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Abstract 

Recommender systems have become an indispensable tool for real-world 

applications. One-class collaborative filtering has attracted much attention in 

recommendation communities because the “one-class” is more suitable to describe data 

of many applications. Many recommendation methods have been proposed for realizing 

personalized ranking with one-class feedback (implicit feedback). Pairwise ranking 

methods with relative preference assumptions are widely used for dealing with the one-

class problem due to their high performance. Bayesian Personalized Ranking (BPR) is 

one of the most popular pairwise methods, assuming users prefer the observed item to 

the unobserved item.  

BPR assumes the equal importance of each user’s unobserved items. However, 

existing some items that users have not seen yet. It is not appropriate to treat each user’s 

all unobserved items equally. Additionally, the parameters in BPR are learned by the 

stochastic gradient descent (SGD) optimization algorithm. The previous work has 

shown that the vanishing gradient problem exists in the learning process when the user’s 

preference difference between the observed item and the unobserved item is very large. 

In order to alleviate the problems of the previous model, three recommendation 

models are studied for one-class collaborative filtering in this thesis, including PBPR 

(Prior-based Bayesian Pairwise Ranking), PBPR* (Improving PBPR) and DBPL 

(Double Bayesian Pairwise Learning). All three recommendation models consider users’ 

preference differences between their unobserved items and can be realized without any 

additional social information. In addition, the users’ potential preference scores on their 

unobserved items are calculated based on users’ historical interactions for further 

distinguishing the relative preference of each user’s any two unobserved items. The key 

contributions in this thesis are summarized as below: 

(1) Motivated by the discovery that the user may be interested in items that their like-

minded users have observed, users’ potential preference scores on their unobserved 

items could be calculated by the similarities between users and the similarities between 

items. The similarities between users and the similarities between items are measured 

at the item level and the entity level considering that the user might like the item or 

entity. Experiments on the real-world dataset demonstrate the results of the UIIU (user-

based item similarity and item-based user similarity) method are the best in most cases. 
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The potential preference scores calculated by the UIIU method are used for further 

studying. 

(2) With the observation that each user has his/her own chosen intention on different 

service systems and most people’s chosen intention about items have continuity and do 

not change suddenly, the Latent Dirichlet Allocation (LDA) model is used to realize 

this observation. The user’s chosen intention is considered as the hidden variable, and 

two distributions (user-chosen intention distribution and item-chosen intention 

distribution) are updated during the learning process of the model. The users’ potential 

preference scores can be obtained by the inner product of two distributions. 

Experimental results of the LDA-based method are better than BPR across all 

evaluation metrics on three datasets.  

(3) For alleviating the assumption in BPR that equal importance of the huge 

unobserved items, the novel model PBPR is proposed. It relaxes the simple pairwise 

preference assumption in BPR by further considering the pairwise preference between 

any two unobserved items. PBPR considers the situation of existing fine-grained 

preference difference between any two unobserved items of a user. It assumes the user 

prefers an unobserved item with a higher potential preference score over another 

unobserved item. PBPR* is proposed to enhance the performance of PBPR by 

conducting several strategies to overcome shortcomings in PBPR, for more accurate 

recommendation results. 

(4) With the consideration that the user’s preference difference between the observed 

item and the unobserved item can be reduced by fusing a relatively smaller preference 

difference between another pair of items, DBPL is proposed by taking two pairwise 

preferences into the previous pairwise learning model. DBPL also takes into account 

each user’s fine-grained preference differences between unobserved items. For each 

user, the unobserved item, which has a higher potential preference score, is assumed to 

have a smaller preference difference with the observed item of the user. Theoretically, 

DBPL could alleviate the vanishing gradient problem in the previous algorithm’s 

learning procedure and obtain more accurate recommendations.  

(5) A series of experiments over three real-world datasets are conducted to validate 

three recommendation models. Experimental results show the effectiveness of 

recommendation models for solving the one-class collaborative filtering problem. The 

experimental results of PBPR, PBPR* and DBPL are better than BPR, showing the 

effectiveness of assumptions proposed for recommendation models. Experimental 
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results of the PBPR*-based method are better than the PBPR-based method in most 

cases. Experimental results of the DBPL-based recommendation method outperform 

other recommendation methods across all evaluation metrics on all datasets. 
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1 Introduction 

1.1 Background and Significance of Research 

With the growing development of websites, a mass amount of data are being 

generated in real-time. It is not practical to process the information manually. Therefore, 

many effective methods have been proposed for dealing with online information in 

different domains in these years, like sentiment analysis methods for sentences [1, 2], 

opinion target extraction for opinionated sentences [3, 4]. The recommender system is 

an essential technique for discovering things of interest in online applications. It aims 

to tackle the problem of information overload in online e-commerce transactions and 

social network platforms [5]. Almost every service (search engines, social media sites, 

E-commerce, and news portals) that provides the content to users is equipped with a 

recommender system [6]. In recommender systems, item represents different kinds of 

contents consumed by users [7], like a movie, a song, or a book.  

There are three types of personalized ranking recommendation approaches, including 

social recommendation, content-based filtering and collaborative filtering. 

Collaborative filtering (CF) based methods [8, 9], which take account of user-item 

interactions, have made great satisfactory success, among different recommended 

strategies [10, 11, 12, 13]. CF-based algorithms can be divided into two categories: 

memory-based algorithms and model-based algorithms [14, 15]. User-based 

collaborative filtering algorithms and item-based collaborative filtering algorithms, 

which all belong to memory-based algorithms (neighborhood-based algorithms), have 

been widely employed in practical recommender systems [16, 17] and provide users 

with explainable recommendation results [18]. The model-based collaborative filtering 

algorithms, especially latent-factor models based on matrix factorization (MF) [37], 

have shown effectiveness in recommender systems. However, the sparsity of the user-

item interaction matrix usually influences the performance of CF-based 

recommendation methods. Researchers have alleviated this problem by incorporating 

additional information into CF-based methods [19, 20, 21].  

The recommender system for the dataset, like MovieLens [22], in which users give 

the rating values scale 1-5, can be considered as a multi-class (explicit feedback) task. 
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For example, the accurate preference scores of users on different movies are predicted 

based on multi-class methods. MF-based recommendation methods have been shown 

to perform well for multi-class feedback in a number of real-world competitions and 

systems [39]. In many datasets, users’ ratings on items are not always available [23] 

because of the large-scale and extreme diversity of multimedia content [40]. Existing 

many datasets, only one-class feedback is available [24], e.g., bought products, watched 

movies, and clicked Web pages. One-class collaborative filtering (OCCF) [102] is an 

emerging setup in collaborative filtering. Such datasets only have each user’s positive 

feedback, usually called one-class feedback [25] or implicit feedback [26]. It is 

necessary to study recommendation methods for solving the one-class problem. The 

one-class collaborative filtering problem is different from that of the five stars rating 

prediction problem since the former only contains observed items rather than both 

positive items and negative items in the latter. Figure 1.1 shows the illustration of the 

representation matrix of the one-class feedback data. The symbol “+” represents the 

user who has observed the item, such as 𝑢1 has observed 𝑖1, and the corresponding 

position in the representation matrix is recorded as “1”. The symbol “?” represents the 

user who has no interaction with the item, such as 𝑢1 has no interaction with 𝑖2, and 

the corresponding position in the representation matrix is recorded as “0”.  

 

Figure 1.1 Illustration of the representation matrix of the one-class feedback data. 

Compared with the traditional collaborative filtering setting where the data has 

ratings, one-class collaborative filtering is more realistic in many scenarios when no 

explicit feedbacks are available [42]. The recommendation methods for solving the one-

class problem, which is also the implicit feedback problem, can be divided into two 

branches based on previous MF-based researches: pointwise regression methods [27, 

28] and pairwise ranking methods [29, 30]. The pointwise regression methods, which 



 

 
 

INTRODUCTION                                                                 3 

take observed items as absolute preference scores [31] for the one-class problem, learn 

latent representations of users and items to represent users’ preference scores and 

minimize a pointwise square loss to approximate the absolute scores. The pairwise 

ranking methods take an observed item and an unobserved item of a user as a triple 

<user, an observed item, an unobserved item>, assuming that users prefer observed 

items to unobserved items, and maximize the likelihood of pairwise preferences over 

observed items and unobserved items. Empirically, the pairwise ranking methods [32, 

33], which have been successfully adopted in many scenarios [34, 35], achieve much 

better performance than pointwise methods [25, 28].  

Bayesian personalized ranking (BPR) [32] is one of the most popular pairwise 

ranking methods. The optimization process of the BPR model assumes equal 

importance of the huge unobserved items. Actually, it is unsuitable for treating all 

unobserved items of the user as negative feedback. Some items may just not be seen by 

users. Moreover, BPR uses stochastic gradient descent (SGD) to learn parameters in 

the model. Most SGD updates have no effect when the big preference difference 

between the observed item and the unobserved item causes the vanishing gradient 

problem [33]. 

In general, we aim to study the novel recommendation model based on one-class 

feedback for more accurate recommendations in this thesis. The key points of our 

research are as follows: 

(1) alleviating data sparsity problem with only user-item interactions;  

(2) enhancing the performance of BPR by relaxing the problems mentioned above. 

1.2 Literature Review 

1.2.1 Pointwise methods and pairwise methods  

One-class collaborative filtering recommendation methods are proposed for solving 

problems in real-world scenarios that only positive examples can be observed [41]. 

Pointwise methods and pairwise methods are two main manners of MF-based 

algorithms in recent researches. 

In pointwise methods, the absolute preference scores are recoreded as one for further 

studying. Hu et al. [28] proposed the factor model for solving the one-class feedback 

problem. They treated the data as an indication of positive and negative preferences, 
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which are associated with vastly varying confidence levels. In addition, many popular 

models like Factored Item Similarity Methods (FISM) [36] and Neural Collaborative 

Filtering (NCF) [38], using the pointwise method to train the model.  

In recent years, pairwise ranking [43] has been widely used for the personalized 

recommendation from one-class feedback. It focuses on relative preferences rather than 

absolute ratings [44]. As mentioned before, the BPR model is one of the most popular 

pairwise methods and has been used as a basic learning model [7] in many studies [45, 

46]. BPR adopts two fundamental assumptions: (a) the user prefers observed items over 

unobserved items. (b) the joint likelihood of pairwise preferences of user u is 

independent of that of the others. However, two fundamental assumptions exist 

limitations. Many extensions of BPR pointed out its limitations and proposed improved 

assumptions for better recommendation performance. 

1.2.2 Recommendation methods for the data sparsity problem  

➢ Recommendation methods with the auxiliary feedback 

One important way to alleviate the data sparsity problem and enhance the 

performance of the recommender systems is to leverage the additional information. 

Many previous researchers have tried to improve the performance of BPR by taking 

into account additional information [47, 48]. Qiu et al. [49] adopted two typical actions, 

view and like, as auxiliary feedback to enhance the recommendation performance of 

service systems. They proposed the heterogeneous implicit feedback (BPRH) model 

that integrated multiple types of auxiliary action and target action into a unified model 

for more accurate recommendations. Li et al. [50] proposed a paper recommendation 

method (PRHN) based on the heterogeneous network, which integrates papers, venues, 

authors, terms, users and their relations. They applied random walk to calculate the 

recommendation scores of candidate papers to target users and employed BPR as the 

objective function to discover the user’s personalized weights on different meta-paths 

that are investigated in the network. Zhao et al. [51] assumed that users tend to be 

interested in items that their friends prefer. They used social network information to 

distinguish the differences between users’ unobserved items and then proposed Social-

BPR (SBPR) for better recommendations. Sun et al. [52] proposed a social 

recommendation framework, which improves the performance of the recommendation 

results by leveraging friend and group information. 
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➢ Recommendation methods without additional information 

Considering the situation that many real-world datasets do not contain additional 

information like social information in [51, 53], auxiliary feedback in [49, 54]. In such 

cases, the recommender systems could only rely on user-item interactions. As such, in 

existing efforts to enhance pairwise learning, many extensions of BPR do not need any 

additional information and can provide more accurate recommendations [15, 55]. Pan 

et al. [56] pointed out the limitations of BPR. They assumed that the group preference 

on item i is more likely stronger than user u’s preference on item j if user u observed 

item i and not observed item j. With this assumption, they proposed a novel model 

called group Bayesian personalized ranking (GBPR), which injected richer interactions 

among users. Yu et al. [57] proposed a Multiple Pairwise Ranking (MPR) approach to 

exploit the preference difference among multiple pairs of items by dividing the 

unobserved items into different parts. For scenarios without additional click data, they 

divided the unobserved items based on popularity, i.e., items’ observed counts by all 

users. Liu et al. [58] adopted cosine similarity to measure the similarities between users 

for further constructing users’ neighborhoods. Then, they proposed collaborative 

pairwise learning to rank (CPLR) algorithm, which considers the influence between 

users on the preferences. 

