones into the bloodstream.
Totally, it could be said that the hypothalamus is engaged in the expression of
emotions instead of their generation. The lateral portions of the hypothalamus
is associated closely feelings of pleasure whilst the median part is connected
with more negative emotions.

The ANS commands the reflexive physiological changes that happen in re-
sponse to emotional stimuli. It has two arms — the sympathetic arm and the
parasympathetic arm. The sympathetic nervous system is associated with a
fear response such as 'pass or reject’ while the parasympathetic nervous system
applies to the calm state and may be mentioned to as 'rest and digest’.

The limbic system is shown in Fig. 1.1.
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The Limbic system
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Figure 1.1: Limbic system.

1.1.2 Action units, Micro-expressions and Coding sys-
tems

The Facial Action Coding System (FACS) is a complex, anatomical system
that describes all visible facial movements [3], [1]. It divides facial expressions
into independent components of muscle movement, called Action Units (AUs).
FACS refers to the movement of the facial muscles in response to emotions.
Originally created by Carl-Herman Hjortsjo with 23 facial motion units in 1970,
it was subsequently developed further by Paul Ekman, and Wallace Friesen.

FACS is a model that compares live emotions to facial expressions. It records
how the facial muscles work and how their patterns evolve (the contraction or
relaxation of facial muscles). FACS experts who have been trained will be
able to tell the difference between a fake and voluntary smile (Pan American
World Airways (Pan-AM Smile)) and a genuine and involuntary grin (Duchenne
Smile). FACS classifies all visibly discernible facial activity into forty-four sep-
arate action units (AUs), as well as numerous different types of head and eye
postures and movements. Every AU has a unique numerical code (the designa-
tion of that is fairly arbitrary).

Table 1.2 list the AUs coded in FACS, as well as the muscle groups involved
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in each action. It is crucial to point out that while FACS is anatomically based,
there is not a 1:1 correspondence between muscle groups and AUs. This is
because of the fact that a given muscle could act totally different in numerous
ways for different regions—to manufacture visibly different actions. An exam-
ple of this case is the frontalis muscle. Contraction of the medial portion of the
frontalis muscle raises the inner corners of the supercilium solely (producing AU
1), whereas contraction of the lateral portion of the frontalis raises the outer
brow (producing AU 2). FACS committal to writing procedures conjointly pro-
vide the intensity of every facial action on a 5-purpose intensity scale, for the
temporal arrangement of facial actions, and for the writing of facial expres-
sions in terms of “events”. An occurrence is the AU-based description of every
countenance, which can comprises one AU or several AUs contracted as one ex-
pression. FACS can verify the displayed feeling of a participant. This analysis
of facial expressions is one among only a few techniques accessible for assessing
emotions in a time period facial diagnostic technique (fEMG is another option).
Alternative measures, like interviews and psychology tests, should be completed
once a stimulant has been conferred. This delay creates an additional barrier to
determining how a person feels in direct reaction to a stimulant. The benefits
and downsides of measuring facial behavior with the assistance of FACS include
different empirical cryptography schemes [5], etc.

FACS versus MAX

MAX refers to the maximally discriminative facial movement cryptography
system. FACS and MAX are both observational coding schemes that describe
expression in terms of constituent components. Componential coding systems
can be classified on the basis of the manner in which they were derived: the-
oretically or anatomically, and according to whether they code facial behavior
selectively or comprehensively. Theoretically derived procedures are those that
classify facial components based on assumptions about which parts of the face
should be engaged in certain stages (e.g., emotion). Since it codes only those
face configurations that Izard [5] theorized, it corresponds to universally recog-
nized facial expressions of emotion. Izard’s MAX is theoretically derived. The
problem with theoretically generated systems is that they can’t detect behav-
iors that haven’t been pre-determined. That is, they were created to explain
whether the face accomplishes things it should do based on a certain theory,
rather than to record all the face can do. In this sense, MAX and other the-
oretically based coding schemes like [(] are selective by definition. Moreover,
because they do not comprehensively code all face movement, selective systems
are time and effort efficient. However, if unfavorable results are obtained, they
are as costly. For instance, if a researcher uses a selective coding system and
fails to find “fear” expressions in subjects who were exposed to a supposedly
frightening stimulus, the researcher will be unable to determine whether the
subjects did experience fear or if the coding system simply failed to capture the

4



Table 1.2: Main facial action codes with muscular parts.

AU

FACS name Muscular baisis
number
0 Neutral face
1 Inner brow raiser frontalis (pars medialis)
2 Outer brow raiser frontalis (pars lateralis)
1 Brow lowerer depressor glabellae, depress.c)l.r. supercilii,
corrugator supercilii
5 Upper lid raiser levator p.alpebrae superioris,
superior tarsal muscle
6 Cheek raiser orbicularis oculi (pars orbitalis)
7 Lid tightener orbicularis oculi (pars palpebralis)
8 Lips toward each other orbicularis oris
9 Nose wrinkler levator labii superioris alaeque nasi
: . levator labii superioris,
10 Upper lip raiser caput infraorpl;italis
11 Nasolabial deepener zygomaticus minor
12 Lip corner puller zygomaticus major
: levator anguli oris
13 Sharp lip puller (also known gs caninus)
14 Dimpler buccinator
15 Lip corner depressor depressor ang'uh ons
(also known as triangularis)
16 Lower lip depressor depressor labii inferioris
17 Chin raiser mentalis
: incisivii labii superioris
18 Lip pucker and incisivii labii I;nferioris
19 Tongue show
20 Lip stretcher risorius w/ platysma
21 Neck tightener platysma
22 Lip funneler orbicularis oris
23 Lip tightener orbicularis oris
24 Lip pressor orbicularis oris
depressor labii inferioris,
25 Lips part or relaxation of mentalis
or orbicularis oris
masseter; relaxed temporalis
26 Jaw drop and internal pterygli)id
27 Mouth stretch pterygoids, digastric
28 Lip suck orbicularis oris




relevant facial behavior.

On the other hand, FACS is a complete measuring system. It measures
all facial muscle movements that may be seen. Ekman and Friesen developed
FACS by training themselves to isolate their face muscles and using needle EMG
to ensure that their method contained every potential facial movement. As a
comprehensive rather than selective system, FACS is not limited to measuring
only those behaviors that are theoretically related to emotion MAX[5]. FACS
allows for the discovery of new configurations of movements that might be
relevant to extrinsic variables of interest. Many of the publications in this
collection are excellent illustrations of FACS’s use in this regard.

FACS versus EMG

In order to infer muscular activity, face electromyography (EMG) entails
detecting electrical potentials from facial muscles. Surface electrodes are often
put on the individual’s facial skin, and variations in potential are monitored as
the subject goes through various treatments (e.g., viewing emotional slides or
films). The benefits of EMG are mostly based on its capacity to identify muscle
activity that is not visible to the human eye and hence cannot be detected using
observation-based coding methods like FACS or MAX. As a result, facial EMG
appears to be a suitable measuring technique. However, there are issues with
EMG, some of which may be more or less important depending on one’s research
questions. For starters, EMG is obtrusive—it draws attention to the fact that
individuals’ faces are being examined.

This might enhance the occurrence of self-conscious conduct while also po-
tentially interfering with the behavior being investigated in other ways. Second,
despite significant progress in recent years in refining EMG signals [7], there is
still an issue with cross-talk, or neighboring muscular contraction (potentials)
interfering with or muddying the signal of a specific muscle group. Cross-talk
may misrepresent the “picture” of the contractions on the face, potentially
leading to very different emotional interpretations. When it comes to emo-
tion expressions, where slight changes in muscular activity of adjacent muscle
groups can have very different emotional meanings, such cross-talk may mis-
represent the “picture” of the contractions on the face, potentially leading to
very different emotional interpretations.

1.2 Emotion recognition from videos

1.2.1 OpenFace

Over the past few years, there has been a growing interest in automatically
analyzing and understanding facial behaviors. OpenFace [3] is presented for
computer vision, mechanical engineering researchers, the Society of Computa-
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tional Computation, and those interested in creating interactive applications
based on facial behavior analysis. OpenFace is the first tool that can be used
to identify facial landmarks, determine the position of the head, identify facial
function units, and visualize using source code available for both model evalu-
ating and training. The computer vision algorithms which represent the core
of OpenFace demonstrate state-of-the-art results in all of the above mentioned
tasks. Furthermore, their tool is capable of working in real time and can work
from a simple webcam without any special equipment. Furthermore, their tool
is capable of period performance and is in a position to run from a straight-
forward digital camera without any special hardware. An OpenFace extraction
example is shown in Fig. 1.2.

Figure 1.2: OpenFace example on Aff-Wild2 106.mp4.

1.2.2 OpenPose

Computing 2D images of real-time crowds is a key component in making the
machine more aware of the people in the images and videos. OpenPose [9],
concentrated on a real-time method of detecting 2D images of many people in
an image. The proposed method uses a non-parametric representation called
Part Affinity Fields (PAFs) to learn how to connect body parts with individ-
uals in an image. This bottom-up system ensures high accuracy and real-time
performance regardless of the number of people in the image. From their pre-
vious work, the calculation of the location of the PAF and the body part was
improved simultaneously during the training phase. Instead of improving the
location of PAF and body parts, authors proved that simply improving PAF
significantly increases both performance and accuracy in runtime.
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Figure 1.3: OpenPose model architecture https://bit.ly/3Er7Nz2.
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Figure 1.4: Body keypoints.