1.2.3 Recommendation methods for the vanishing gradient problem  

Recommendation methods based on BPR and its extensions use the uniform 

sampling assumption, which might have the vanishing gradient problem in the learning 

process when the item popularity has a tailed distribution. Gantner et al. [59] extended 

BPR to a probabilistic ranking criterion with the assumption that the unobserved items 

are sampled from a given distribution. Rendle et al. [33] did not fix the sampling 

probabilities. They analyzed issues in tailed item distributions and proposed a non-

uniform item sampler to overcome the problem. To solve the problem that the 

convergence of the SGD learning algorithm slows down, Zhang et al. [60] proposed to 

dynamically choose negative training samples from the ranked list produced by the 

current prediction model and iteratively update their model. Ding et al. [61] proposed a 

simple yet effective sampler by leveraging the additional view data. 
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1.3 Research Contents and Contributions 

Recommender systems play an essential role in finding users’ potential preferences 

on products or services in various domains [62], such as social media sites, search 

engines and e-commerce platforms. In many real-world scenarios, explicit feedback 

data is not always available [63]. Only one-class feedback data can be observed, e.g., 

likes in WeChat, watches in YouTube, purchases in Amazon. Such data is also called 

implicit feedback data, which records the interactions between users and items without 

any scores. Recommendation methods for dealing with the one-class feedback problem 

assume that everything that has been selected is positive feedback for the user [33]. 

According to the above situation, in this thesis, we study recommendation models to 

give more accurate recommendations for solving the one-class problem. 

The overview of using recommendation models for one-class collaborative filtering 

is shown in Figure 1.2. It mainly contains two parts, including calculation methods of 

users’ potential preference scores and recommendation models.  

➢ Calculation methods of users’ potential preference scores 

Considering that further study needs to distinguish the relative preference of each 

user’s any two unobserved items, we first study calculation methods of users’ potential 

 

Figure 1.2 The overview of the model-based recommendation methods  

for one-class collaborative filtering 
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preference scores on their unobserved items, including aspects of collaborative filtering 

and latent dirichlet allocation. 

Motivated by the situation that the user may have interest in items that have been 

observed by his/her like-minded users and the user may like the similar items, we 

calculate users’ potential preference scores on items by considering items from their 

like-minded users and similarities between items based on user-item interactions. Each 

item contains many entities, like the song containing the information of its topic, scenes, 

mood and language. The user might be interested in the item or the entity. Inspired by 

this, we calculate the user similarity at the item level and the entity level. We also 

calculate the user-based and entity-based item similarity for better performance. 

We observe that each user has his/her own unique way of interacting with items, such 

as a user likes to choose a song according to the singer. We assume users have their 

personalized chosen intentions on different service systems and consider most people’s 

chosen intention about items have continuity and do not change suddenly. We 

recommend items for users by tracking the chosen intentions from users’ historical 

interactions. Convincing recommendation results can be obtained with the learning 

results of users’ chosen intentions. Therefore, we leverage the topic model to model the 

generating process of each user’s historical interactions for further evaluating each 

user’s potential preference scores on unobserved items; the user’s chosen intention is 

hidden information of the model. 

➢ Recommendation models 

Then, we study novel extensions of BPR for solving the one-class problem. We relax 

the assumption of the BPR that the equal importance of the huge unobserved items and 

propose a novel Prior-based Bayesian Pairwise Ranking (PBPR) model [64]. PBPR 

considers the pairwise preference between any two unobserved items according to users’ 

potential preference scores on items rather than dividing unobserved items into different 

groups. We also take into account several strategies to enhance the performance of 

PBPR, which is denoted as the improving PBPR (PBPR*) model.  

For the vanishing gradient problem caused by the tailed distribution, instead of 

proposing any sampling methods, we propose the Double Bayesian Pairwise Learning 

(DBPL) model [65]. We consider that, for each user, the unobserved item, which has a 

higher potential preference score, has a smaller preference difference with the observed 

item of the user. With this consideration, the vanishing gradient problem caused by the 

bigger preference difference between an observed item and an unobserved item of the 
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user could be alleviated by further fusing the relatively smaller preference difference 

between another pair of items.  

➢ Contributions 

Our proposed recommendation models significantly improve the recommendation 

performance of the BPR model and can run without any additional information except 

user-item interactions and can be adjusted for the social information from a specific 

dataset.  

In addition, we calculate potential preference scores as prior information based on 

users’ historical interactions, which can be used to (1) measure fine-grained preference 

difference between any two unobserved items; (2) alleviate the data sparsity problem 

by potential preference scores between users and their unobserved items. 

1.4 Organizations 

This thesis focuses on studying recommendation models for one-class collaborative 

filtering, which are all considered each users’ relative preferences for unobserved items. 

Therefore, we further study the calculation methods of users’ potential preference 

scores on items on their unobserved items for measuring the fine-grained differences 

between any two unobserved items of the user. The rest of this thesis is organized as 

follows.  

Section 2: Related Knowledge 

In this section, we begin by reviewing related knowledge of this thesis, including (1) 

the basic concept of the matrix factorization algorithm and the gradient descent 

optimization algorithm; (2) the fundamental theoretical work in the fundamental 

recommendation model and its extension models, and (3) the structure and description 

of the topic model.  

Section 3: Calculation Methods of Potential Preference Scores 

In this section, we give the problem definition and then describe the calculation 

methods of users’ potential preference scores on their unobserved items in aspects of 

collaborative filtering and latent dirichlet allocation in detail.  

Section 4: Recommendation Models for One-class Collaborative Filtering  
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In this section, we propose three recommendation models (PBPR, PBPR * and DBPL) 

for more accurate recommendations. The objective functions and learning processes of 

the three models are described carefully. 

Section 5: Experiment and Analysis  

In this section, we conduct a series of experiments and analyze the results. The 

effectiveness of the proposed recommendation models is demonstrated by experimental 

results with all evaluation metrics on three real-world datasets. 

Section 6: Conclusion and Future Work  

In this section, we summarize the main contents of this thesis and give meaningful 

directions for future work. 
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2 Related Knowledge 

We review the related knowledge of this thesis in this section. Matrix factorization 

is an essential algorithm for studying recommender systems. We first review the matrix 

factorization (MF) algorithm and the gradient descent (GD) optimization algorithm. 

Then, we describe the fundamental theoretical work in BPR and its extension models 

of BPR, i.e., group Bayesian personalized ranking (GBPR) and collaborative pairwise 

learning to rank (CPLR), in detail. We finally introduce the latent dirichlet allocation 

(LDA) topic model in this section, which will be used in the following study.  

2.1 Matrix Factorization 

Collaborative filtering, which can be divided into memory-based collaborative 

filtering [66] (user-based collaborative filtering and item-based collaborative filtering) 

and model-based collaborative filtering [67], is an essential technique for solving the 

problem of recommender systems. The model-based methods, i.e., latent factor model 

(LFM)-based methods [68, 69, 70], have attracted more and more attention. In 

recommendation algorithms, the advantage of the latent factor model is that it can be 

modeled according to the implicit information in users and items. Therefore, the deeper 

relationships between users and items can be mined by the model. Matrix factorization 

is the most successful implementation of the latent factor model. It has been widely 

applied in model-based collaborative filtering tasks because of its scalability and 

flexibility [71]. 

The core assumption of the MF-based recommendation algorithms is to use latent 

variables to represent users and items. The original relationship between users and items 

can be obtained by the product of their representation matrics. This hypothesis is 

established because the actual interaction data between users and items is generated 

under the influence of a series of hidden variables. Hidden variables represent the 

common features of users and items, including items’ attribute characteristics and users’ 

preference characteristics. However, these factors do not have practical significance 

and may not have very good interpretability. In addition, there is no definite label for 

each dimension in the matrix. 
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Figure 2.1 Illustration of matrix factorization 

For a recommender system on the dataset, interactions between users and items can 

be represented by the user-item matrix 𝑅𝑀×𝑁. In the matrix 𝑅𝑀×𝑁, each row represents 

a user, and each column represents an item. If a user u rated an item i with a score, the 

value of 𝑅𝑢𝑖 is equal to the score. The user-item matrix 𝑅𝑀×𝑁 is called the scoring 

matrix. Figure 2.1 shows an example of the user-item scoring matrix. The matrix R is 

represented by the two low-rank matrices U and I, which, when multiplied, 

approximately reconstruct R The gray areas indicate that users have not interacted with 

items. The matrix factorization algorithm decomposes the user-item interaction matrix 

𝑅𝑀×𝑁 into the inner product of two low-rank matrices, 𝑈𝑀×𝑘 and 𝑉𝑁×𝑘.  

𝑅𝑀×𝑁 ≈ 𝑈𝑀×𝑘 ∙ 𝑉𝑁×𝑘
𝛵  

 
(2.1) 

where 𝑈𝑀×𝑘  and 𝑉𝑁×𝑘  represent the user latent factor matrix and the item latent 

factor matrix. k represents the number of latent factors and k≪ min (M, N). Therefore, 

user u’s preference score on item i can be calculated by: 

 𝑟𝑢𝑖 = 𝑈𝑢 ∙ 𝑉𝑖
𝛵 (2.2) 

where 𝑈𝑢 denotes the latent factor vector of user u and 𝐼𝑖 denotes the latent factor 

vector of item i. Matrix factorization algorithm has the following advantages: 

(1) It is easier to implement by programming and can be trained by the stochastic 

gradient descent optimization algorithm, which will be introduced in Section 2.2. 

(2) The accuracy of MF-based recommendation methods is higher than memory-based 

collaborative filtering methods. 

(3) MF algorithm has very good scalability. It is convenient to consider other factors 

into the user feature vector and item feature vector. 
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The disadvantages of the MF algorithm are: 

(1) The training process of the MF algorithm is time-consuming. 

(2) The recommendation result of the MF algorithm is not interpretable. Each 

dimension of low-rank matrics of users and items cannot be explained in real life, 

so it can only be considered as a latent semantic space.  

2.2 Gradient Descent and Stochastic Gradient Descent 

Optimization problems have a major position in machine learning. The final goal of 

many machine learning algorithms is to solve optimization problems. Gradient descent 

(GD) is the simplest and most common calculation method among various optimization 

algorithms.  

The gradient descent optimization algorithm in machine learning is usually used to 

calculate the model parameters for algorithms [72], i.e., linear regression model, 

logistic regression model, neural networks model, etc.  

 

Figure 2.2 Description of the gradient descent optimization algorithm 

  Figure 2.2 shows the description of the gradient descent method. The principle of the 

gradient descent optimization algorithm is: the gradient of the objective function 𝐽𝜃  

with respect to the parameter 𝜃 will be the fastest rising direction of the loss function. 

For minimizing the loss [73], we only need to advance the parameters by one step in 

the opposite direction of the gradient to achieve a drop in the objective function. The 

step size 𝜂 is also called the learning rate. The parameter update formula is as follows: 

𝜃 ← 𝜃 −  𝜂 ∙ ∇𝐽𝜃 (2.3) 

where ∇𝐽𝜃 is the gradient of the parameters. 
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There are three types of gradient descent: batch gradient descent, stochastic gradient 

descent and mini-batch gradient descent. Figure 2.3 summarizes the key points of three 

optimization algorithms. 

 

Figure 2.3 Description of the key points of three optimization algorithms 

Stochastic Gradient Descent (SGD) is a simple but very efficient method and has 

been widely used for solving many machine learning problems [74, 75]. The time 

complexity of GD is 𝑂(𝑛) in each iteration when the number of training examples is 

n. The computational cost of GD is high when faced with massive data resources. SGD 

alleviates the computational cost by randomly sampling a single training example 

uniformly in each iteration. The time complexity is reduced from 𝑂(𝑛) to 𝑂(1) in 

each iteration. In this thesis, parameters in all recommendation models are learned by 

the SGD algorithm. 

2.3 Bayesian Personalized Ranking 

BPR is one of the most popular pairwise ranking methods that take one-class 

feedback as relative preferences rather than absolute preferences [55]. BPR adopts two 

fundamental assumptions: (1) user u prefers the observed items over all the unobserved 

items. (2) the likelihood of pairwise preference of user u is independent of the others. 

The likelihood of BPR for all users and all items can be formulated as 
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BRR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗) [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗)

𝑗∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

] (2.4) 

where 𝑈𝑡𝑟  represents the set of users, 𝐼𝑢
+ represents the observed items of user u,  

𝐼𝑡𝑟\𝐼𝑢
+ represents the unobserved items of user u. 𝑟𝑢𝑖 represents user u’s preference 

on item i, which can be calculated by the inner product between the latent factor vector 

of user u (𝑈𝑢  ∈ d) and the latent factor vector of item i (𝑉𝑖  ∈ d), i.e., 𝑟𝑢𝑖 = 𝑈𝑢
𝑇 ∙ 𝑉𝑖, 

where d represents the number of latent dimensions. 

BPR uses 𝜎(𝑥) =
1

1+𝑒−𝑥 to approximate the probability Pr(∙) and adopts the log-

likelihood to reduce the computational complexity. For each randomly sampled record, 

it includes a user u, an observed item i of user u, and an unobserved item j. Based on 

the above assumption, it maximizes the preference difference of user u towards item i 

and item j. The objective function can be written as 

𝑓(𝑢, 𝑖, 𝑗) = −ln σ(𝑟𝑢𝑖𝑗) +
𝛽

2
(‖𝑈𝑢‖2 + ‖𝑉𝑖‖2 + ‖𝑉𝑗‖

2
) (2.5) 

where ‖𝑈𝑢‖2, ‖𝑉𝑖‖2 and ‖𝑉𝑗‖
2
are regularization terms to avoid overfitting, 𝛽 is the 

regularization parameter. For user u, 𝑟𝑢𝑖𝑗= 𝑟𝑢𝑖  −  𝑟𝑢𝑗  represents the preference 

difference between item i and item j. 

BPR uses the well-known SGD algorithm to learn the parameters. The parameters 

could be updated according to the following rule: 

𝜃 ← 𝜃 − 𝜂(1 − σ(𝑟𝑢𝑖 − 𝑟𝑢𝑗))
𝜕(𝑟𝑢𝑖 − 𝑟𝑢𝑗)

𝜕𝜃
 (2.6) 

where 𝜃 can be 𝑈𝑢, 𝑉𝑖, or 𝑉𝑗, and 𝜂 > 0 is the learning rate. Learning parameters 

in BPR are done by looping over Eq. (2.6).  

2.4 Group Bayesian Personalized Ranking  

Pan et al. proposed an extension of BPR, which is called group Bayesian personalized 

ranking (GBPR), in 2013. Motivated by the assumption that, comparing with the 

probability that user u’s preference score on observed item i is higher than user u’s 

preference score on unobserved item j, the probability that the preference score from a 

group of users on item i than unobserved item j is stronger. It can be written as 
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 (𝐺, 𝑖) > (𝑢, 𝑗) (2.7) 

where 𝐺 represents the group of users who have observed item i, and user u is in the 

group (𝑢 ∈ 𝐺). The illustration of the above assumption via the toy example is shown 

in Figure 2.4. 

 

Figure 2.4 Illustration of preference assumption in 

group Bayesian personalized ranking 

They combined the group preference and the individual preference and represented 

them by 

 (𝐺, 𝑖)  + (𝑢, 𝑖) > (𝑢, 𝑗) 𝑜𝑟 𝑟𝐺𝑢𝑖̂  >  𝑟𝑢𝑗̂ (2.8) 

where 𝑟𝐺𝑢𝑖̂ = 𝜌𝑟𝐺𝑖̂ + (1 −  𝜌)𝑟𝑢𝑖̂ represents the fused preference on item i, and the 

trade-off parameter 𝜌 is ranges from 0 to 1. The joint likelihood of any two users (u 

and w) can be approximated via 𝐺𝐵𝑃𝑅(𝑢, 𝑤) ≈ 𝐺𝐵𝑃𝑅(𝑢)𝐺𝐵𝑃𝑅(𝑤) . The overall 

likelihood of GBPR for all users and all items can be formulated as 

GBRR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝐺𝑢𝑖̂  >  𝑟𝑢𝑗̂) [1 − 𝑃𝑟( 𝑟𝐺𝑢𝑖̂  <  𝑟𝑢𝑗̂)

𝑗∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

] (2.9) 

where 𝑈𝑡𝑟  represents the set of users, 𝐼𝑢
+ represents the observed items of user u,  

𝐼𝑡𝑟\𝐼𝑢
+ represents the unobserved items of user u. 𝐺 represents the user group, user u 

has observed item i and has not observed item j. 

Following BPR, GBPR uses 𝜎(𝑥) =
1

1+𝑒−𝑥 to approximate the probability Pr(∙) and 

adopts the log-likelihood to reduce the computational complexity. For each randomly 

sampled record, it includes a user u, an observed item i of user u, and an unobserved 
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item j. Based on the above assumption, it maximizes the preference difference between 

the fused group preference towards item i and user u towards item j. The objective 

function can be written as 

𝑓(𝐺, 𝑢, 𝑖, 𝑗) = −ln σ(𝑟𝐺𝑢𝑖:𝑢𝑗̂ ) +
𝛽

2
(∑‖𝑈𝑤‖2

𝑤∈𝐺

+ ‖𝑉𝑖 ‖2 + ‖𝑉𝑗‖
2

) (2.10) 

where 𝑟𝐺𝑢𝑖:𝑢𝑗̂  =  𝑟𝐺𝑢𝑖̂  −  𝑟𝑢𝑗̂  represents the difference between the fused group 

preference on item i and user u’s preference on item j. ∑ ‖𝑈𝑤‖2
𝑤∈𝐺 , ‖𝑉𝑖‖2 and 

‖𝑉𝑗‖
2
are regularization terms to avoid overfitting, 𝛽 is the regularization parameter.  

GBPR also uses the well-known SGD algorithm to learn the parameters. The 

parameters could be updated according to the following rule: 

𝜃 ← 𝜃 − 𝜂
𝜕𝑓(𝐺, 𝑢, 𝑖 , 𝑗)

𝜕𝜃
 (2.11) 

where 𝜃  can be 𝑈𝑢 (𝑢 ∈ 𝐺) , 𝑉𝑖  , or 𝑉𝑗 , and 𝜂 > 0  is the learning rate. Learning 

parameters in GBPR are done by looping over Eq. (2.11).  

2.5 Collaborative Pairwise Learning to Rank  

Liu et al. proposed a novel model called collaborative pairwise learning to rank 

(CPLR) in 2018. They thought three problems in BPR, including (1) treats each user’s 

unobserved items as the same; (2) treats each user’s observed items as the same; (3) 

ignores the influence between any two users and solves them by considering the 

influence from other users on each user’s preferences on observed items and 

unobserved items. 

With the motivation that users preferred in the past develop to prefer in the future, 

the user has a high probably prefer items which have been observed by his/her like-

minded users. Therefore, for each user u, all items can be divided into three sets: 𝑃𝑢, 

𝐶𝑢 and 𝐿𝑢. 𝑃𝑢 represents user u’s observed items, 𝐶𝑢 represents items observed by 

user u’s like-minded users, and 𝐿𝑢 represents the left out items of user u. 
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where 𝑁𝑢 represents the set of user u’s like-minded users, the similarity between any 

two users is determined by the cosine similarity, which is defined as follows. 

𝑠𝑖𝑚(𝑢, 𝑤) =
|𝑃𝑢 ∩ 𝑃𝑤|

|𝑃𝑢| ∙ |𝑃𝑤|
 (2.12) 

CPLR adopts two fundamental assumptions: (1) user u prefers the observed items 

over the other unobserved items, and (2) user u would prefer the unobserved items, 

which have been observed by his/her like-minded users, over the other unobserved 

items. Therefore, the relative preference can be written as follows. 

𝑓(𝑢, 𝑖) > (𝑢, 𝑡), (𝑢, 𝑡) > (𝑢, 𝑗), (𝑢, 𝑖) > (𝑢, 𝑗) (2.13) 

Based on the assumptions, for each randomly sampled record, it includes a user u, an 

observed item i of user u (𝑖 ∈ 𝑃𝑢), and two unobserved items t (𝑡 ∈ 𝐶𝑢) and j (𝑗 ∈ 𝐿𝑢). 

Based on the above assumption, it maximizes the preference differences of user u 

towards three pairs of items (item i and item t, item t and item j, item i and item j). The 

objective function can be written as 

𝑓(𝑢, 𝑖 , 𝑡, 𝑗) = −(𝛼ln σ(𝑐𝑢𝑖𝑡  (𝑟𝑢𝑖  −  𝑟𝑢𝑡)) + 𝛽ln σ(𝑐𝑢𝑡𝑗  (𝑟𝑢𝑡  −  𝑟𝑢𝑗))

+ 𝛾ln σ(𝑐𝑢𝑖𝑗 (𝑟𝑢𝑖  −  𝑟𝑢𝑗))) +
𝜆𝜃

2
(‖𝑈𝑢‖2 + ‖𝑉𝑖 ‖2 + ‖𝑉𝑡‖2

+ ‖𝑉𝑗‖
2

) 

(2.14) 

where ‖𝑈𝑢‖2, ‖𝑉𝑖‖2, ‖𝑉𝑡‖2 and ‖𝑉𝑗‖
2

are regularization terms to avoid overfitting, 

𝛼, 𝛽, 𝛾 are control coefficients, and 𝜆𝜃 is the regularization parameter. For user u, 𝑟𝑢𝑖𝑡, 

𝑟𝑢𝑡𝑗 and 𝑟𝑢𝑖𝑗 represent user u’s preference differences between item i and item t, item 

t and item j, item i and item j, respectively. In Eq. (2.14), 𝑐𝑢𝑖𝑡, 𝑐𝑢𝑡𝑗 and 𝑐𝑢𝑖𝑗 are three 

confidence coefficients, which are defined as 

𝑐𝑢𝑖𝑡  =
1 + 𝑠𝑢𝑖  

1 + 𝑠𝑢𝑡
 

(2.15) 

𝑐𝑢𝑡𝑗 = 1 + 𝑠𝑢𝑡 (2.16) 

𝑐𝑢𝑖𝑗 = 1 + 𝑠𝑢𝑖 (2.17) 

where 𝑠𝑢𝑖  and 𝑠𝑢𝑖 are support coefficients. The support coefficient 𝑠𝑢𝑖 is calculated 

by 
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𝑠𝑢𝑖 = ∑ 𝑠𝑖𝑚(𝑢, 𝑤) ∙ 𝛿(𝑖 ϵ 𝑃𝑤)

𝑤∈𝑁𝑢

 

(2.18) 

where 𝑠𝑖𝑚(𝑢, 𝑤) represents the similarity between u and w, 𝛿 (∗) is the indicator 

function, its value is equal to 1 when ∗ is true otherwise 0.  

CPLR uses the SGD optimization algorithm to learn the parameters. The parameters 

could be updated according to the following rule: 

𝜃 ← 𝜃 − 𝜂
𝜕𝑓(𝑢, 𝑖, 𝑡, 𝑗)

𝜕𝜃
 (2.19) 

where 𝜃  can be 𝑈𝑢 , 𝑉𝑖 , 𝑉𝑡 , or 𝑉𝑗 , and 𝜂 > 0  is the learning rate. Learning 

parameters in CPLR are done by looping over Eq. (2.19).  

2.6 Latent Dirichlet Allocation 

In 2003, Blei et al. proposed a topic model called LDA, a generative probabilistic 

graphical model. LDA is an unsupervised learning model and has been used for feature 

extraction [76], textual classification [77] and emotion classification [78]. 

LDA is a generative probabilistic graphical model. We describe some rules about the 

probabilistic graphical model in order to have a good understanding of the LDA model. 

A probabilistic graphical model is a graph model with probabilistic. In a probabilistic 

graphical model [79], the circle with the darkened background color indicates the 

observable variable, and others are implied variables. Plate notation is often used to 

describe probabilistic graphical models. The dependencies between many variables can 

be obtained shortly with it. The boxes are "plates" standing for replicates, which are 

repeated entities. The dependencies between variables are represented by the direction 

of the arrows between the variables. 

The graphical model for LDA is depicted in Figure 2.5. There are three layers to the 

LDA representation. In Figure 2.5, z and w represent the topic and word, T, 𝑀 and 𝑁𝑑 

represent the number of topics, documents and words, respectively. 𝜃 ∈

ℝ𝑀×𝑇 represents a multinomial distribution over topics under documents. 𝛷 ∈ ℝ𝑁𝑑×𝑇  

represents a multinomial distribution over words under topics. 𝛼  and 𝛽  represent 

dirichlet hyper parameters for 𝜃 and 𝛷, respectively. 

LDA models the generative process of a document as follows. 
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1. For each document, sample the topic proportions 𝜃 from Dirichlet distribution 

Dir(𝛼). 

2. For each word in the document m 

a. Choose a topic z randomly according to the sampled topic proportions 𝜃. 

b. Choose a word 𝑤 randomly from the multinomial distribution 𝛷 of topic 𝑧. 