The first body and foot key sensor based on a database with internal foot
explanations presented to the public are also introduced. The combined detec-
tor not only shortens the evaluation time compared to sequential operation, but
also maintains the accuracy of each component separately. The work resulted
in OpenPose, the first open source real-time system to detect the 2D locations
of multiple people, including key points on the body, legs, arms, and face.

The OpenPose model, Fig. 1.3, has two branches with multiple stages us-
ing extracted features of pretrained Mobilenet, ResNet or VGG19. Top branch
predicts body parts confidence map and bottom branch predicts affinity fields,
representing the degree association between body parts, Fig. 1.4. In the first
stage, the model predicts the initial states of body part of left hand with part
confidence S and affinity field L. Upcoming stages produce more refined pre-
dictions of original image feature F'. The detected body parts including in the
face are shown in Fig. 1.5.



Figure 1.5: Facial and body keypoints in sample https://bit.ly/3DntJcT.

The purpose is finding the relationship between body expression and Arousal-
Valence. It is possible to recognize emotion more accurately with the assistance
of body posture.

1.2.3 MediaPipe Face Mesh 468

Face Mesh [10] is a face geometry resolution that estimates 468 vertices 3D face
landmarks in a time period even on small and mobile devices like smartphones.
It employs machine learning (ML) to infer the 3D surface, requiring solely
one camera input while no zealous depth device. Utilizing light-weight model
architectures on the side of GPU acceleration throughout, it delivers a time
period performance essential for live experiences. The Face Mesh model is
shown in Fig. 1.6.

Additionally, the answer is bundled with the Face geometry module that
bridges the gap between the face landmark estimation and helpful period of
time Augmented Reality (AR) applications. It establishes a metric 3D area
and uses the face landmark screen positions to estimate face pure mathematics
inside that area. The face pure mathematics information consists of common
3D pure mathematics primitives, together with a face cause transformation ma-
trix and a triangular face mesh. Underneath the hood, a light-weight applied
mathematics analysis technique referred to as mythical being analysis is used
to drive a sturdy, performance and transportable logic. The analysis runs on
central processing unit and encompasses a bottom speed/memory footprint on
high cubic centimetre model logical thinking. The 3D face landmarks utilized
transfer learning and trained a network with many objectives: the network at
the same time predicts 3D landmark coordinates on artificial rendered informa-
tion and second linguistics contours on annotated real-world information.

A clipped video frame is sent into the 3D landmark network without any
extra depth information. The model returns the 3D point coordinates as well
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as the likelihood that a face is present and adequately aligned in the input. An
inference example is shown in Fig.1.7. Predicting a 2D heat-map for each land-
mark is a typical option, but it is not suitable to depth prediction and has large
processing costs for so many points. Figure 1.8 shows the flattened face mesh
with the visualization shown in Fig. 1.9. Repeated bootstrapping and refining
predictions are undertaken to increase the model’s accuracy and resilience. As a
result, the dataset may expand to include more difficult scenarios like grimaces,
oblique angles, and occlusions [11].

The Face Mesh trained on a globally sourced dataset of around 30K in-the-
wild mobile camera photos taken from a wide variety of sensors in changing
lighting conditions. In this work Face Mesh model is used as feature extractor
of action units. Furthermore, the results are compared to Face Mesh, OpenPose
and OpenFace features used models.
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Figure 1.6: Face Mesh model visualization (right side view).
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Figure 1.7: Mediapipe Face Mesh inference [ 1] https://bit.ly/3GcXrDg.
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Figure 1.8: Flattened Face Mesh.
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Figure 1.9: 3D visualization.
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1.2.4 Mel spectrogram

Frequency Mel scale describes the perceptual distance between pitches of dif-
ferent frequencies. A classical approximation is to define the frequency-to-mel
transform function for a frequency f as

i

m = 2595 * logio(1 + 700) (1.1)

The Mel frequency Spectrogram used as input to the linear layers is gen-
erated as detailed by Promod et al. [12]. To generate spectrograms from
windowed audio or speech signals sampled at 22050Hz, Short Term Fourier
Transform (STFT) is applied . A “Hann” window of length 2048 is used with
an STFT hop-length equal to 512. Using the Mel scale, the resulting magnitudes
(128 coefficients per window are use) then mapped to get Mel spectrograms.
The lower end of the frequency spectrum are emphasized over the higher ones,
thus, imitating the perceptual hearing capabilities of humans. In speech emo-
tion recognition, Chan et al. [I13] previously researched this topic. A sample

Spectrogram corresponding to Aff-Wild training 110.avi audio is shown below
in Fig.1.10.

J110.avi
+0 dB

-20 dB

-40 dB

i 11 el R i I -60 dB

(18
| .

| ) : . f
i :
' e e

-80 dB

Figure 1.10: Aff-Wild training 110.avi audio spectrogram.
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1.2.5 Eulerian Video Magnification

Eulerian Video Magnification (EVM) is a set of simple and robust algorithms
that can reveal and analyze tiny motions effectively. It is a new type of micro-
scope, not made of optics, but of software taking an common video as input
and producing one in which the temporal changes are larger. It reveals a new
world of tiny motions and color changes showing us hidden vital signs, body
and face part muscle activity due to emotional reaction control signal from Hy-
pothalamus [14]. To explain the n'" relationship between temporal processing
and motion magnification, let I(z,t) imply the image strength at position x and
time ¢. Since the image undergoes translation motion, the observed strengths
with respect to a displacement function o(t), such that I(z,t) = f(x + o(t))
and I(z,0) = f(x) can be expressed. The purpose of magnifying the motion is
to integrate the signal

f(x, t) = f(z + ao(t)) (1.2)
for some amplification value «.
Assuming the image can be approximated by a first-order Taylor series ex-
pansion, the image at time ¢, f(x 40 (t)) in a first-order Taylor expansion about
x, can be expressed as

Af(x)
Az

I(z,t) ~ f(x) + o(t) (1.3)
Let B(x,t) be the result of applying a broadband temporal band-pass filter to
I(x,t) at every position x (picking out everything except f(z) in Eq.1.3). For
now, let assume the motion signal, o (), is within the pass-band of the temporal
bandpass filter.

Af(x)

Ax

to amplify that bandpass signal by « and add it back to I(x,t), then result is
following.

B(x,t) = o(t)

(1.4)

~

I(z,t) = I(x,t) + aB(x,t) (1.5)

The full version of motion amplified signal is as follows.

[(z,1) ~ f(z) + aa(t)Aiix)

(1.6)

the simplified version is

A

I(x,t) =~ f(x + ac(t)) (1.7)

This shows that the processing magnifies motions, the spatial displacement o (t)
of the local image f(x) at time t, has been amplified to a magnitude of «.
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The Eulerian approach to motion magnification, Fig. 1.11, is robust and
fast, but works primarily when the motions are small. If the motions are large,
this processing can introduce artifacts. However, one can detect when this
happens and suppress magnification in this stabilized video case. There are
limits to how well Spatio-temporal filtering can remove noise and amplified noise
can cause image structures to move incoherently. The EVM motion magnifier
as “Action Units” magnifier is used in this work.

Spatial
Dogampoiition

Roconsnection

[ et

Inpat vadeo Eulenan video magnification Outpat video

Figure 1.11: Eulerian Video Magnification Method https://bit.ly /32Nm5fH.

The other findings of EVM is the “Color magnification”. Performing tem-
poral processing on each spatial band and considering the time series corre-
sponding to the value of a pixel in a frequency band and applying a band-pass
filter to extract the frequency bands of interest. For example, users might select
frequencies within 0.4 — 4H z, corresponding to 24 — 240 beats per minute, if
magnifying a pulse is needed. When possible to extract the pulse rate, then
using a narrow band around that value is recommended. The temporal process-
ing is uniform for all spatial levels, and for all pixels within each level. In the
next step, multiply the extracted band-passed signal by a magnification factor
«. This factor can be specified by the user, and may be attenuated automat-
ically. Possible temporal filters are discussed in Section 4 [11]. Next, add the
magnified signal to the original and collapse the spatial pyramid to obtain the
final output. Since natural videos are spatially and temporally smooth, and
because filtering is performed uniformly over the pixels, the method implicitly
maintains Spatio-temporal coherency of the results.

This research used the method’s blood circulation and action unit amplifier
of face. The input of this method is the OpenFace output of the facial images.
Output of this method is shown following figures.

Figure 1.12 shows, the first twenty frames of Aff-Wild training video 447
split ten by ten. The first ten show high blood pressure and rest of them
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Figure 1.12: Eulerian video magnification color amplifier example on Aff-Wild
training video 447.

show low blood pressure scenes. In the first ten, first row shows output of the
OpenFace method, the second row shows the difference of the output of the
Eulerian video magnification and the OpenFace output. The last row shows
the output of the EVM color amplification method for low frequency set to
0.8H z, high frequency to 3H z, and the amplifier o as 5.
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In Figure 1.13, the EVM motion magnification of “Facial Action Coding
system’s” action unit 12 is examined. The 1** column shows the original action
unit 12 which represents “Lip corner puller”. The 2" column is the color
magnification for the same settings as for Figure 1.12. In the 3" column motion,
magnification settings are o« = 5, fpae = 9H2, frin = 0.8Hz for the band-pass
filter. As a result, the last ten frames are shown as AU12 amplified. If no
motion or movement is observed in the video output (the first three frames of
the last column). Therefore, in last column of Figure 1.13, the starting ten
frames are not a related motion of AU12.

1.3 Related works

1.3.1 Emotion classification on image

Emotions often mediate and facilitate interactions between human beings. Thus,
understanding emotion often brings context to seemingly bizarre and compli-
cated social communication. Emotion can be recognized through a variety of
means such as voice intonation, body language, and more complex methods
such electroencephalography (EEG) [15]. For mankind, arousal and valences of
emotions plays an important role in the human brain. Emotion Recognition is
a branch of Activity Recognition. However, the easier, more practical method
is to examine facial expressions. There are six basic types of human emotions
shown to be universally recognizable across different cultures: anger, disgust,
fear, happiness, sadness, surprise and sub-emotions, identified by Paul Ekman
[16]. However, other researchers in emotion recognition also include contempt
or neutral as an emotion. Moreover, even for complex expressions where a
mixture of emotions could be used as descriptors, cross-cultural agreement is
still observed. The task of emotion recognition is particularly difficult for three
reasons:

1. A large database of training videos does not exist yet.

2. Classifying emotion can be difficult depending on whether the input video
has static or transitive frame in the facial expression.

3. Training database has some noisy labeled items in the train and test sets.

The first issue is particularly difficult for real-time detection where facial
expressions vary dynamically. Most algorithnms of emotion recognition exam-
ine static images of facial expressions [17], [1&]. CNN models, for example,
VGG, Resnet, Squeeze Extraction Resnet and Densenet are used. In addition,
accounting for variations in lighting and subject position in a real-life environ-
ment is challenging. Over the last two decades, researchers have significantly
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advanced human facial emotion recognition with computer vision techniques,
concentrating on improving accuracy rate in the wild environment, to read
video stream or recorded video and classifying human emotions using effective
deep neural network. Historically, there have been many approaches to this
problem, including using pyramid histograms of gradients (PHOG) [19], AU
aware facial features [20], boosted Local Binary Pattern (LBP) descriptors [21],
and RNNs [22]. However, recent submissions [23] to the 2018 Emotions in the
Wild (EmotiW 2018) contest for video frames used Recurrent Neural Networks
(RNN), generating up to 60.64% test accuracy on the AFEW test set. More-
over, the winner of EmotiW 2018 [2/] improved the baseline results by 28%. In
their result on the EmotiW 2018 test set, they experimented over an ensemble
of seven networks, which were different variants of OpenFace, OpenPose, split
dataset, Local Binary Pattern (LBP) and Convolution 3D (C3D) with LSTMs.
Overall the best network of the ensemble was a mixture of OpenFace, Open-
Pose and new split dataset. A recent development by G. Levi et al. [25] and
Jianfei Yang et al. [21] shows significant improvement in facial emotion recog-
nition using a Deep Neural Network (DNN). The authors addressed two specific
problems:

1. A small amount of data available for training deep CNN:ss.

2. Appearance variation usually caused by variations in illumination.

They used LBP to transform the images to be illumination invariant. This
data preprocessing was applied to various publicly available models such as
VGG S [26]. The model was then re-trained on the large CASIA Web Face
dataset [27] and transfer learned on the Static Facial Expressions in the Wild
(SFEW) dataset, which is a smaller database of labeled facial emotions released
for the EmotiW 2015 challenge [28]. Results showed a test accuracy up to
54.56%, an improvement of 15% over baseline scores.

Direct experimental method for recognizing facial emotions with CNN'’s,
state of art networks known as Resnet [29], Seresnext [30] and Densenet [31]
are also used. In the future, well trained network could be used in pretrained
network of the Long-term Recurrent Convolutional Networks (LRCN) network.
In [32], a survey of facial expression recognition most researcher used, more suc-
cessful results are obtained in facial emotion recognition systems, using MMI
and FER2013 datasets. The Facial Emotion Recognition dataset (FER2013) is
used to avoid overfiting. In the FER2013 dataset, all images have been regis-
tered and resized to 4848 pixels after rejecting wrongfully labeled frames and
adjusting the cropped region. FER2013 contains 28,709 training images, 3,589
validation images and 3,589 test images with seven expression labels (anger,
disgust, fear, happiness, sadness, surprise and neutral), which are validated by
10 persons’ average. Moreover, the authors addressed the FER2013 dataset
trained models to be well suited by the pretrained model.
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1.3.2 Continual learning on emotion classification

Systems that can learn new information without catastrophic forgetting prior
knowledge are vital. For this reason,this work was also extended to the field
of continual learning. Moreover, due to low class availability of FERplus and
FER2013 datasets, the broadly used CIFAR100 dataset is used. Living beings
have the ability to continually investigate, adapt, and to transfer knowledge
and skills throughout their lifetime. Therefore, continual lifelong learning [33]
has achieved much interest in recent deep learning studies.

In this section, training of a model competent of handling unknown sequen-
tial tasks while keeping prior knowledge without much loss on once trained
tasks is detailed. In continual lifelong learning, the training data of previous
tasks are assumed non-available for the newly available tasks. However, the
trained model can be used as a pre-trained model and fine-tuning it for the new
task will force the model parameters to train on the new data, which causes
catastrophic forgetting [34] on once trained tasks.

The state of the art study CPG (Compacting, Picking and Growing for
Unforgetting Continual Learning) [35] has addressed catastrophic forgetting
problem and solution based on the progressive learning method [36]. Moreover,
the result achieved their goal. On the other hand, the cost of achievement
was expensive, because of picking well trained parameter and growing. Hung,
Ching-Yi et al. proposed model expansion at 1.5 on each task in scratch learn-
ing. The model size on the drive was expanded from 435Mb to, after 20 task
of CIFAR100 dataset, 5.3Gb. However, if expansion parameter reduced to 1.2,
the method didn’t reduce catastrophic forgetting. Other models include, Cond-
ConvContinual [37], PEANet [38] and PackNet [39]. The results of the related
works are shown in Table 1.3.

Table 1.3: Related research result comparison.

Network growth | Network size | Accuracy

Models @times @mega @percent
CPG 1.5 278 80.9
CondConvContinual 1.6 98 77.4
PEANet 1.2 98 77.1
PackNet 2 112 67.5

In this research some types image processing transformations on classifier
weights were investigated. Firstly, implementing continual learning with the
image processing alpha blending method was performed. After that, another
method of pruning weights using histogram near zero values set to zero was
applied. The last method researched was histogram equalization. All of our
research work was conducted on a dataset based on CIFAR-100 [40] dataset.
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1.3.3 Emotion recognition from video

To understand each other, emotions have played an important predictive role.
Emotions are extremely complex brain function that reacts to previous ac-
tions based on the human brain functional system, called the “Limbic System”,
section 1.1.1. Recently, there has been an enormous interest in this emotion
recognition field.

Recognizing emotion from image and video in wild setting is one of the
challenging research field in machine learning. In the wild setting, Aff~-Wild,
AFEW-VA and Aff-Wild2 datasets exists, collected using pure emotion without
acting or wearing a neutral emotion mask in an every day life situation.
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Figure 1.14: Tllustration of relationship between emotion using Valence and
Arousal. (Fig.1 [11]).

Facial emotion can be visualized by the expansion and contraction of the
muscles located around the mouth, nose, and eyes [12]. Moreover, Action Units
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(AUs) [13], [11], [20] were proposed to model facial behavior, and the combina-
tion of AUs could also be utilized for facial expression recognition. Most studies
are based on the seven basic categories [45], [1&], [21], [46], [28], [47] with some
researchers using triplet expression recognition [18].

Consequently, facial expression recognition has attracted renewed attention
owing to recent advanced network architectures. In facial expression recogni-
tion, real-time automated analysis of facial expression in video plays an essential
role in implementing human-computer interaction interfaces.

Figure 1.14 shows the 2-D Emotion Wheel [11], [19], illustrating valence
ranging from extremely positive to negative and arousal ranging from extremely
active to passive. Based on the data from the activity a person is engaged in,
discriminating information on the valence of a person’s emotions may be known.
Emotion sensing parameters can be distinguished as to whether they provide
information on qualification of the valence aspect or the arousal aspect. There
are many related works in this field depending on the dataset used and proposed
methods [50], [32]. There are also previous studies on emotion recognition in
videos [51], [52]. Valence and Arousal (V-A) are not separated values; binding
these two parameters describe an emotion.

For most emotion recognition methods so far, the Concordance Correlation
Coefficient (CCC) loss and the Mean Squared Error (MSE) loss are widely used
during training. In FATAUVA-Net, Chang et al. [52], has provided the best-
confirmed results using mean CCC and mean MSE for valence and arousal. The
authors concentrated on the connection between V-A estimation and Action
Units (AUs) such as the face and its parts. Moreover, their research environment
was based on a wild setting. Yang et al. [21] concentrated on feature extraction.
A network was assembled that extracted features with a Recurrent unit and was
trained on MSE loss. Vielzeuf et al. [23] trained audiovisual ensemble network
on emotion video classification. MIMAMO Net [51] trained a spatial, temporal
network with CCC loss.