 

Figure 2.5 A graphical model representation of Latent Dirichlet Allocation 

Two approaches are used to estimate parameters in the LDA model. One is 

variational inference, including mean-field and expectation propagation, and Gibbs 

sampling [80]. In this thesis, we use Gibbs sampling to estimate parameters in the LDA 

model. It is a Markov chain Monte Carlo (MCMC) algorithm and can obtain a sequence 

of observations that are approximated from a specified multivariate probability 

distribution when direct sampling is difficult to realize.  

The probability of topic z for the i-th word in document 𝑑𝑚, conditioned on the other 

variables, is given as: 

𝑃(𝑧𝑖 = 𝑧 | 𝒛−𝑖 , 𝑤)  ∝
{𝑛𝑧

𝑤}−𝑖 + 𝛽

{𝑛𝑧}−𝑖 + 𝑁𝑑𝛽
 × 

{𝑛𝑚
𝑧 }−𝑖 + 𝛼

{𝑛𝑚}−𝑖 + 𝑇𝛼
 (2.20) 

where {𝑛𝑧
𝑤}−𝑖 represents the number of word w in topic z in all documents except for 

the i-th word in document 𝑑𝑚, {𝑛𝑧}−𝑖 counts the number of words in topic z in all 

documents. {𝑛𝑚
𝑧 }−𝑖 presents the number of word w in topic z in document 𝑑𝑚 except 

for the i-th word in document 𝑑𝑚 , and {𝑛𝑚}−𝑖  counts the number of words in 
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document 𝑑𝑚 . During the process of Gibbs sampling, Eq. (2.20) is used to update 

parameters in the model. 

2.7 Summary 

In this section, we described related knowledge of this thesis.  

The algorithm matrix factorization has been widely used to solve problems in 

recommender systems. It will be used to predict users’ preference scores on their 

unobserved items in this thesis.  

The pairwise learning model BPR is the fundamental of our proposed 

recommendation models; its extensions GBPR and CPLR will be treated as benchmark 

methods for comparison in Section 5. The well-known optimization algorithm SGD 

will be used to learn parameters in all recommendation models, including BPR, GBPR. 

CPLR and the proposed models. 

In addition, the topic model LDA plays an important role in calculating users’ 

potential preference scores on their unobserved items. More details will be shown in 

Section 3.  
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3 Calculation Methods of Potential Preference Scores 

We first give the problem definition. Our proposed recommendation models are 

designed taking into account the relative preference of each user on any two unobserved 

items. Therefore, prior information is needed to distinguish users’ preference 

differences between their unobserved items. In this section, we focus on studying the 

calculation methods of potential preference scores (prior information) between users 

and their unobserved items, including collaborative filtering-based method and latent 

dirichlet allocation-based method, based on their historical interactions. 

3.1 Problem Definition 

We use 𝑈𝑡𝑟 = {𝑢}𝑢=1
𝑀  and 𝐼𝑡𝑟 = {𝑖}𝑖=1

𝑁  to denote the sets of users and items and 

denote a user-item interaction matrix as 𝑅 ∈  ℝ𝑀×𝑁 , where M and N represent the 

number of users and items, respectively. We use 𝑅𝑢𝑖 to record the interaction between 

user u and item i. 𝑅𝑢𝑖 > 0 indicates user u has interacted with item i, and 𝑅𝑢𝑖 = 0 

indicates user u has no interaction with item i. Our goal is to recommend a ranking list 

of unobserved items to users. 

3.2 Potential Preference Scores based on Collaborative 

Filtering 

3.2.1 Motivation 

We find that the historical interactions between users and items provide resources 

about users’ partial preferences. Specifically, we could discover a user’s potential 

preference on his/her unobserved items, according to some explainable connections 

between observed items and unobserved items. For example, a recommender system 

contains three users (A, B, and C) and five movies (a, b, c, d, and e). The interactions 

between users and items are shown in Figure 3.1. Movie b is a nice choice while 
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recommending a new movie for user B. Considering that user B has the same historical 

interactions (a and c) with user A, user A can be considered the like-minded user of user 

B. Thus, user B may be interested in the movie, which has been watched by user A.  

Additionally, users’ potential preference scores on items provide resources about 

potential interactions between users and items, which can alleviate the data sparsity 

problem and can also be used to evaluate the fine-grained preference difference between 

any two unobserved items. 

3.2.1 Calculation methods of user similarities and item similarities 

We employ cosine similarity to measure the similarity between users and the 

similarity between items. Each item contains many entities, like the movie contains the 

information of its director, actors and genre. The user might be interested in the item or 

the entity. Inspired by this, we calculate the user similarity at the item level and the 

entity level. We also calculate the user-based and entity-based item similarity. 

The item-based user similarity (𝑆𝑖𝑚𝑢𝑠𝑒𝑟
𝑖𝑡𝑒𝑚) and the user-based item similarity (𝑆𝑖𝑚𝑖𝑡𝑒𝑚

𝑢𝑠𝑒𝑟) 

can be calculated by the interaction matrix R. The user similarity between user u and 

user w and the item similarity between item i and item j are defined as follows. 

𝑆𝑖𝑚𝑢𝑠𝑒𝑟
𝑖𝑡𝑒𝑚(𝑢, 𝑤) =

∑ 𝑅𝑢𝑘𝑘 ∙ 𝑅𝑤𝑘

√∑ 𝑅𝑢𝑘
2

𝑘 √∑ 𝑅𝑤𝑘
2

𝑘

 (3.1) 

𝑆𝑖𝑚𝑖𝑡𝑒𝑚
𝑢𝑠𝑒𝑟(𝑖, 𝑗) =

∑ 𝑅:,𝑖𝑘𝑘 ∙ 𝑅:,𝑗𝑘

√∑ 𝑅:,𝑖𝑘

2
𝑘 √∑ 𝑅:,𝑗𝑘

2
𝑘

 

(3.2) 

 

Figure 3.1 Illustration of the example of three users’ implicit feedback on five movies 
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The entity-based user similarity is calculated based on the user-entity matrixes 

(𝑀𝑢𝑒1, … , 𝑀𝑢𝑒𝑄) of different relations (The movie is directed by A. “directed by” is the 

relation), where Q represents the number of relations. Each value in the user-entity 

matrix is the count of entities in the observed items. The entity-based user similarity 

between user u and user w can be calculated by the average of similarities under 

different relations as follows. 

𝑆𝑖𝑚𝑢𝑠𝑒𝑟
𝑒𝑛𝑡𝑖𝑡𝑦(𝑢, 𝑤) =

1

𝑄
∑

∑ 𝑀𝑢𝑒𝑟𝑢𝑞
∙ 𝑀𝑢𝑒𝑟𝑤𝑞𝑞

√∑ 𝑀𝑢𝑒𝑟𝑢𝑞

2
𝑞 √∑ 𝑀𝑢𝑒𝑟𝑤𝑞

2
𝑞

𝑄

𝑟=1

 
(3.3) 

Following the previous work, we calculate the item similarity at the entity level based 

on the item-entity matrixes ( 𝑀𝑖𝑒1, … , 𝑀𝑖𝑒𝑄 ) of different relations, where Q also 

represents the number of relations. The corresponding value in the item-entity matrix 

is equal to 1 when the item has a relation with the entity. Firstly, we compute the 

commuting matrix of each relation r as follows: 

𝑃𝑟 = 𝑀𝑖𝑒𝑟 ∙ 𝑀𝑖𝑒𝑟
𝑇  (3.4) 

where ∙  represents multiplication. The commuting matrix of all relations can be 

calculated by the Hadamard product of all matrixes (𝑃1, … , 𝑃𝑟 , … , 𝑃𝑄), which is defined 

as 

𝑃𝑎𝑙𝑙 = 𝑃1 ⊙, … ,⊙ 𝑃𝑟 ⊙, … ,⊙ 𝑃𝑄  (3.5) 

After obtaining the commuting matrix 𝑃𝑎𝑙𝑙, the entity-based item similarity between 

item i and item j is defined as follows. 

𝑆𝑖𝑚𝑖𝑡𝑒𝑚
𝑒𝑛𝑡𝑖𝑡𝑦(𝑖, 𝑗) =

2 ∙ 𝑃𝑎𝑙𝑙𝑖,𝑗

(𝑃𝑎𝑙𝑙𝑖,𝑖
+ 𝑃𝑎𝑙𝑙𝑗,𝑗

)
 (3.6) 

3.2.2 Calculation methods of potential preference scores  

We calculate the potential preference score matrix S (S ∈ 𝑹𝑀×𝑁) based on user 

similarities and item similarities. Five users who have the highest user similarities are 

considered as each user’s like-minded users. The potential preference score matrix (𝑆𝑢
′ ) 

from each user’s historical interactions is defined as Eq. (3.7). The potential preference 
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score matrix (𝑆𝑢
′′) from each user’s like-minded users is defined as Eq. (3.8). The final 

potential preference score matrix (𝑆𝑢) of each user u is defined as Eq. (3.9). 

𝑆𝑢
′ =

𝑅𝑢 ∙ 𝑆𝑖𝑚𝑖𝑡𝑒𝑚

∑ 𝑅𝑢𝑖𝑖
 

(3.7) 

𝑆𝑢
′′ =

1

|𝐺𝑢|
∑ (𝑆𝑖𝑚𝑢𝑠𝑒𝑟(𝑢, 𝑤) ∙ 𝑆𝑤

′

𝑤∈𝐺𝑢

) 
(3.8) 

𝑆𝑢 =
1

2
𝑆𝑢

′ +
1

2
𝑆𝑢

′′ 
(3.9) 

where 𝐺𝑢  represents the group of u’s, like-minded users. In 𝑆𝑢
′ ,  𝑆𝑢

′′  and 𝑆𝑢 , the 

corresponding values are fixed as 1 when items are observed by the user. In Table 3.1, 

we use abbreviations to represent different integration strategies. 

Table 3.1 Abbreviations of different integration strategies for calculating potential 

preference scores 

𝑆𝑖𝑚𝑢𝑠𝑒𝑟  𝑆𝑖𝑚𝑖𝑡𝑒𝑚 Abbr 𝑆𝑖𝑚𝑢𝑠𝑒𝑟  𝑆𝑖𝑚𝑖𝑡𝑒𝑚  Abbr 

Entity-based Entity-based UEIE Entity-based User-based UEIU 

Item-based Entity-based UIIE Item-based User-based UIIU 

3.2.3 Performance of CF-based methods  

We discuss the performance of potential preference scores calculated based on 

different integration strategies. We use the real-world dataset MovieLens 1M [81] for 

experiments, which will be introduced in Section 5. We randomly sampled 20%, 50% 

and 80% user-item interactions as training data and the rest as test data.  

For evaluating the performance of different methods, we use top-N evaluation 

metrics, including top-N results of precision, and normalized discounted cumulative 

gain (NDCG), which will also be described in Section 5. The results are shown in Table 

3.2. The numbers in boldface are the best results among all methods, from which we 

can see that: 

⚫ The results based on UEIU are the best on the dataset MovieLens (20%), and the 

results based on UIIU perform the best among all methods on the datasets 

MovieLens (50%) and MovieLens (80%). 

⚫ UEIU performs well when the sparsity of the user-item interaction matrix is high. 

The gap between UEIU and UIIU on the dataset MovieLens (20%) can be ignored 

considering the simplicity of UIIU.  
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  Therefore, we adopt the UIIU method to calculate users’ potential preference scores 

(S) for distinguishing relative preference for each user’s unobserved items in 

recommendation models. 

Table 3.2 The results of different integration strategies methods 

Datasets Methods Prec@5 NDCG@5 NDCG@10 

MovieLens 1M 

(20%) 

UEIE 0.2971 0.3098 0.2835 

UIIE 0.2512 0.2623 0.2419 

UEIU 0.4074 0.4144 0.3929 

UIIU 0.3917 0.3861 0.3739 

MovieLens 1M 

(50%) 

UEIE 0.3267 0.3393 0.3076 

UIIE 0.2945 0.3082 0.2784 

UEIU 0.4185 0.4286 0.3999 

UIIU 0.4294 0.4379 0.4097 

MovieLens 1M 

(80%) 

UEIE 0.2303 0.2427 0.2258 

UIIE 0.2149 0.2281 0.2105 

UEIU 0.3143 0.3350 0.3095 

UIIU 0.3274 0.3471 0.3220 

3.3 Potential Preference Scores based on LDA 

3.3.1 Motivation 

We leverage the UIIU method to calculate potential preference scores between users 

and items for further distinguishing each user’s preference difference between each pair 

of unobserved items. It provides an explainable reason for why the user might have an 

interest in the items with higher potential preference scores. For instance, 

recommending item 1 to user 2 might be explained by 

“𝑖𝑡𝑒𝑚 1
watched

→
 𝑢𝑠𝑒𝑟 1

like − minded
→

 𝑢𝑠𝑒𝑟 2 ”. However, for a user, the potential 

preference scores of the user’s unobserved items might be all equal to zero when lacking 

the information about like-minded users and similarities between items. 