Two criteria were measured for evaluating the performance of the networks;
The Valence and Arousal fractional range is between [—1, 1]. The main problem
is that there is no loss function that can quickly train a given network on less
data. Moreover, Valence and Arousal are not separated values, and it is usually
considered important to train them together in a coordinate system points.
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Chapter 2

Objectives and Datasets

Currently, there are no large enough emotion dataset to completely and ac-
curately recognize emotions. The existing ones in the audio recognition field,
include, LibriSpeech [53], and VoxCeleb [54] datasets, with over thousand hours
of audio speech available. However, in emotion recognition, the biggest dataset
is Aff-Wild2 with 2.8 million frames, and around 26 hours of video. This is
not enough to recognize emotions to the same standards as the Audio recog-
nition systems. Moreover, collecting an emotion dataset in the wild setting is
complicated, and after that, a long time is required to annotate it.

Another way to collect a dataset is using Wearable Technology. However, it
has not yet been implemented for collecting data in brain signal reading field in
a wild setting. On the other hand, instead of collecting a large dataset, another
way to recognize emotion from video is reinforcement learning or continual
learning using the limited data available. Continual learning field is investigated
in section 3.3.

In the following sections, we will introduce and discuss the dataset used in
this work.

2.1 FERPlus

The Kaggle Facial Expression Recognition Challenge dataset FER2013 con-
sists of 48x48 pixel grayscale images of faces. After researchers’ inspection,
the relabeled FER2013 dataset was renamed FERPlus. The faces have been
automatically registered so that the face is more or less centered and occu-
pies about the same amount of space in each image. The aim is to categorize
each face based on the emotion shown in the facial expression to one of basic
seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise,
6=Neutral). The training set consists of 28,709 facial expression images. The
public test set used for accuracy calculation consists of 3,589 examples.

This dataset was prepared by Pierre-Luc Carrier and Aaron Courville, as
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(d) Neutral. (e) Disgust. (f) Surprise.

(g) Sad.
Figure 2.1: FER2013 sample images.

part of an ongoing emotion prediction on image research. Example images from
the dataset are shown in Fig. 2.1. Researchers mentioned that the FERPIlus
dataset is unbalanced, Fig. 2.2. Due to this unbalance, targets balanced sampler
was used.

2.1.1 Imbalanced data sampler

In several machine learning applications, across dataset some categories of in-
formation could also be coaching quite different categories. Take identification
of rare diseases for instance, in the square measure there are most likely a lot
of traditional samples than malady ones. In these cases, they have to be com-
pelled to certify that the trained model isn’t biased towards the category that
has a lot of knowledge. As an associate in a nursing example, think about a
dataset with five malady pictures and twenty traditional pictures. If the model
predicts all pictures to be traditional, its accuracy is 82%, and F1-score of such
a model is 88%. Therefore, the model has high tendency to be biased toward
the ‘normal’ category.
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To solve this drawback, a wide adopted technique is termed resampling. It
consists of removing samples from the bulk category (under-sampling) and / or
adding a lot of examples from the minority category (over-sampling). Despite
the advantage of leveling categories, these techniques have their weaknesses.
The best implementation of over-sampling is to duplicate random records from
the minority category, which may cause overfitting. In under-sampling, the best
technique involves removing random records from the bulk category, which may
cause loss of data. The FER2013 target Imbalanced sampler is shown in Fig.2.3.
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Figure 2.2: FER2013 target training set distribution.

ImbalancedDatasetSampler

gmentation
original dataset

Figure 2.3: FER2013 target Imbalanced sampler.

2.2 AFEW-VA

The Acted Facial Expressions in the Wild (AFEW-VA) [55] dataset is a col-
lection of highly accurate per-frame annotations levels of valence and arousal,
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along with per-frame annotations of 68 facial landmarks for 600 challenging

video clips. AFEW contains video clips collected from different movies with

spontaneous expressions, various head poses, occlusions and illuminations. More-
over, temporal and multimodal database provides vastly different environmental

conditions in both audio and video. Samples are labeled with seven discrete

expressions: anger, disgust, fear, happiness, sadness, surprise, neutral and con-

tinuous Valence, Arousal space. The annotation of expressions have been con-

tinuously updated, and reality TV show data have been continuously added.

Sample frames from the database are shown in Figure 2.4. Figure 2.5 shows an

annotation example.

Figure 2.4: Sample frames of facelandmark.

Since the goal is recognizing true feeling, no model was trained on AFEW-
VA dataset.

2.3 Afl-Wild2

Affective computing has been largely limited in terms of available data re-
sources. The need to collect and annotate diverse in-the-wild dataset has be-
come apparent with the rise of deep learning models, as the default approach
to address any computer vision task. Some in-the-wild databases have been re-
cently proposed. However: i) their size is small, ii) they are not audiovisual, iii)
only a small part is manually annotated, iv) they contain a small number of sub-
jects, or v) they are not annotated for all main behavior tasks (valence-arousal
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Figure 2.5: AFEW-VA dataset, Video demo annotation.

estimation, action unit detection and basic expression classification). To ad-
dress these issues, the largest available in-the-wild database (Aff-Wild) to study
continuous emotions such as valence and arousal was substantially extended.
Furthermore, parts of the database with basic expressions and action units are
annotated. This database was termed Aff-Wild2. In total, Aff-Wild2 contains
558 videos with around 2.8 million frames. To the best of our knowledge, Aff-
Wild2 is the first large scale in-the-wild database containing annotations for all
3 main behavior tasks. It is also the first audiovisual database with annotations
for AUs. All AU annotated databases do not contain audio, but only images or
videos [10].

The new videos are a fresh dataset of 260 films totaling 1,413,000 frames
in 13 hours and 5 minutes duration. 11 of the 260 films had two subjects, all
of which were annotated. The new dataset includes 258 participants, 149 of

whom are male and 109 of whom are female. Figure 2.6 shows example images
from the Aff-Wild2 dataset.

- —
s |

Figure 2.6: Example images from the Aff-Wild2 dataset.
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Chapter 3

Proposed methods

In general, recognition models are trained using loss functions. The most com-
mon ones are the Mean Squared Error (MSE) and the Concordance Correlation
Coefficient (CCC). The two loss functions produce acceptable results but with
training and accuracy issues. This section will discuss our proposed new loss
function and show its superiority to the existing losses using the proposed net-
work models evaluated in static and sequential images.

Additionally, this study explored the continual learning field, which in the
future will enable life-long learning of unobserved emotions, as shown in Figure
1.14, without losing previously gained knowledge (catastrophic forgetting).

3.1 Loss functions

Video emotion recognition system broadly use loss functions. This section will
discuss the two existing loss functions and introduce the proposed new loss
function. Before discussing the proposed non-inertial loss function, for compar-
ison purposes, the two other largely used loss functions are briefly introduced
below.

3.1.1 Mean Squared Error (MSE)

The first most comparative metric criterion is the Mean Squared Error (MSE),

defined as:
N

MSE = % S (i — i)’ (3.1)

1=1

where z; are predictions values, y; are annotations (valence-arousal), and N
is the total number of samples. The MSE calculates an approximate indication
of how the training model is performing. A small value of MSE is desirable.
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3.1.2 Concordance Correlation Coefficient (CCC)

The second one is the Concordance Correlation Coefficient (CCC) [57]. It is
widely used to measure the performance of dimensional emotion recognition
methods, e.g., in the Aff-Wild challenge [58]. CCC calculates the similarity
between two time-series (e.g., all video annotations and predictions) by scaling
their correlation coefficients with their mean square difference. The predictions
that are well correlated with the annotations but shifted in value are penalized
in proportion to the deviation. CCC values are in the range [—1,1], where
+1 indicates perfect concordance and —1 denotes discordance. The higher the
value of the CCC, the better the fit between annotations and predictions. The
mean value of CCC for valence and arousal estimation is used as the main
evaluation criterion.

CCC is defined as follows:

_ 28962/ _ QSxSypxy
s24+ 82+ (2 —9)F  sE+si4(B—9)?

pe (3.2)

where p,, is the Pearson Correlation Coefficient (PCC), s, and s, are the
variances of all valence or arousal video annotations and predicted values, re-
spectively and s;, is the corresponding co-variance value, & and ¢ are mean
values of predictions and annotations.

3.1.3 Proposed Non-Inertial loss

Two criteria are measured for evaluating the performance of networks. The
Valence and Arousal’s fractional range is between [—1,1]. The problem is that
there is no loss function to quickly train the networks on less data. Moreover,
Valence and Arousal are not separated values, and it is usually considered
important to train them together in a coordinate system of points. This work
uses the unit circle map of V-A. This new definition is named the “Non-Inertial
loss”.

The new loss function for the V-A is defined by the following equations.

Al. = /a2 —y? (3.3)

Alyy = (3 (e(v) = 2,(0))2 + (2e(a) = 2,(a)?
— (o) = 5(0)* + (3e) = ()2
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where v and a are the valence and arousal values respectively.

_10y _1a
Aa = tan ' =% — tan '~

Uy Uy (35)
= abs(ay * vy — ay * V)

lossy = mean(Al, + Al + Ax) (3.6)

Equation (3.3) is referred to as norm 2, Euclidean distance or Root Mean
Squared Error (RMSE) of the annotations and predictions, which calculates how
far away in V-A unit map the prediction is. A small value for the distances
is desired. Equation (3.4), where ¢ is time, z.(v) is the current prediction
valence, and x,(a) is the previous prediction arousal, calculates the difference
of prediction and annotation V-A velocities. To avoid the network parameters
exploding, ¢ = 1 is assumed. Velocity will be enhanced in the recurrent section
of the training model, which in network is the LSTM layer.

Arousal

¢ Prediction point
» Target point
Prediction length between current and previous points
-~ Target length between current and previous points
-- Length between prediction and target points

Figure 3.1: Non-inertial loss function illustration.
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Equation (3.5) is the direction. It calculates the differences of angles. The
difference between annotation and prediction angles are expected to become
zero; a, is the projection of prediction arousal and v,, is the projection of
annotation valence. Differences of angles are converted to avoid subtraction
because of zero denominators and a value more than 1 is overlooked in the
arcsin function. The proof of the Equations (3.5) is in Appendix A.

The non-inertial loss function works with the form [batch, sequence, 2], which
is the annotation size. If the annotation size is more than 2, then an accelera-
tion parameter can be added and the circle of angle difference can be extended
from the first column to the end.

Fig.3.1 shows an illustration of an example loss function annotation and
prediction sequence in arousal and valence map.

3.2 Proposed models for loss functions evalua-
tion recognition

3.2.1 Emotion recognition from image models

Emotion recognition in images is still a challenging task in Computer Vision. In
this work, we performed experiments to find the most effective static emotion
recognition based on several models on the FERPlus dataset. However, the
FERPlus dataset contains small images with low resolution. Therefore, we
decided to increase the image size because of the difficulty of comparing the
models. The new image shape to feed the model is finally 224 x 224.

The main model selected is a Residual neural network (ResNet) [29], Fig.
3.2. It is an Artificial Neural Network (ANN) that is based on a constructed
famed from pyramidic cells within the brain cortex. Residual neural networks
attempt this by utilizing skip connections, or shortcuts to leap over some lay-
ers using self multiplication. Sometimes it can be the add function. Typical
ResNet models are square measure enforced with one to triple layer skips that
contain non-linearities (ReLLU) and batch standardisation in between. An extra
weight matrix is also accustomed to learn the skip weights; these models square
measure is referred to as HighwayNets. Models with many parallel skips square
measure are called DenseNets [31]. In parallel to shortcuts added squeeze and
extraction layers in the multiple way are called SeResNexts [30]. The following
figure shows simplified ResNet version of emotion classification on FERPlus
dataset.
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Figure 3.2: ResNet model simplified.

3.2.2 Video emotion recognition model

The proposed method on video emotion recognition overall model (Full Net) is
illustrated in Fig.3.3. It consists of three stages.

1. The first stage inputs the OpenPose features,
2. The second stage consists of the Linear layers, and

3. The last stage is a Recurrent stage LSTM, which is widely used and
already proven effective in Action Recognition [51].

The first stage extracts a feature representation of a snippet, which con-
sists of a facial RGB image, face landmarks, body pose, and Mel spectrogram
features. The RGB image is fed into the ResNet50 network. The sequence of
extracted features of OpenPose outputs was fed directly into the second stage
linear layers. The output of the linear layers feeds the last stage of the LSTM
network and classifier. For low-cost training, features were extracted using a
pre-trained ResNet50 in our previous study [59].

In this work, only OpenPose and pre-trained ResNet50 are not trainable.
All other parameters are trained. Moreover, to test the proposed loss functions
in different network parameter sizes, the Full network is split into 3 additional
models;

1. “Without Mel Network”,
2. “Audio Network”, and
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3. “Pose Network”.

For interrupted data network, “Without Mel Network” and “Pose Network”,
are used because of input data interruption, that is, when there is no detected
pose estimation and face features from OpenPose.

For “Full Network” and “Audio Network”, representation of continuous net-
works is assumed.
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Figure 3.3: RNN network architecture (right side view).
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The four networks used for evaluation of the proposed Non-inertial loss
function are implemented as follows:

1. Full Network: The network architecture is shown in Fig.3.3. The flow
is as follows. The Input(Batch(B), Sequence(S), Height(H), Width(W),
Channel(C)) feed the OpenPose to get pose estimation and face features.
Face feature coordination is used to calculate and pre-process the face
with a bounding box and then feed into ResNetb0 network. The previous
layer output is concatenated with the face landmarks (B x .S, 2048 4 140)
and fed into the linear layer named landmark. The landmark layer directly
feeds into the Pose layer (B x S,1024+36). After the Pose layer, Mel layer
continuous input is (B x 5,512 + 128). Mel layer output is (B x S, 256)
which is directed as input into the LSTM layer (B, S,256). The LSTM
layer requires additional Sequence dimension, the dimension of Batch,
Sequence, and output of previous layers. At the end of the classifier layer
(B, S,2) the final outputs are calculated.

2. Without Mel Network: This network does not include continuous input
Mel spectrogram and Mel layer. Other parameters are the same as the
previous Full Network.

3. Audio Network: Input(B x S,128) continuous audio data is fed into Mel
layer and output is (B xS, 256). Before the LSTM layer, a new dimension
of sequence (B, S,256) is added. The end Classifier linear layer (B, S, 2)
classifies arousal and valence.

4. Pose Network: As non-continuous data, Pose data Input(B x S, 36) is fed
into the Pose layer. In addition, the dimension of sequence (B, S, 256)
is added and fed into LSTM (B, S,256) layer. This is the same as the
previous networks. The classifier layer (B, S, 2) also classifies arousal and
valence.

All the network configurations used batch normalization 1D and dropout 0.5
after every fully connected layer.

3.2.3 Transformer model

The transformer model has proved to be more effective in sequential data such
as in the Natural language processing field. Moreover, some researchers also
experimented in the image recognition field [60]. Authors split images to (N x
Channelx16x16), tokens and feed to Transformer model. Instead of using their
method, this work use features that are as small as possible and feed it to model.
Since, our goal is using sequence images of Valence and Arousal, it is not possible
to use the classification method in their method. If we split our facial image,the
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attention method on the decoder side would be meaningless. Moreover, for the
Visual transformer model instead of using multi-head attention decoder they
used multi-layer perceptron (MLP).

Previously, we implemented the RNN architecture and split the full model
to four parts based on the data flow as shown in Fig 3.3. In this section,
instead of using LSTM in the RNN part replaced it with the Transformer.
Moreover, we replaced OpenPose with Google MediaPipe (Section 1.2.3) face-
mesh detection model, which is fast and light-weight for detecting face and its
mesh. After detecting the face-mesh,we applied the Eulerian Video magnifica-
tion method (Section 1.2.5) and fed color magnified video into the ResNet50
model. The transformer network has an advantage in the multi-head attention
part, which can use image data as its input. On the other hand, image size will
explode the model size if higher resolution image are used. Due to this issue,
we should extract features using previously experimented ResNet50 model as
feature extractor without using the Classifier layer. Extracted features output
shape should be (Sequence x Batch x Channel x Feature) (note Transformer
model requires Sequence first). Using this model this study can train the end to
end model and also split the model into Mesh-Transformer, EVM-Transformer,
Feature-Transformer and Multi-Transformer.

The implemented Transformer model shown in Fig 3.4.

Seftmax

Figure 3.4: Transformer network architecture.

In the transformer model we used the standard encoder and decoder parts,
but our input feature and output of the model shape is different. Input (Sequencex
Batch x Channel x Feature) and Output (Sequence x Batch x 2). Therefore,
we used additional Linear layer to decode and adapt between the input and out-
put shapes. Therefore, for the Mesh-Transformer, and the Feature-Transformer
models, instead of using tiny images, we used normal transformer training set-
tings.
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3.3 Continual learning proposed model

In the future, unobserved or splitting emotions according to Figure 1.14 could
happen. Therefore, continual learning experiments were conducted. Multi-
ple classifier mixing methods for continual learning including concatenation of
weights are proposed. Furthermore, experiments on how to train an universal
model and add new tasks continuously were performed. The universal model,
ResNet18 [29], is pre-trained on ImageNet dataset while freezing the convolu-
tion layers. Moreover, wefine tuned all classes of the CIFAR-100 dataset and
network classifier weight as shown in Figure 3.6. After training of the universal
network, a new task is added into the linear layer. An additional unknown class
on each task training is added and the alpha blending method used to merge
the trained linear layers. The proposed method illustration is shown in Figure
3.5.

Softma:

ccccc

Figure 3.5: Proposed base model architecture.

In Figure 3.5, the original dataset representation is any kind of dataset on
which classses are to be extended. Continual dataset is represented with any
kind of dataset set needed to be added to the original dataset. In the example
figure, from convl to fc7, the selected model is any kind of model that should
continuously train. F'c8 can be of two types. One is original model trained
classifier layer and the other one is new fully connected layer. After the mixture
of original and new fc layer, fc9 will become the new original fully connected
layer.

Figure 3.6 shows the trained classifier weights of ResNet18 on CIFAR-100
dataset, which is used in the trained model as the universal model.

38



Pretrained Linear accuracy: 0.71
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Figure 3.6: ResNetl8 trained model classifier weight on 100 classes with 71%
accuracy rate.

3.3.1 Continual learning proposed method: Alpha blend-
ing on linear layer weights

Fully connected layers are represented mathematically using the following equa-
tion.

o = oWy + B (37)

7

where, ¢ and j are linear weight dimensions.