We observe that users have their personalized chosen intentions when they choose 

items on a service system. Learning these intentions can help to find items users might 

like and give explainable recommendations. 
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(a) (b) 

Figure 3.2 Illustration of examples that (a) the user chooses a movie in movie 

application, (b) the user chooses a song in music listening application 

Examples. Suppose Amy is a regular user of a movie application. She likes to choose 

movies according to their genres when she does not have a clear goal. She prefers 

disaster movies to other movies, so she first clicks the disaster option under the "genre". 

Then, she chooses a movie she has an interest in it. Figure 3.2 illustrates the above 

process and how Amy chooses a song in the music listening application. Amy likes to 

choose songs according to her current mood. She clicks the happy option under the 

“Mood” and chooses a song. 

Amy’s intentions are clear in the above examples when choosing a movie or a song, 

i.e., according to the movie’s genre or the emotion of the music. We assume users have 

their personalized chosen intentions on different service systems and consider most 

people’s chosen intention about items have continuity and do not change suddenly. We 

recommend items for users only by tracking the chosen intentions from users’ historical 

interactions without using information about like-minded users and similarities between 

items. Convincing recommendation results can be obtained with the learning results of 

users’ chosen intentions. 

Motivated by these considerations, we propose a novel calculation method to give 

more accurate recommendations. We treat users’ chosen intentions as the latent 

information and model the generating process of users’ historical interactions to 

summarize each user’s personalized chosen intentions, which is explainable. Users’ 

potential preference scores on their unobserved items could be obtained. 
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3.3.2 User’s chosen intention 

As mentioned before, in this paper, we propose a novel calculation method of 

potential preference scores considering the user’s chosen intention, the definition of 

which is as follow: 

Definition (user’s chosen intention) The user’s chosen intention is the user’s 

personalized behavior when he/she chooses items. For example, a user chooses a movie 

according to the movies’ genre (comedy, action, romance, etc.) when he/she does not 

have a clear goal in a movie application. Here, “movie genre” is the user’s chosen 

intention. 

3.3.3 Calculation method of potential preference scores 

Table 3.3 Notations for the LDA model 

Symbols Descriptions 

𝑀 the number of users 

𝑁𝑢 the number of user u’s historical items 

K the number of chosen intentions 

f chosen intention 

u user 

i item 

𝜗 user-chosen intention distribution 

∅ chosen intention-item distribution 

𝛼 dirichlet hyper parameter for 𝜗 

𝛽 dirichlet hyper parameter for ∅ 

For 𝑀 users, we assume each user’s 𝑁𝑢 historical items are created from the user’s 

K chosen intentions and leverage LDA to model the generating process of users’ 

historical interactions. LDA samples user-chosen intention distribution 𝜗  ( 𝜗 ∈

 ℝ𝑀𝑢×𝐾 ) and chosen intention-item distribution ∅ (∅ ∈  ℝ𝐾×𝑁 ) according to two 

dirichlet hyper parameters (𝛼 and 𝛽). Then, the user chooses chosen intention f. Based 

on chosen intention f, the user chooses item i. The generative process of users’ historical 

items is defined in Algorithm 1. 



 
 

 

 
 

CALCULATION METHODS OF POTENTIAL PREFERENCE SCORES                        28 

The probability of chosen intention f for user u’s n-th historical item, conditioned on 

the other variables, is given as:  

𝑃(𝑓𝑛 = 𝑓 | 𝒇−𝑛 , 𝑖)  ∝
{𝑛𝑓

𝑖 }
−𝑛

+ 𝛽

{𝑛𝑓}
−𝑛

+ 𝑁𝑢𝛽
 × 

{𝑛𝑢
𝑓}

−𝑛
+ 𝛼

{𝑛𝑢}−𝑛 + 𝐾𝛼
 (3.10) 

where {𝑛𝑓
𝑖 }

−𝑛
 represents the number of item i in chosen intention f of all users except 

for the n-th historical item of user u, and {𝑛𝑓}
−𝑛

 counts the number of historical item 

i in chosen intention f of all users. {𝑛𝑢
𝑓}

−𝑛
 presents the number of historical item i in 

chosen intention f of user u except for the n-th historical item of user u, and {𝑛𝑢}−𝑛 

counts the number of historical items of user u. 

The approximate probability of chosen intention f for user u is shown in Eq. (3.11). 

𝜗𝑢,𝑓 =
𝑛𝑢

𝑓
+ 𝛼

𝑛𝑢 + 𝐾𝛼
 (3.11) 

The approximate probability of item i belongs to the chosen intention f is shown in 

Eq. (3.12). 

∅𝑓,𝑖 =
𝑛𝑓

𝑖 + 𝛽

𝑛𝑓 + 𝑁𝑢𝛽
  (3.12) 

We could calculate user u’s potential preference score on item i based on two 

distributions 𝜗 and ∅, which is defined as the inner product of 𝜗𝑢 and ∅𝑖. 

3.3.4 Performance of the LDA-based method  

 

Algorithm 1 The generative process of users’ historical items of LDA modeling 

for each user u ∈ {1,2, … , 𝑀}. 

for each chosen intention f ∈ {1,2, … , 𝐾}. 

choose 𝜗𝑢,𝑓  ~𝐷𝑖𝑟(𝛼)  

for each chosen intention f ∈ {1,2, … , 𝐾}. 

for each item i ∈ {1,2, … , 𝑁𝑢}. 

choose ∅𝑓,𝑖 ~𝐷𝑖𝑟(𝛽) 

for each item of user u. 

choose f ~𝑀𝑢𝑙(𝜗𝑢)  

choose 𝑖 ~𝑀𝑢𝑙(∅𝑓) 
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We discuss the performance of the LDA-based calculation method inspired by our 

assumption about users’ chosen intentions on items. We provide each user a list of 

ranking items according to potential preference scores calculated by the inner product 

of 𝜗 and ∅. We first compare the LDA-based recommendation results with existing 

recommendation methods PopRank, UIIU and BPR, which will be introduced in 

Section 5. Then, we will investigate the impacts of different settings of users’ chosen 

intentions. 

  We also use three real-world datasets Last-FM, MovieLens 100K and MovieLens 

1M, for experiments, which will also be introduced in Section 5.1. We randomly 20% 

and 50% observed user-item interactions as training data and the rest as test data. For 

evaluating the performance of different methods, we use top-N evaluation metrics, 

including top-N results of precision and normalized discounted cumulative gain 

(NDCG).  

In our experiments, the iteration number is set as 3000 for the LDA model. We set 

hyper parameters as 𝛼=0.05, 𝛽=0.01. The number of chosen intentions is fixed as 

K=20 for all three datasets. For BPR, we employ a grid search in {0.02, 0.05, 0.1} to 

find the best learning rate 𝜂 for three datasets. The dimension of the latent feature 

vector and the regularization parameter is fixed as 20 and 0.01, respectively. The value 

of the iteration number is set to 10,000. 

The results of all recommendation methods are shown in Table 3.4 and Table 3.5. 

The best result on each dataset is displayed in bold, from which we could see that: 

(1) LDA achieves more accurate recommendation results than other recommendation 

methods in terms of Prec@5, NDCG@5 and NDCG@10 in all cases, especially on 

the dataset Last-FM. This further shows the benefit of performing each user’s 

prediction based on the assumption of users’ chosen intentions.  

(2) In Table 3.4 and Table 3.5, it is obvious that LDA performs better than UIIU 

significantly on all datasets. The reason may be that the LDA-based calculation 

method does not suffer from the problem caused by lacking information about like-

minded users and similarities between items in the UIIU method. 
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Table 3.5 Performance comparison for PopRank, UIIU, BPR and LDA in terms of 

Prec@5, NDCG@5 and NDCG@10 on datasets Last-FM (50%), MovieLens 100K 

(50%) and MovieLens 1M (50%) 

Datasets Methods Prec@5 NDCG@5 NDCG@10 

Last-FM 

(50%) 

PopRank 0.1434 0.1538 0.1501 

UIIU 0.2740 0.2870 0.2596 

BPR 0.3346 0.3500 0.3062 

LDA 0.3573 0.3725 0.3239 

MovieLens 

100K (50%) 

PopRank 0.3862 0.4009 0.3713 

UIIU 0.5007 0.5201 0.4771 

BPR 0.5461 0.5613 0.5266 

LDA 0.5648 0.5820 0.5394 

MovieLens 

1M (50%) 

PopRank 0.3301 0.3454 0.3293 

UIIU 0.4294 0.4379 0.4097 

BPR 0.5092 0.5177 0.4912 

LDA 0.5214 0.5317 0.5017 

 

Table 3.4 Performance comparison for PopRank, UIIU, BPR and LDA in terms of 

Prec@5, NDCG@5 and NDCG@10 on datasets Last-FM (20%), MovieLens 100K 

(20%) and MovieLens 1M (20%) 

Datasets Methods Prec@5 NDCG@5 NDCG@10 

Last-FM 

(20%) 

PopRank 0.1588 0.1314 0.1441 

UIIU 0.1751 0.1794 0.1637 

BPR 0.2874 0.2947 0.2819 

LDA 0.3453 0.3380 0.3184 

MovieLens 

100K (20%) 

PopRank 0.4838 0.4960 0.4702 

UIIU 0.4592 0.4729 0.4402 

BPR 0.4880 0.4975 0.4769 

LDA 0.5519 0.5677 0.5295 

MovieLens 

1M (20%) 

PopRank 0.3611 0.3362 0.3528 

UIIU 0.3917 0.3861 0.3739 

BPR 0.5145 0.5213 0.4999 

LDA 0.5281 0.5196 0.5103 
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The number of chosen intentions represents the complexity of the LDA model; the 

descriptions of users and items are limited when the number of chosen intentions is 

small. And the complexity of the LDA model will be increased with the increase of the 

chosen intention number. We conduct experiments to study the effects of different 

chosen intention numbers on the performance of the model on three datasets. 

 

 

 

Figure 3.3 Results of different chosen intention numbers in terms of Prec@5, 

NDCG@5 and NDCG@10 on datasets Last-FM (20%), MovieLens 100K (20%) 

and MovieLens 1M (20%) 
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Figure 3.4 Results of different chosen intention numbers in terms of Prec@5, 

NDCG@5 and NDCG@10 on datasets Last-FM (50%), MovieLens 100K (50%) 

and MovieLens 1M (50%) 

To explore the effects of chosen intentions (K) on recommendation results, we fuse 

different chosen intentions 𝐾 = {10, 20, 30, 40, 50} into the LDA model. Figure 3.4 

illustrates the results across all evaluation metrics on datasets Last-FM, MovieLens 

100K and MovieLens 1M. 
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In Figure 3.3 and Figure 3.4, the performance of the LDA-based method behaves 

differently on three datasets when chosen intentions are adjusted in {10, 20, 30, 40, 50}. 

We observe that optimal results on different datasets are obtained with different values. 

3.4 Summary 

In this section, we studied two calculation methods of users’ potential preference 

scores on their unobserved items based on users’ historical interactions for further 

studying, including the UIIU-based method and the LDA-based method. 

Overall, the potential preference scores calculated by the UIIU-based method are the 

aggregation of each user’s like-minded users and the similarities between items. It 

suffers from the data sparsity problem. Existing users’ like-minded users might not be 

found when the user-item interaction matrix has high sparsity. More user-item 

interactions could obtain more accurate recommendations. Different from the UIIU-

based method, the potential preference scores calculated by the LDA-based method 

only need each user’s own historical interactions. 

We calculate users’ potential preference scores to distinguish the preference 

differences between their unobserved items. Actually, we only need the relative 

preference difference between unobserved items. This process could be realized by the 

more simple strategy such as distinguishing the potential preference differences 

between items according to item popularity, i.e., the item that has higher popularity 

among users may attract more attention than another item. Moreover, the specific 

potential preference scores could not only be used to measure the fine-grained 

differences between unobserved items but also be taken into account in the calculation 

 

Figure 3.5 Illustration of the representation matrix of the one-class feedback data 

with user’s potential preference scores 
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process for more accurate results, such as considering the potential preference scores 

into the prediction function or using the potential preference scores to adjust the 

confidence of pairwise preferences. 