The equation represents the output of the n'” linear layer. o is the represen-
tation of the activation function. W" is the weight of n'" linear layer and y" ! is
the previous layer output, B" is bias of the n'* linear layer, Equation (3.7). One
class is added in both the original fc8 and the new fc8 layer. This unknown
knowledge of the classes, in other words, a class of the other objects in each
dataset, represents those not included in the original or new dataset. Thus,

Equation (3.7) to follows:

Yk41 = o ;é—&—l,jyn_l + B?(—H] (3.8)

YN41 = U[Wﬁﬂ,jy}ﬂ + Byl (3.9)

where, N and K are trained classifier class sizes.
After mixing procedure of new and original fc8 layer, Equation (3.8) and
Equation (3.9) change as follows:

YN41+K+1 = U[WJ@+1+K+1,jy§l_l + Bii1+k41) (3.10)

yg]—ﬂﬂ—l = U[W%+A'+a+(1—a),jy?71 + B%+K+a+(1—a)] (3.11)

In Equation (3.11) size of weight parameter is the concatenated new and
original layers. Both will use the alpha blending method. This procedure is the
same as in bias parameter of fc9 layer. In addition, alpha parameter will be
very large due to mixing fc layer’s weight size. In other words, o = N/(N + K).
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3.3.2 Continual learning proposed method: Histogram
equalization transform on linear layer weights

Initially, the classifier weights are pruned after a training task. After that, the
weights are concentrated and then the test model is tested on the dataset. We
set threshold range from weight’s as [min(Wisk) + 0.3, maz(Wigsr) — 0.3]. An-
other histogram equalization method that is broadly used is Contrast Limited
Adaptive Histogram Equalization (CLAHE), which avoids amplifying noise.
The CLAHE equalizer parameter clip limit and tile grid size was set to 100 and
[2, 2] respectively. The histogram equalization is shown in the equation 3.12.

a5 Task 1 weight 09 Task 1 weight pruned " CLAHE equalized weight
o 100 200 300 400 500 o 100 200 300 400 500 o 100 200 300 400

Histogram of weight Histogram of pruned weight Histogram of CLAHE

l
1
il

Figure 3.7: Task 1 trained weight, pruned and CLAHE applied histograms.

h(v) = round ( (ﬁfi”])v )__C‘if;}; (L — 1)) (3.12)

where cdf Cumulative distribution function, M x N gives the image’s number
of pixels and L is the number of levels. Figure 3.7 shows the CLAHE process.
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Chapter 4

Experiments and Results

4.1 Facial image emotion classification models
results

Before training, the preprocessing of images from 48%48 to 256*256 pixels was
performed and 2 channels added using OpenCV. Training images recommended
minimum size for the Densenet and Seresnext models is 224%224 pixels, random
cropping, normalization method to avoid overfitting and imbalanced datasam-
pler previously mentioned in section 2.1.1. In training of some models, faced
with out of memory errors, the training batch size was reduced to 8 images.
Training loss and Validation loss are shown in Figure 4.1 and 4.2. Test results
are shown in Table 4.1. Validation and Test average losses are almost the same
as shows in Figure 4.2.

—  ResNet18
ResNetb0
— ResNet101
—— ResNet152
SeResnext50
SeResnext101
— SeResnext152
Densenet121
—— Densenet161
Densenet169 -
| | | | | | | | | — Densenet201 =
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Epochs

Figure 4.1: Training loss.

By carefully observing these two Figures, training losses are continuously
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Figure 4.2: Validation loss.

decreasing, but tangents of the test loss lines increased. Moreover, in Table

4.1 the results are almost same. However, latest result improved about 2%.

Furthermore, dataset labels may have some noise in the future. Therefore, as
shown in Table 4.1, pretrained CNN network models such as LRCN were used.

Table 4.1: Deep models results.

Model Name | MSE | Test accuracy (Correct/Total %)
ResNet18 | 173.0 35.874% (2693/3136)
ResNeth0 | 177.1 36.283% (2706,/3136)
ResNet101 | 194.0 37.300% (2738/3136)
ResNet152 | 180.0 86.639% (2717/3136)

SeResnext50 | 166.0 86.161% (2702/3136)

SeResnext101 | 193.4 35.268% (2674,/3130)

SeResnext152 | 182.1 87.277% (2737/3136)

Densenet121 | 206.3 85.491% (2681/3136)

Densenet161 | 197.3 35.810% (2691/3136)

Densenet169 | 197.3 86.511% (2713/3136)

Densenet201 | 201.6 86.607% (2716/3136)

Figure 4.3 shows confusion matrix of the average network and Figure 4.4
shows the trained models wrongly predicted facial images, in which true and

predicted emotions are confused, a problem also addressed in [(1]. Furthermore,
emotion recognition can be confused in recognition using only facial images.

Therefore, a model trained, including time dimension and well understood facial

scene identity could produce better results.
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FER2013 Resnet50 Confusion Matrix (Accuracy: 83.201%)
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Figure 4.3: Confusion matrix on FERPlus dataset.

4.2 Video emotion recognition results

Due to comparison difficulty, the base unit in the CCC loss score was set as the
base, which in training, VA = —2 was the best loss, and in validation, 2 was the
best score. The 3 loss functions trained on the Aff-Wild dataset was observed
in 2 ways; 5 times trained for stability check in 4 networks and split/trained
candidates of the 4 networks in training and validation data set proportions
70% : 30% and 90% : 10% among the configuration sequence length.

Initially, for all the train and test sets, all body pose and facial landmarks
were extracted using OpenPose [9]. From this output, objective personal data
was obtained, using landmarks, by calculating a new facial bounding box ex-
panded 5 pixels and then resizing it to 224x224 pixels. This facial bounding box
was applied to extract features on the sequential image using the ResNet50 net-
work. The ResNetb0 network obtained the final linear layer output and saved
2048x1 features with facial landmarks (70x2) and body pose (18x2). Moreover,
from the video, the audio signal was separated and converted to the Mel Spec-
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Figure 4.4: Common lost images.

trogram features. All training and validation data were normalized to between
0 and 1.

Training: All the following configurations were similar in the 4 candidate
networks. The Aff-Wild dataset was split into 2 Train and Validation sets as
70%:30% and 90%:10% respectively to make sure that our loss function and
models were accurate for both standard or less training and validation data
proportions. During training, the 3 loss functions and the standard stochastic
gradient descent optimizer, with momentum (0.9) and weight decay (5e~*) were
used. The number of epochs was set to 70. Early stopping (15 epochs) was
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used to prevent over-fitting. The Learning rate was 0.01 with the scheduler
(patience 10 epochs). Batch size was set at 64, with the Sequence length var-
ied in Validation:30% [32, 64,128, 256, 384] and Validation:10% [128, 256, 512].
However, because different experiments had different GPU consumption, the
largest batch size that fits in Train and Validation set video length and our
GPU memory (11GB) was chosen. However, as some of Validation:30% video
sequences were less than 512, the max sequence length was reduced to 384. Iter-
ation of data-loader, drop last, and shuffle parameters were set to False. Train
and validation video sets were shuffled at the beginning of each epoch. The
pre-trained ResNet50 model weights were fixed during training; all the other
layers were trainable. Batch normalization and dropout were used after every
fully connected layer.

Validation: The losses of MSE, Non-Inertial, and CCC were calculated in
each video and sample output of arousal and valence saved using TensorBoard
SummaryWriter. Additionally, all the best losses of the model were saved for
the rest of the test set.

4.2.1 Validation 30%, 10%

In the train and validation, pipeline batch iteration took around 0.01sec, which
as expected, was fast enough even though it was the same when max sequence
length 512 was used.

Fig.4.5a shows the comparison of our loss function, MSE, and CCC in var-
ious network parameter size space. From this result, the new loss function was
sensitive to network parameter size just like the MSE function. In our candidate
four networks, “Pose Net” input size is [B, S, 36] normalized pose coordinates,
which is small enough. The relation between pose and emotion is 0.163, which
shows a very weak correlation.

Another expectation of the result in the “Audio Net” mean was 0.206, which
shows intonation and emotion as weakly correlated. “Without Mel” and “Full
Net” did not produce any notable difference in the CCC correlation. The results
of these two networks’ were 0.339 and 0.324, respectively. On the other hand,
in these networks’ training, the proposed loss function produced better results.

In Fig.4.6a, the four networks were trained using various sequence length
128,256,512 and validation 10% proportion with the 3 loss functions. The
result is the average of four candidate networks. From the result, the CCC loss
shows the top result, because the CCC calculation uses [std, mean| values of
prediction, which is more advanced. On the other hand, these values showed
some disadvantage if sequence lengths were not comfortable, as shown in Fig.
4.6a and 4.6b.

Next, the Validation:30% proportion was experimented on to verify that
the result was the same as the previous experiment with additional sequence
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lengths. In Fig.4.5b, for the training mean sequence length in “Full Net” and
“Without Mel”, our loss function shows the best result and is 0.07 lower than
10% proportion. In Fig.4.6b the lower sequence length was extended to prove
that the CCC loss has a disadvantage if sequence length in a small range is
chosen. The loss would be worse than the other losses, which shows that in
GPU memory a trade-off between sequence length with parameter size and
accuracy may be necessary. Fig.4.5¢c shows the average of the previous two
training sessions in different proportions of the Validation set. In the results of
“Without Mel” and “Full Net” there is no big difference. In addition, the other
two loss functions especially our new loss was shown to be stable and produced
the best results among different sequence lengths.

4.2.2 5-fold training

The Full network was trained five times, with a sequence length of 256, which
was shown as optimal in previous training and the result of this training are
shown in Table 4.2, where rows represent validation’s main loss function and
column shows parallel calculated losses. In Fig.4.7, the 5 training Average Line
of Non-Inertial and MSE losses were nearly constant. It should be noted that
the CCC loss average rapidly increased, which shows it is less stable than our
new loss function.

Table 4.2: Full network loss of 5 training (sequence length 256).

Train Loss | Train | MSE | CCC Non—. Average | Differences | Sum
Inertial
1 0.209 | 0.331 | 0.105 0.210 0.0000014
2 0.211 ] 0.346 | 0.107 0.210 0.0000005
MSE 3 0.207 | 0.366 | 0.104 0.210 0.0000116
4 0.22510.337 1 0.113 0.210 0.0002326
5 0.199 | 0.333 | 0.100 0.210 0.0001291 | 0.000375
1 0.348 | 0.309 | 0.176 0.316 0.0000454
2 0.364 | 0.282 | 0.191 0.316 0.0011459
CCC 3 0.335 1 0.321 | 0.170 0.316 0.0000262
4 0.415 ] 0.319 | 0.213 0.316 0.0000107
5 0.271 1 0.348 | 0.136 0.316 0.0010367 | 0.002265
1 0.202 | 0.411 | 0.102 0.103 0.0000025
2 0.206 | 0.355 | 0.104 0.103 0.0000006
Non-Inertial | 3 0.204 | 0.414 | 0.103 0.103 0.0000000
4 0.202 | 0.415 | 0.102 0.103 0.0000016
5 0.209 | 0.376 | 0.105 0.103 0.0000047 | 0.000009
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4.2.3 Example valence and arousal of full network

Figures 4.8a, 4.10a, and 4.9a show our new loss function training and sample
outputs for arousal and valence. Figures 4.8b, 4.10b and 4.9b are the CCC
loss training and sample output of the Validation video 158.avi. The best loss
on “Full Net” in Validation was 0.86 for Arousal and 0.404 for Valence, for
which back-propagation was done separately. Moreover, in Fig.4.10b Arousal
was positively correlated but missed the constant value. In Figures 4.8a, and
4.8b training epochs was 70 but the training sessions did not reach 40 epochs
in some models because of early stopping.
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4.3 Transformer Model results

The results of the training the transformer model are shown in Fig. 4.11.
Initially, we compiled model training on Transformer model and obtained the
results above. From the result MSE loss training epoch on 25 videos was 105
seconds for learning rate 1e =, sequence length of 32, batch size of 8 and training
epoch 50. The MSE loss showed bigger elbow shape on the graph and after
21 epoch training was stopped early, which was no success on the training.
After training of the MSE loss in the Transformer model, the result showed
0.0363 on training set and 0.0315 on validation set, which meant good results
were obtained. On the other hand, the implemented new loss function Non-

== MSE Train == MSE Val Mon-Inertia Train -~ == Mon-Inertia Val
0125
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Loss

0.050

0.025

0.000
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Figure 4.11: Transformer model training.

Inertial had shown advantages on same settings of training. From the model
training, new loss function shows far more advantages both in the training and
the validation sets. In addition, its epoch training time was around 99 seconds,
which is a faster calculation time. Training loss was same at 0.0363 for the
training set, but rapidly decreasing to 0.0173 for validation set.

After compiling the model, we trained the transformer model in the same
as the above configuration but set the sequence length to 128. In the previous
experiment, sequence length 128 showed the best durability and effectiveness
The trained transformer model results are shown in Table 4.3. From the table,
CCC loss shows better results in all models, which proves the previous exper-
iment in Fig. 1.1 that 128 sequence length shows better results than the new
loss function. The Mesh Transformer model shows the best result in valence
space because meshes represent “facial expression” (Table 1.1). Also, the Trans-
former model shows significant improvement from previous experiments when
we compare “Feature Transformer” and “Full network” results. In comparison,

53



Table 4.3: Transformer model results

two of the loss functions “EVM Transformer” model, shows better than others
in Valence and Arousal spaces.

Loss Epoch Accuracy

Models function Epochs duration @sec | @2CCC Valence | Arousal

Mesh Transt Ours 9 994 13311 | 0.7052 | 0.439
estL Hanstotmer ——=Fa 10 882 1.16 | 0.6973 | 0.4981
Feature Transformer | OUS 10 1740 1.1768 | 0.5851 | 0.4313
CCC 12 1428 1.2 0.6402 | 0.4848

Ours 11 3752 1.2286 | 0.5277 | 0.5807

EVM Transformer  —== 17 5104 124 | 0.6992 | 0.5767
Multi Transformer (C)gré 2_4 68_95 1.2_09 O'?i% 0.4_497

The trained transformer model produced the following results for a selected
video in the database, Fig. 4.12. The true value was “suspicious” and the
predicted value was “impatient” as shown on the figure on the left. The number
indicates distance between emotional state and target or prediction state.

Figure 4.12:

Transformer model inference.
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4.4 Continual emotion classification results

At the beginning of the training, a model was trained on the original dataset
until the best accuracy on test set was achieved. Carefully observing the trained
classifier ResNet18 (Figure 3.6), the “hash” like weights, which in CIFAR-100
had some of classes with uniform distribution of feature space and some of
classes were normal distribution. After training the universal model, we froze
the base body of model, and added a parallel new fc8 layer to replace the n'®
original fc8 layer. Then we trained the model on a new dataset with only the
new fc8 layer. After that, we used the previous mixing fully connected layer
method. The result of this method is shown in Table 4.4. By choosing « as
balanced by mass. In 5 tasks of the testset, we achieved 68.7% accuracy, which
reduced from 96.2%. In each task, the accuracy reduced about 8%. On the
other hand, the training accuracy was stable around more than 95%. In this
method model parameter size were maintained at only 605 parameters for each
task.

Table 4.4: Method 1 training result on EMNIST letters dataset.

Original | New Test Test | Training | Trainable Total
Alpha
classes | classes accuracy | Loss | accuracy | parameters | parameters

26 0 0.927 18.38 | 0.525 1,477.879 | 1,477,879
5 5 0.5 0.962 9.90 |0.946 605 1,474,854
10 5 0.(6) |0.881 27.23 | 0.962 605 1,475,459
15 5 0.75 |0.808 46.61 | 0.983 605 1,476,064
20 5 0.80 |0.743 60.95 | 0.960 605 1,476,669
25 5 0.83 |0.687 72.04 1 0.985 605 1,477,274

Task by task added Linear accuracy: 0.51

50

o] 100 200 300 400 500

Figure 4.13: Task by task trained and added classifier’s weight with 51% accu-
racy rate.

After this method, we experimented using the histogram equalization method.
Firstly, we trained each task separately and concatenated. After concatenation,
we set classifier weights as concatenated and tested the equalized weights. The
result is shown in Figure 4.13. In the observation of added weights, tasks were
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Task by task added and Cleared Linear accuracy: 0.40

O 100 200 300 400 500

Figure 4.14: Task by task trained and added histogram cleaned classifier’s
weight with accuracy rate 40%.

Figure 4.15: Task by task trained and added histogram equalized CLAHE
classifier’s weight with accuracy rate 2%.

trained by high contrast without consequence in the feature space and test ac-
curacy was 51%. We also applied histogram equalization as a weight pruner
from [min(Wiesi) + 0.3, max(Wiask) — 0.3] value range. Pruned weight results
are shown in Figure 4.14.
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Chapter 5

Conclusions and Future
works

5.1 Conclusions on Image Emotion Recogni-
tion

In this thesis, a new loss function for emotion recognition was proposed and,
using different proposed models, compared the training and result accuracies to
two other existing loss functions. Emotion recognition can be recognized by not
only using facial images, but also time dimension, body poses, facial landmarks
and well understood the facial scene identity. Furthermore, we compared our
work with LRCN and other state of art networks.

5.2 Conclusions on Video Emotion

A new loss function named “Non-Inertial Loss” was proposed and, its stability
and effectiveness were proved using four networks designed with different se-
quence lengths, and validation proportion. We observed that, in data relation
for continuous and interrupted data, if the network and data were low, the
interruption effect was high. Conversely, if data and networks were large, the
interruption effect was low.

The new loss function accuracy was limited by a smaller network param-
eter size, just like the other existing losses (CCC and MSE). However, in the
sequence range the proposed loss function showed better results in the lower
rank models, which allows better trade-off cost between the network size and
sequence length.

The transformer model training on Non-Inertia loss function shows state-of-
the-art results. Significantly, the EVM-Transformer model shows both arousal
and valence were 0.5542. However, we are still training other loss functions
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(MSE, CCC). On the other hand, the Multi-Transformer model requires more
parameter settings with enormous parameter space, but the result is the lowest.
The inference of Mesh-Transformer model shows promising result and move-
ment of emotion is almost synchronized with ground truth. Reversely, scaling
of prediction shows more implementation is need ed in the output section of
the transformer model.

5.3 Conclusions on Continual Learning

We investigated image processing methods in continual learning field and pro-
posed multiple methods such as alpha blending, histogram equalization and the
pruner. The aim was dealing with the linear layer weights in continual learn-
ing. We build a universal network, using a previously trained one as a feature
extractor. The methods got promising results as shown in the results. In the
alpha blending method, we used a technique that separated knowledge from
unknown knowledge. This method showed better results than the normal con-
catenation technique. The other method was applying histogram equalization.
In this method, we used two kind of techniques; one was the equalizer as pruner
and the other was the equalizer as enhancer.