As we mentioned in Section 1 that CF-based recommendation methods usually suffer 

from the sparsity of user-item interactions. We consider this problem could be relaxed 

with the potential preference scores because users’ potential preference scores provide 

more potential interactions between users and items. An example of the representation 

matrix of the one-class feedback data with the user’s potential preference scores is 

shown in Figure 3.5. The grey blocks in the representation matrix are recorded users’ 

potential preference scores on their unobserved items. 
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4 Recommendation Models for One-class 

Collaborative Filtering 

The previous section introduced different calculation methods of users’ potential 

preference scores and analyzed their performances. The relative preference of users’ 

unobserved items could be distinguished according to potential preference scores. With 

the prior information, three extension models of BPR (PBPR, PBPR’s improved model 

PBPR* and DBPL) are studied for more accurate recommendation results. We will 

describe the objective functions and learning methods of three recommendation models 

in this section. 

4.1 Prior-based Bayesian Pairwise Ranking 

Prior-based Bayesian Pairwise Ranking (PBPR) is proposed with the assumption that 

users’ potential preferences on their unobserved items are different. It is also an 

extension model of BPR and does not need any social information, for datasets 

containing user-item interactions. Moreover, we measure the fine-grained preference 

differences between unobserved items of the user according to potential preference 

scores, rather than dividing unobserved items into different groups and distinguishing 

the preference difference between unobserved items from different groups. 

 

Figure 4.1 Illustration of relative preference assumption based on  

users’ preference scores 
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4.1.1 Objective function 

Besides observed items 𝐼𝑢
+ , the remaining items which are unobserved by users 

could be attributed to two reasons: the user has not seen these items, or the user is not 

interested in these items [57]. Different from the assumption adopted by the BPR with 

equal importance of the unobserved items, we consider user’s preferences on 

unobserved items are not equal, and the preference difference between unobserved 

items could be measured by potential preference scores between users and items. We 

give an illustration of preference assumption based on prior information in Figure 4.1. 

For user u, we record “1” for his/her observed items and record the user’s potential 

preference scores on unobserved items in the grey area with a value varied from 0 to 1. 

We consider that item j has a higher possibility of attracting the user u’s attention than 

item k according to their potential preference scores. 𝑟𝑢𝑗 >  𝑟𝑢𝑘  represents the 

preference difference between item j and item k. Inspired by this assumption, we can 

Table 4.1 Notations for the proposed PBPR model 

Symbols Descriptions 

S potential preference score matrix 

u a user 

i an observed item of user u 

j an unobserved item of user u 

k an unobserved item of user u and 𝑆𝑢𝑗  > 𝑆𝑢𝑘  

𝑈𝑡𝑟  the set of users 

𝑈𝑗
𝑡𝑟  the set of users who have interest in item j 

𝑈𝑢 the latent factor vector of user u (𝑈𝑢  ∈ d) 

𝑉𝑖 the latent factor vector of item i (𝑉𝑖  ∈ d) 

𝐼𝑢
+ observed items of user u 

𝐼𝑡𝑟\𝐼𝑢
+ unobserved items of user u 

w a user who has observed item j 

𝑟𝑢𝑖 user u’s preference on item i 

𝑟𝑢𝑖𝑗 user u’s preference difference between item i and item j 

𝜆1
𝑝
 a trade-off parameter used to fuse users’ (u and w) preferences on item j 

𝜆𝑝 a control coefficient used to fuse 𝑟𝑢𝑖𝑗 and 𝑟𝑁𝑢𝑗𝑢𝑘  

𝛽𝑝 the hyper-parameter to tune the regularization terms 

𝜂 the learning rate 
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simply extend BPR to our proposed new model called Prior-based Bayesian Pairwise 

Ranking (PBPR). The tentative likelihood for users and items could be written as 

follows: 

PBPR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗 , 𝑟𝑢𝑗 >  𝑟𝑢𝑘)

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

   [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗, 𝑟𝑢𝑗 <  𝑟𝑢𝑘)] 

(4.1) 

where 𝐼𝑢
+  represents observed items of user u. j and k are two random sampled 

unobserved items of user u, and item j is more likely to be observed by the user than 

item k. 𝑟𝑢𝑖 represents user u’s preference on item i, which can be calculated by the 

inner product between the latent factor vector of user u (𝑈𝑢  ∈ d) and the latent factor 

vector of item i (𝑉𝑖  ∈ d), i.e., 𝑟𝑢𝑖 = 𝑈𝑢
𝑇 ∙ 𝑉𝑖, where d represents the number of latent 

dimensions. 

The shortcoming of PBPR in Eq. (4.1) is that its performance largely depends on the 

accuracy of potential preference scores. We consider that when the individual 

preference 𝑟𝑢𝑗 is fused with an individual preference 𝑟𝑤𝑗 (𝑤 ∈ 𝑈𝑗
𝑡𝑟 , 𝑈𝑗

𝑡𝑟  represents 

the set of users who observe item j), the fused preference 𝑟𝑁𝑢𝑗 is more likely to be 

higher than the individual preference 𝑟𝑢𝑘 compared with the individual preference 𝑟𝑢𝑗. 

Based on the above consideration, the likelihood of our proposed PBPR model could 

be given by: 

PBPR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗 , 𝑟𝑁𝑢𝑗 >  𝑟𝑢𝑘)

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

[1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗 , 𝑟𝑁𝑢𝑗 <  𝑟𝑢𝑘)] 

(4.2) 

where 𝑟𝑁𝑢𝑗 = 𝜆1
𝑝

𝑟𝑤𝑗 + (1 − 𝜆1
𝑝

)𝑟𝑢𝑗 represents the fused preferences on item j, 𝜆1
𝑝
 is 

a trade-off parameter used to fuse two different users’ preferences on item j.  
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4.1.2 Learning the model  

 

Figure 4.2 Illustration of each randomly sampled record in PBPR  

We represent 𝑟𝑢𝑖 >  𝑟𝑢𝑗 ,  𝑟𝑁𝑢𝑗
>  𝑟𝑢𝑘  as 𝜆𝑝(𝑟𝑢𝑖 −  𝑟𝑢𝑗) + (1 − 𝜆𝑝)(𝑟𝑁𝑢𝑗

−  𝑟𝑢𝑘) , 

where 𝜆𝑝 is a control coefficient used to fuse their relations. To maximize the posterior 

probability for PBPR, we employed σ(x) = 1/(1 + exp(−𝑥))  to approximate the 

probability 𝑃𝑟 (∙) , following the BPR algorithm, where 𝜎  represents the logistic 

sigmoid function. The log-likelihood is also employed to reduce the calculation 

complexity of PBPR. For each randomly sampled record, it includes a user u, an 

observed item i of user u, two unobserved items j, k of user u, and a user w, where 𝑤 ∈

𝑈𝑗
𝑡𝑟 . The illustration of this process is shown in Figure 4.2. For each user u, an observed 

item i and two unobserved items are selected. The unobserved item with a higher 

potential preference score is item j, another is item k. User w has positive feedback on 

item j.The objective function can be written as: 

𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘) =  − lnσ (𝜆𝑝(𝑟𝑢𝑖 −  𝑟𝑢𝑗) + (1 − 𝜆𝑝) (𝑟𝑁𝑢𝑗
−  𝑟𝑢𝑘))

+
 𝛽𝑝

2
(‖𝑈𝑢‖2 + ‖𝑈𝑤‖2 + ‖𝑉𝑖‖2 + ‖𝑉𝑗‖

2
+ ‖𝑉𝑘‖2) 

(4.3) 

where ‖𝑈𝑢‖2, ‖𝑈𝑤‖2 , ‖𝑉𝑖‖2, ‖𝑉𝑗‖
2
 and ‖𝑉𝑘‖2are regularization terms to prevent 

overfitting in the learning process, and 𝛽𝑝  is the hyper-parameter to tune the 

regularization terms. The individual preference score is modeled by matrix factorization.  
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Following the well-known stochastic gradient descent (SGD) algorithm, each 

parameter could be updated as follows, 

𝜃 ← 𝜃 − 𝜂
𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝜃
 (4.4) 

where 𝜃 can be 𝑈𝑢, 𝑈𝑤, 𝑉𝑖, 𝑉𝑗, or 𝑉𝑘 , and 𝜂 > 0 is the learning rate. 

  We represent the fuse of the preference difference between 𝑟𝑢𝑖  and 𝑟𝑢𝑗 , and the 

preference difference between 𝑟𝑁𝑢𝑗  and 𝑟𝑢𝑘  as 𝑟𝑢𝑖𝑢𝑗; 𝑁𝑢𝑗𝑢𝑘  . So, we can derive the 

following gradients for users: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑢
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
 

                           × (𝜆𝑝𝑉𝑖 + ((1 − 𝜆𝑝)(1 − 𝜆1
𝑝) − 𝜆𝑝) 𝑉𝑗 − (1 − 𝜆𝑝)𝑉𝑘)

+ 𝛽𝑝𝑈𝑢 

(4.5) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑤
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆1

𝑝(1 − 𝜆𝑝)𝑉𝑗) + 𝛽𝑝𝑈𝑤 (4.6) 

and we can get the gradients for items as follows: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑖
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆𝑝𝑈𝑢) + 𝛽𝑝𝑉𝑖 (4.7) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑗
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
 

× (((1 − 𝜆𝑝)(1 − 𝜆1
𝑝) − 𝜆𝑝) 𝑈𝑢 + 𝜆1

𝑝(1 − 𝜆𝑝)𝑈𝑤) + 𝛽𝑝𝑉𝑗 

(4.8) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑘
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (−(1 − 𝜆𝑝)𝑈𝑢) + 𝛽𝑝𝑉𝑘  (4.9) 

where 
𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
= −

exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)

1+exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
= −

1

1+exp (𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
.  

4.1.3 The PBPR algorithm 

The steps of PBPR are summarized in Algorithm 2 in detail. We divide PBPR into 

two steps for notational simplicity: user and item sampling (lines 4-7) and parameter 

update (lines 8-13). 



 
 

 

 
 

RECOMMENDATION MODELS FOR ONE-CLASS COLLABORATIVE FILTERING               40 

In line 6, we randomly pick two unobserved items j and k of user u, and the 

unobserved item with higher potential preference scores is considered as unobserved 

item j, another is unobserved item k. More details in the sampling process will be 

discussed in Section 5. 

4.1.4 Computational complexity  

PBPR needs the potential preference scores of each user to distinguish the preference 

differences between unobserved items. We use a user-based and an item-based 

collaborative filtering method, i.e., the UIIU method, which considers the similarities 

between each pair of users and the similarities between each pair of items. The 

computational complexity of computation for potential preference scores is 𝑂(𝑀2 +

𝑁2 + |𝐺𝑢|𝑀), where 𝑀 is the number of users, 𝑁 is the number of items, and |𝐺𝑢| 

Algorithm 2 Learning parameters for the PBPR model 

Input:  

User-item interaction matrix R.  

Potential preference score matrix S. 

Parameters η, 𝜆𝑝, 𝜆1
𝑝

, and 𝛽𝑝. 

Output:  

The learned model parameters {𝑈𝑢 , 𝑉𝑖 , 𝑢 ∈ 𝑈𝑡𝑟 , 𝑖 ∈ 𝐼𝑡𝑟}. 

1. Randomly initialize U and V. 

2. For 𝑡1 = 1, … , 𝑇 

3.   For 𝑡2 = 1, … , 𝑀 

4.     Randomly pick a user 𝑢 ∈ 𝑈𝑡𝑟 . 

5.     Randomly pick an item 𝑖 ∈ 𝐼𝑢
+. 

6.     Randomly pick two items 𝑗, 𝑘 ∈ 𝐼𝑡𝑟\𝐼𝑢
+, 𝑆𝑢𝑗  > 𝑆𝑢𝑘 . 

7.     Randomly pick a user 𝑤 ∈ 𝑈𝑗
𝑡𝑟 . 

8.     Calculate 𝑟𝑁𝑢𝑗 and 
𝜕𝐿

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
. 

9.     Update 𝑈𝑢 via Eq. (4.5). 

10.     Update 𝑈𝑤 via Eq. (4.6). 

11.     Update 𝑉𝑖 via Eq. (4.7). 

12.     Update 𝑉𝑗 via Eq. (4.8). 

13.     Update 𝑉𝑘  via Eq. (4.9). 

14.   End 

15. End 
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is the number of each user’s like-minded users. 

We need to update the value of 5d parameters {𝑈𝑢, 𝑈𝑤, 𝑉𝑖, 𝑉𝑗, 𝑉𝑘}. Therefore, the 

computational complexity of the learning parameters in the PBPR is 𝑂(𝑀𝑇𝑑), where 

|𝑈| is also the number of users, T is the number of iterations, and d is the number of 

latent dimensions. In total, the time complexity of the recommended method is 

𝑂(𝑀2 + 𝑁2 + |𝐺𝑢|𝑀 + 𝑀𝑇𝑑). 

4.2 Improving PBPR 

We use potential preference scores obtained from the user’s chosen intention learning 

module to improve the performance of PBPR. In addition, we consider several 

strategies for more accurate recommendation results. More details will be described in 

the following subsections.  