The Cosine distance of the Pruner method trained weight was 0.23. How-
ever, the test set result showed a big difference. In CLAHE equalized weight, the
enhanced weight hashes were mentioned before. The results of weight images
showed no significant difference in critical features excluding CLAHE equalized
weights, which meant that if feature extractor was the same, then training of
continual learning separate or normal learning had no big difference.

5.4 Future Works

In the future, for emotion recognition, we will continue to test the new loss
function with acceleration detailed in Appendix A.

We will use transfer learning for smaller models with low accuracy loss and
implement emotion recognition end-to-end method. In addition, for dataset
issues, most researchers aim to train a model using Self-supervised learning.
Using Self-supervised learning, more interesting results may appear.

For continual learning, we aim to support more features and to clear up any
consequence issue it may cause. If more training or weight space are needed, it
is possible to extend network parameter sizes. Moreover, we will focus more on
state of the art transfer learning experiments and regenerative memory replay
methods.

In histogram equalization method we will look for a transformation function
that solves the problem of catastrophic forgetting, an ongoing learning problem,
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by training using the cdf histogram equalizer.
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Appendix A

Loss Function Details
Full Results

Extended proposed loss function

, 1 5
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Proof of Equation 3.5:

10z 10y
Aa = tan 'L —tan -2 =>

lim Ao =0 =>
Aa—0

Aa=0 =>

0=tan 122 —tan 1 & /tan
0 a ©
tan(0) = — — — =>

Uy * Vy — Qg * Uy -

0:

Uy * Uy
Ao = ag * vy — ay * Uy

Proof of Equation 3.5 in an example:

assume
/annotation = 90°

/prediction = 30°
Aa =90° — 30° = 60° =>
a, =sin(n/2) =1 v, =cos(n/2) =0
a, = sin(7/6) = 1/2 v, = cos(n/6) = V/3/2 (7)
sin(A — B) = sin(A) * cos(B) — cos(A) * sin(B)
Aa = arcsin(a, * vy, — ay * vy)
Aa = arcsin(1 * v/3/2 — 0% 1/2)

A« = arcsin(v/3/2) = 60°
60° = 60°
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Training tables

Table 1: Validation: 10% training.

Network Train Loss Sequence MSE CCC Non.—
Length Inertial

128 0.233 0.334 0.117

MSE 256 0.245 0.312 0.123

512 0.229 0.288 0.115

128 0.293 0.307 0.155

Full Network CCC 256 0.303 0.338 0.161
512 0.380 0.262 0.195

Non- 128 0.216 0.404 0.109

Inertial 256 0.214 0.334 0.108

512 0.217 0.343 0.109

128 0.217 0.319 0.109

MSE 256 0.226 0.277 0.115

512 0.223 0.254 0.112

. 128 0.287 0.426 0.147
g‘;‘;g&‘éggﬂ ccc 256 0.321 | 0.342 0.163
512 0.330 0.292 0.182

Non- 128 0.214 0.430 0.108

Imertial 256 0.210 0.375 0.106

512 0.214 0.335 0.108

128 0.213 0.151 0.107

MSE 256 0.199 0.202 0.100

512 0.218 0.139 0.110

Audio 128 0.231 0.300 0.116
Network CCC 256 0.252 0.349 0.126
512 0.256 0.274 0.129

Non 128 0.208 0.131 0.105

Inertial 512 0.213 0.165 0.107

128 0.234 0.103 0.118

MSE 256 0.232 0.150 0.117

512 0.222 0.134 0.112

Pose 128 0.335 0.230 0.180
Network CcCcC 256 0.329 0.255 0.179
512 0.457 0.176 0.247

Non- 128 0.222 0.126 0.112

Inmertial 256 0.229 0.151 0.115

512 0.225 0.144 0.113
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Table 2: 5 Training (sequence 256 val 10%).

Network Train | poy | MSE | ccc Non-
Loss Inertial

T 0200 | 0.331 | 0.105

5 0211 | 0346 | 0.107

MSE 3 0207 [ 0366 | 0.104

1 0225 [ 0337 | 0113

5 0.199 [ 0.333 | 0.100

T 0343 [ 0.300 | 0.176

5 0364 | 0282 | 0.101

Full Network | CCC 3 0335 | 0321 | 0.170

1 0415 | 0310 | 0.213

5 0271 [ 0.348 | 0.136

T 0202 | 0411 | 0.102

Non. ) 0206 [ 0355 | 0.104

o 3 0204 | 0414 | 0.103

1 0202 | 0415 | 0.102

5 0200 | 0.376 | 0.105

1 0.200 | 0.328 | 0.105

5 0225 | 0354 | 0.115

MSE 3 0227 | 0304 | 0.115

1 0235 [ 0326 | 0.11%

5 0227 | 0304 | 0.114

T 0332 [ 0342 | 0.176

. 5 0344 | 0310 | 0.176

g‘;ﬁ?&gggﬂ ccc 3 0.300 | 0353 | 0.153

T 0383 [ 0339 | 0.199

5 0292 [ 0.330 | 0.156

T 0200 | 0398 | 0.105

Non. 2 0214 [ 0370 | 0.10%

o 3 0206 | 0.402 | 0.104

T 0206 [ 0379 | 0.104

5 0205 [ 0.375 | 0.103

1 0214 | 0.180 | 0.108

5 0216 | 0.250 | 0.109

MSE 3 0219 [ 0.193 | 0.110

1 0210 | 0172 | 0.110

5 0217 | 0211 | 0.109

T 0246 [ 0300 | 0.124

Audio 5 0239 [ 0.288 | 0.120

Nepeio ccc 3 0246 | 0314 | 0.124

1 0239 | 0321 | 0.120

5 0239 [ 0.319 | 0.120

T 0215 | 0221 | 0.108

Non. 3 0214 | 0175 | 0.108

o 3 0212 [ 0.200 | 0.107

1 0214 | 0.187 | 0.108

5 0215 [ 0.182 | 0.108%

1 0.226 | 0.0907 | 0.114

5 0226 | 0.075 | 0.114

MSE 3 0228 | 0.071 | 0.115

1 0223 | 0.071 | 0.112

5 0233 | 0.077 | 0.117

T 0.466 | 0.210 | 0.239

Pose 3 0380 [ 0.205 | 0.203

Netoe ccc 3 0453 | 0.143 | 0.235

T 0360 | 0.173 | 0.187

5 0360 | 0.176 | 0.191

T 0228 | 0.060 | 0.115

Non. 3 0233 [ 0084 | 0.117

o 3 0227 | 0.075 | 0.114

1 0228 [ 0.001 | 0.115

5 0226 [ 0.085 | 0.113
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Table 3: Validation: 30% training.

Train Sequence Non-
Network Loss Length MSE cce Inertial
32 0.203 0.258 0.102
64 0.201 0.251 0.101
MSE 128 0.204 0.265 0.103
256 0.198 0.251 0.100
384 0.206 0.230 0.104
32 2.470 0.000 1.235
64 0.371 0.177 0.192
Full Network CcCcC 128 0.291 0.289 0.148
256 0.274 0.287 0.144
384 0.281 0.283 0.149
32 0.202 0.284 0.101
64 0.204 0.346 0.103
Non-
Inertial 128 0.193 0.322 0.097
256 0.194 0.260 0.098
384 0.203 0.271 0.102
32 0.203 0.249 0.102
64 0.217 0.233 0.110
MSE 128 0.202 0.241 0.102
256 0.202 0.223 0.102
384 0.208 0.201 0.105
32 0.270 0.250 0.137
. 64 0.359 0.229 0.180
g‘;ﬁf&‘:g;;ﬂ ccc 128 0.325 | 0.262 | 0.168
256 0.268 0.290 0.140
384 0.287 0.275 0.152
32 0.208 0.243 0.105
64 0.202 0.305 0.102
Non-
Inertial 128 0.191 0.285 0.096
256 0.194 0.234 0.097
384 0.195 0.290 0.098
32 0.213 0.202 0.107
64 0.205 0.205 0.103
MSE 128 0.201 0.184 0.101
256 0.194 0.192 0.098
384 0.200 0.180 0.101
32 0.249 0.238 0.125
Audio 64 0.244 0.252 0.123
Network CcCcC 128 0.231 0.278 0.116
256 0.251 0.300 0.126
384 0.234 0.293 0.118
32 0.202 0.184 0.102
Non- 64 0.201 0.160 0.101
Inertial 128 0.199 0.162 0.100
256 0.191 0.177 0.096
384 0.195 0.171 0.098
32 0.229 0.059 0.115
64 0.213 0.032 0.107
MSE 128 0.209 0.094 0.105
256 0.204 0.129 0.103
384 0.207 0.134 0.104
32 0.373 0.045 0.194
Pose 64 0.432 0.076 0.225
Network CcCcC 128 0.365 0.157 0.193
256 0.350 0.213 0.179
384 2.265 0.001 1.133
32 0.212 0.046 0.106
64 0.207 0.056 0.104
Non-
Inertial 128 0.205 0.118 0.103
256 0.204 0.151 0.103
384 0.202 0.154 0.101
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