4.2.1 Strategies for PBPR  

We observe some shortcomings in the previous work. Firstly, PBPR needs users’ 

potential preference scores on their unobserved items to distinguish the difference 

between each pair of unobserved items. In PBPR, potential preference scores were 

calculated by the user-based and item-based collaborative filtering method. This 

method could provide an explainable reason why users might have an interest in some 

items. However, many existing users have few interactions with items. It caused some 

users’ potential preference scores on unobserved items to be zero. So, the second 

strategy for distinguishing differences between each user’s unobserved items was 

designed to assume that users like popular unobserved items over other unobserved 

items. During the sampling process, PBPR randomly samples two unobserved items for 

further studying. Actually, the recommendation results may be influenced when the 

potential preference difference between two unobserved items is very small because 

even a human possibly hesitates to make a choice when faced with two similar items. 

We consider the reasons why two items have close potential preference scores: 

(1) the user really has similar preferences on them, 

(2) the sparsity of data causes users to have similar preference scores on some items. 

For enhancing the performance of PBPR, two strategies are proposed to alleviate the 

problems above, including:  
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(1) Instead of the user-based and item-based collaborative filtering method, we 

leverage the inner product of two distributions obtained in the user’s chosen 

intention learning module to measure the differences between unobserved items. 

We do not worry about the problem caused by lacking information such as like-

minded users in the above situation because the calculation method of potential 

preference scores based on two distributions only relies on users’ historical 

interactions.  

(2) Empirically, we adopt a simple strategy to widen the preference gap between user 

u’s two unobserved items (j and k) randomly picked in the sampling process, which 

is that at least an unobserved item of user u has been observed by at least 𝑁𝐴 users. 

4.2.2 Objective function 

We denote the modified PBPR as PBPR*. Motivated by [58], the objective function 

of the PBPR* model can be rewritten as: 

𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘) =  − lnσ (𝜆∗ ∙ 𝑐𝑢𝑖𝑗(𝑟𝑢𝑖 −  𝑟𝑢𝑗) + (1 − 𝜆∗) ∙ 𝑐𝑢𝑗𝑘(𝑟𝑁𝑢𝑗
−  𝑟𝑢𝑘))

+
 𝛽∗

2
(‖𝑈𝑢‖2 + ‖𝑈𝑤‖2 + ‖𝑉𝑖‖2 + ‖𝑉𝑗‖

2
+ ‖𝑉𝑘‖2) 

(4.10) 

where 𝑐𝑢𝑖𝑗  and 𝑐𝑢𝑗𝑘  are confidence coefficients, which are used to adjust the 

confidence of pairwise preferences, 𝛽∗  is the hyper-parameter to tune the 

regularization terms. 𝑟𝑢𝑖  represents user u’s preference on item i, which can be 

Table 4.2 Notations for the proposed PBPR* model 

Symbols Descriptions 

u a user 

i an observed item of user u 

j an unobserved item of user u 

k an unobserved item of user u and 𝑆𝑢𝑗  > 𝑆𝑢𝑘  

w a user who has observed item j 

𝜆1
∗  a trade-off parameter used to fuse users’ (u and w) preferences on item j 

𝜆∗ a control coefficient used to fuse 𝑟𝑢𝑖𝑗 and 𝑟𝑁𝑢𝑗𝑢𝑘  

𝛽∗ the hyper-parameter to tune the regularization terms 

𝜂 the learning rate 

𝜗 user-chosen intention distribution 

∅ chosen intention-item distribution 
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calculated by the inner product between the latent factor vector of user u (𝑈𝑢  ∈ d) 

and the latent factor vector of item i (𝑉𝑖  ∈ d), i.e., 𝑟𝑢𝑖 = 𝑈𝑢
𝑇 ∙ 𝑉𝑖, where d represents 

the number of latent dimensions. 

4.2.3 Learning the model 

Following [58], we define Eq. (4.11) to simplify the representation. 

𝑟𝑢𝑖𝑗 = 𝑐𝑢𝑖𝑗(𝑟𝑢𝑖 −  𝑟𝑢𝑗) (4.11) 

The optimization problem of the objective function in Eq. (4.10) can also be solved 

by the SGD algorithm. The parameter 𝜃 in PBPR* could be updated as follows: 

𝜃 ← 𝜃 − 𝜂
𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝜃
 (4.12) 

where 𝜃  can be 𝑈𝑢 , 𝑈𝑤 , 𝑉𝑖 , 𝑉𝑗  or 𝑉𝑘  , and 𝜂 > 0  is the learning rate. We then 

derive the following gradients for users: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑢
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
 

                           × (𝜆∗ ∙ 𝑐𝑢𝑖𝑗𝑉𝑖 + ((1 − 𝜆∗)(1 − 𝜆1
∗ ) ∙ 𝑐𝑢𝑗𝑘 − 𝜆∗ ∙ 𝑐𝑢𝑖𝑗) 𝑉𝑗 − (1

− 𝜆∗) ∙ 𝑐𝑢𝑗𝑘𝑉𝑘) + 𝛽∗𝑈𝑢 

(4.13) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑤
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆1

∗ (1 − 𝜆∗) ∙ 𝑐𝑢𝑗𝑘𝑉𝑗) + 𝛽∗𝑈𝑤 (4.14) 

and we can get the gradients for items as follows: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑖
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆∗ ∙ 𝑐𝑢𝑖𝑗𝑈𝑢) + 𝛽∗𝑉𝑖 (4.15) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑗
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
 

× (((1 − 𝜆∗)(1 − 𝜆1
∗ ) ∙ 𝑐𝑢𝑗𝑘 − 𝜆∗ ∙ 𝑐𝑢𝑖𝑗) 𝑈𝑢 + 𝜆1

∗ (1 − 𝜆∗) ∙ 𝑐𝑢𝑗𝑘𝑈𝑤) + 𝛽∗𝑉𝑗  

(4.16) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑘
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (−(1 − 𝜆∗) ∙ 𝑐𝑢𝑗𝑘𝑈𝑢) + 𝛽∗𝑉𝑘  (4.17) 

where 
𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
= −

exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)

1+exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
= −

1

1+exp (𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
.  
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4.2.4 The PBPR* algorithm 

The process of PBPR* is summarized in Algorithm 3 in detail. We divide PBPR* 

into two steps for notational simplicity: user and item sampling (lines 4-7) and 

parameter update (lines 8-13). 

  In line 6, 𝑠𝑢𝑗 and 𝑠𝑢𝑘 represent user u’s potential preference scores on item j and 

item k, and item j has been observed by at least 𝑁𝐴 users, i.e., 𝑈𝑗
𝑡𝑟 ≥  𝑁𝐴. We fix the 

user u’s potential preference score on each observed item as 1 and use the sigmoid 

function to map the potential preference score of the unobserved item into the range [0, 

1), which is given by Eq. (4.18). 

Algorithm 3 Learning parameters for the PBPR* model 

Input:  

User-item interaction matrix R. 

User-chosen intention distribution 𝜗. 

Chosen intention-item distribution ∅.  

Parameters η, 𝜆∗, 𝜆1
∗ , and 𝛽∗. 

Output:  

The learned model parameters {𝑈𝑢 , 𝑉𝑖 , 𝑢 ∈ 𝑈𝑡𝑟 , 𝑖 ∈ 𝐼𝑡𝑟}. 

1. Randomly initialize U and V. 

2. For 𝑡1 = 1, … , 𝑇 

3.   For 𝑡2 = 1, … , 𝑀 

4.     Randomly pick a user 𝑢 ∈ 𝑈𝑡𝑟 . 

5.     Randomly pick an item 𝑖 ∈ 𝐼𝑢
+. 

6.     Randomly pick two items 𝑗, 𝑘 ∈ 𝐼𝑡𝑟\𝐼𝑢
+.  

((𝑈𝑗
𝑡𝑟 ≥  𝑁𝐴 𝑜𝑟 𝑈𝑘

𝑡𝑟 ≥  𝑁𝐴) and 𝑆𝑢𝑗 > 𝑆𝑢𝑘) 

7.     Randomly pick a user 𝑤 ∈ 𝑈𝑘
𝑡𝑟 . 

8.     Calculate 𝑟𝑁𝑘
 and 

𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
. 

9.     Update 𝑈𝑢 via Eq. (4.13). 

10.     Update 𝑈𝑤 via Eq. (4.14). 

11.     Update 𝑉𝑖 via Eq. (4.15). 

12.     Update 𝑉𝑗 via Eq. (4.16). 

13.     Update 𝑉𝑘  via Eq. (4.17). 

14.   End 

15. End 
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𝑠𝑢𝑗 =
1

1 + 𝑒−𝜗𝑢∙𝜙𝑗
 (4.18) 

The confidence coefficients 𝑐𝑢𝑖𝑗 is defined as 

𝑐𝑢𝑖𝑗 =
1

1 + 𝑒−(𝑠𝑢𝑖−𝑠𝑢𝑗)
 (4.19) 

and the confidence coefficients 𝑐𝑢𝑗𝑘  is defined as 

𝑐𝑢𝑗𝑘 =
1

1 + 𝑒−(𝑠𝑁𝑢𝑗−𝑠𝑢𝑘)
 (4.20) 

where 𝑠𝑁𝑢𝑗  is calculated by 𝑠𝑁𝑢𝑗 = 𝜆1
∗ 𝑠𝑤𝑗 + (1 − 𝜆1

∗ )𝑠𝑢𝑗. 

4.2.5 Computational complexity  

In the PBPR*-based recommendation method, the potential preference scores of each 

user on items are calculated by the LDA-based method. The computational complexity 

of computation for potential preference scores is 𝑂(𝐾𝑁𝑎𝑙𝑙𝑇), where 𝐾 is the number 

of chosen intentions, 𝑁𝑎𝑙𝑙 is the number of all interactions in the dataset, and 𝑇 is the 

number of iterations setting for the LDA model. 

The computational complexity of the learning parameters in the PBPR* is 𝑂(𝑀𝑇𝑑). 

Therefore, the total time complexity of the recommended method is 𝑂(𝐾𝑁𝑎𝑙𝑙𝑇 +

𝑀𝑇𝑑), where 𝑀 is the number of users. It is obvious that the LDA-based calculation 

method takes a lot of time for obtaining potential preference scores when the number 

of all interactions in the dataset is very large. 

4.3 Double Bayesian Pairwise Learning 

In this section, we propose a recommendation model called Double Bayesian 

Pairwise Learning (DBPL). For the vanishing gradient problem caused by the tailed 

distribution, instead of proposing any sampling methods, we treat each user’s 

preference difference between the observed item and the unobserved item differently 

according to his/her potential preference on unobserved items and use a relatively 

smaller preference difference to reduce the current preference difference for further 

alleviating the problem. DBPL can also run without any additional information except 

user-item interactions and can be adjusted by the social information from a specific 

dataset.  
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4.3.1 Objective function 

In the learning process of BPR, as it can be seen in Eq. (4.21), each gradient step has 

a multiplicative scalar, which is called the gradient magnitude [33] of a sampled case 

(u, i, j). 

∆𝑢,𝑖,𝑗: = (1 − σ(𝑟𝑢𝑖 − 𝑟𝑢𝑗)) (4.21) 

It is clear in Eq. (4.21) that the gradient magnitude ∆𝑢,𝑖,𝑗 is close 0 if the preference 

difference of user u towards the observed item i and the unobserved item j is very large; 

nothing can be learned from the sampled case (u, i, j) because its gradient vanishes, i.e., 

the parameters are not changed by Eq. (4.21). 

However, the above situation does not mean that the loss is inappropriate, but that 

the potential positive items have not been seen by the algorithm of BPR. Therefore, we 

propose the DBPL model for dealing with this problem.  

We relax the assumption adopted by BPR that the equal importance for the 

unobserved items and use the potential preference matrix S to measure preference 

differences of users’ unobserved items. For user u, we consider the preference 

difference 𝑟𝑢𝑖𝑗 between an observed item i and an unobserved item j is smaller than 

the preference difference 𝑟𝑢𝑚𝑘 between an observed item m and an unobserved item 

k, i.e., 𝑟𝑢𝑖𝑗 < 𝑟𝑢𝑚𝑘 when user u’s potential preference score on item j is larger than user 

Table 4.3 Notations for the proposed DBPL model 

Symbols Descriptions 

S potential preference score matrix 

u a user 

i an observed item of user u 

m an observed item of user u 

j an unobserved item of user u 

k an unobserved item of user u and 𝑆𝑢𝑗  > 𝑆𝑢𝑘  

w a user who has observed item k 

𝜆1
𝑑 a trade-off parameter used to fuse users’ (u and w) preferences on item k 

𝜆𝑑 a control coefficient used to fuse 𝑟𝑢𝑖𝑢𝑗 and 𝑟𝑢𝑚𝑁𝑘  

𝛽𝑑 the hyper-parameter to tune the regularization terms 

𝜂 the learning rate 
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u’s potential preference score on item k, i.e., 𝑆𝑢𝑗 > 𝑆𝑢𝑘. The preference difference of 

a pairwise preference (u, m, k) can be reduced by fusing with the pairwise preference 

(u, i, j). The comparison of preference differences of different pairs of items can be 

expressed by 

𝑟𝑢𝑖𝑗 < 𝜆𝑑𝑟𝑢𝑖𝑗 + (1 − 𝜆𝑑)𝑟𝑢𝑚𝑘 < 𝑟𝑢𝑚𝑘 (4.22) 

where 𝜆𝑑 represents the control coefficient used to fuse two preferences. Based on the 

above consideration, the tentative likelihood for users and items could be shown as: 

DBRL = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗, 𝑟𝑢𝑚 >  𝑟𝑢𝑘)  

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖,𝑚∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

                 [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗, 𝑟𝑢𝑚 <  𝑟𝑢𝑘)] 

(4.23) 

where 𝐼𝑢
+ represents the set of observed items of user u,  𝐼𝑡𝑟\𝐼𝑢

+ represents the set of 

unobserved items of user u, item i and item m are observed items of user u, item j, and 

item k are unobserved items of user u. 𝑟𝑢𝑖  can be calculated by the inner product 

between the latent factor vector of user u (𝑈𝑢  ∈ d) and the latent factor vector of item 

i (𝑉𝑖  ∈ d), i.e., 𝑟𝑢𝑖 = 𝑈𝑢
𝑇 ∙ 𝑉𝑖, where d represents the number of latent dimensions. 

It is obvious that the performance of our proposed strategy is influenced by the 

accuracy of potential preference scores. The comparison between unobserved items 

based on the potential preference matrix might not match the real situation. For 

increasing the gradient magnitude of each case, we consider that the preference score 

of user w who has observed item k is higher than user u, who does not observe item k, 

i.e., 𝑟𝑢𝑘 <  𝑟𝑤𝑘.  

The gradient magnitude of the case (u, m, k) could be increased by fusing user u’s 

potential preference on item k with another user w’s preference on item k, where user 

w has positive feedback on item k (𝑤 ∈  𝑈𝑘
𝑡𝑟). Therefore, the comparison of preference 

differences of different pairs of items can be written as follows 

𝜆𝑑𝑟𝑢𝑖𝑗 + (1 − 𝜆𝑑  )𝑟𝑢𝑚𝑁𝑘
< 𝜆𝑑𝑟𝑢𝑖𝑗 + (1 − 𝜆𝑑)𝑟𝑢𝑚𝑘 < 𝑟𝑢𝑚𝑘 (4.24) 

where 𝑟𝑢𝑚𝑁𝑘
= 𝑟𝑢𝑚  −  𝑟𝑁𝑘

. 𝑟𝑁𝑘
 represents users’ fused preference on item k, which 

is calculated by 𝑟𝑁𝑘
= 𝜆1

𝑑𝑟𝑢𝑘 + (1 − 𝜆1
𝑑)𝑟𝑤𝑘. We can further obtain that 
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∆𝑢,𝑚,𝑘< ∆𝑁𝑢
< ∆𝑁𝑢

′  (4.25) 

where the quantity ∆𝑁𝑢
 represents the fused gradient magnitude of the case (u, i, m, j, 

k), which is calculated by ∆𝑁𝑢
: = (1 − σ(𝜆𝑑𝑟𝑢𝑖𝑗 + (1 − 𝜆𝑑)𝑟𝑢𝑚𝑘)) . ∆𝑁𝑢

′   represents 

the fused gradient magnitude of the case (u, w, i, j, m, k), which is calculated by ∆𝑁𝑢
=

(1 − σ( 𝜆𝑑𝑟𝑢𝑖𝑗 + (1 − 𝜆𝑑 )𝑟𝑢𝑚𝑁𝑘
)). Following BPR, we adopt the matrix factorization 

technique to predict the preference of user u on item j. The likelihood of DBPL can be 

given by 

DBRL = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗, 𝑟𝑢𝑚 >  𝑟𝑁𝑘
)

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖,𝑚∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

                 [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗, 𝑟𝑢𝑚 <  𝑟𝑁𝑘
)] 

(4.26) 

To maximize the posterior probability, DBPL also uses 𝜎(𝑥) =
1

1+𝑒−𝑥  to 

approximate the probability Pr( ∙ ) and adopts the log-likelihood to reduce the 

computational complexity following BPR. For each randomly sampled record, it 

includes a user u, two observed item i, m of user u, two unobserved item j, k and a user 

w, where 𝑤 ∈ 𝑈𝑘
𝑡𝑟. The illustration of this process is shown in Figure 4.3. For each user, 

two observed items and two unobserved items are selected. The unobserved item with 

a higher potential preference score is item j, another item k. User w has positive 

feedback on item k. The objective function can be written as 

𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘) = −𝑙𝑛𝜎(𝜆𝑑(𝑟𝑢𝑖 −  𝑟𝑢𝑗) + (1 − 𝜆𝑑)(𝑟𝑢𝑚 −  𝑟𝑁𝑘
)) 

                               +
𝛽𝑑

2
(‖𝑈𝑢‖2 + ‖𝑈𝑤‖2 + ‖𝑉𝑖‖2 + ‖𝑉𝑗‖

2
+ ‖𝑉𝑚‖2 + ‖𝑉𝑘‖2) 

(4.27) 

where ‖𝑈𝑢‖2, ‖𝑈𝑤‖2, ‖𝑉𝑖‖2, ‖𝑉𝑗‖
2

, ‖𝑉𝑚‖2  and ‖𝑉𝑘‖2  are regularization terms to 

avoid overfitting. 𝛽𝑑 is the regularization parameter for regularization terms.  
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4.3.2 Learning the model  

The optimization problem of the objective function in Eq. (4.27) can also be solved 

by the SGD algorithm. The parameter 𝜃 in DBPL could be updated as follows 

𝜃 ← 𝜃 − 𝜂
𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝜃
 (4.28) 

where 𝜃 can be 𝑈𝑢, 𝑈𝑤, 𝑉𝑖, 𝑉𝑗, 𝑉𝑚 or 𝑉𝑘 , and 𝜂 > 0 is the learning rate. We then 

derive the gradients of the user-specific parameters, 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑈𝑢
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
 

                                   × (𝜆𝑑𝑉𝑖 + (1 − 𝜆𝑑)𝑉𝑚 − 𝜆𝑑𝑉𝑗 − (1 − 𝜆𝑑)𝜆1
𝑑𝑉𝑘) + 𝛽𝑑𝑈𝑢 

(4.29) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑈𝑤
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
× (−(1 − 𝜆𝑑)(1 − 𝜆1

𝑑)𝑉𝑘) + 𝛽𝑑𝑈𝑤  (4.30) 

and the gradients of the item-specific parameters, 

 

Figure 4.3 Illustration of each randomly sampled record in DBPL 
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𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑉𝑖
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
× (𝜆𝑑𝑈𝑢) + 𝛽𝑑𝑉𝑖  (4.31) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑉𝑗
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
× (−𝜆𝑑𝑈𝑢) + 𝛽𝑑𝑉𝑗 (4.32) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑉𝑚
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
× ((1 − 𝜆𝑑)𝑈𝑢) + 𝛽𝑑𝑉𝑚  (4.33) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑉𝑘
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑚, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
 

                            × (−(1 − 𝜆𝑑)𝜆1
𝑑𝑈𝑢 − (1 − 𝜆𝑑)(1 − 𝜆1

𝑑)𝑈𝑤) + 𝛽𝑑𝑉𝑘  

(4.34) 

where 
𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑚,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
= −

1

1+exp (𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘)
.  

4.3.3 The DBPL algorithm 

The steps of DBPL are summarized in Algorithm 4 in detail. We divide DBPL into 

two steps for notational simplicity: user and item sampling (lines 4-7) and parameter 

update (lines 8-14). 

4.3.4 Computational complexity  

In the DBPL-based recommendation method, we also use the user-based and item-

based collaborative filtering (UIIU) method to calculate the potential preference scores 

of each user for further distinguishing the preference differences between any two 

unobserved items. The computational complexity of computation for potential 

preference scores is 𝑂(𝑀2 + 𝑁2 + |𝐺𝑢|𝑀), where 𝑀 is the number of users, 𝑁 is the 

number of items, and |𝐺𝑢| is the number of each user’s like-minded users, which is 

the same as that of PBPR. 

We need to update the value of 6d parameters {𝑈𝑢, 𝑈𝑤, 𝑉𝑖, 𝑉𝑗, 𝑉𝑚, 𝑉𝑘}. Therefore, 

the computational complexity of the learning parameters in the DBPL is 𝑂(𝑀𝑇𝑑) , 

where 𝑀 is the number of users, T is the number of iterations, and d is the number of 

latent dimensions. In total, the time complexity of the recommended method is 

𝑂(𝑀2 + 𝑁2 + |𝐺𝑢|𝑀 + 𝑀𝑇𝑑). 
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4.4 Summary 

In this section, we studied three recommendation models to solve the one-class 

collaborative filtering problem for more accurate recommendation results, including 

PBPR. PBPR* and DBPL. Three recommendation models are all extensions of BPR 

and need users’ potential preference scores on items. We summarize the calculation 

methods which are used to provide potential preference scores for them in Table 4.4. 

Algorithm 4  Learning parameters for the DBPL model 

Input:  

User-item interaction matrix R.  

Potential preference matrix S.  

Parameters η, 𝜆𝑑, 𝜆1
𝑑 , and 𝛽𝑑. 

Output:  

The learned model parameters {𝑈𝑢 , 𝑉𝑖 , 𝑢 ∈ 𝑈𝑡𝑟 , 𝑖 ∈ 𝐼𝑡𝑟}. 

1. Randomly initialize U and V. 

2. For 𝑡1 = 1, … , 𝑇 

3.     For 𝑡2 = 1, … , 𝑀 

4.         Randomly pick a user 𝑢 ∈ 𝑈𝑡𝑟 . 

5.         Randomly pick two items 𝑖, 𝑚 ∈ 𝐼𝑢
+. 

6.         Randomly pick two items 𝑗, 𝑘 ∈ 𝐼𝑡𝑟\𝐼𝑢
+, and 𝑆𝑢𝑗 > 𝑆𝑢𝑘. 

7.         Randomly pick a user 𝑤 ∈ 𝑈𝑘
𝑡𝑟 . 

8.         Calculate 𝑟𝑁𝑘
 and 

𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑚,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑢𝑚𝑁𝑘
. 

9.         Update 𝑈𝑢 via Eq. (4.29). 

10.         Update 𝑈𝑤 via Eq. (4.30). 

11.         Update 𝑉𝑖 via Eq. (4.31). 

12.         Update 𝑉𝑗 via Eq. (4.32). 

13.         Update 𝑉𝑚 via Eq. (4.33). 

14.         Update 𝑉𝑘  via Eq. (4.34). 

15.     End 

16. End 
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PBPR relaxes the assumption in BPR and assumes each user’s preference differences 

between any two unobserved items. We distinguished the preference differences by 

users’ potential preference scores on items. Then, we proposed PBPR* to enhance the 

performance of PBPR by several strategies. We will conduct experiments to evaluate 

the effectiveness of these strategies. DBPL also considers users’ potential preference 

scores to distinguish the preference differences between users’ unobserved items. In 

addition, we assumed that the preference difference between the observed item and the 

unobserved item could be reduced by fusing a relatively smaller preference difference 

between another pair of items for further alleviating the vanishing gradient problem in 

the learning process of DBPL. 

Our proposed recommendation models have the following advantages: 

(1) The proposed recommendation models can be realized based on only sparse 

interactions between users and items without any additional social information. 

(2) The proposed recommendation models only need relative potential preference 

differences between each user’s unobserved items rather than the specific 

preference values. The relative potential preference differences have been 

measured by potential preference scores calculated by the methods in Section 3. It 

can also be realized by other methods like item popularity, i.e., for any two 

unobserved items of the user, he/she may prefer a more popular item than another 

one. 

(3) We fused the preference score from another user on the specific item in all 

recommendation models. It can alleviate the error given by the potential preference 

scores and relax the strict relative potential preferences between users’ unobserved 

items. 

 

 

Table 4.4 Calculation methods of users’potential preference scores for different 

recommendation models 

Recommendation models The UIIU-based Method The LDA-based Method 

PBPR ✓  

PBPR*  ✓ 

DBPL ✓  
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5 Experiments and Analysis 

In this section, we demonstrate the effectiveness of the proposed recommendation 

models by a series of experiments on three real-world datasets.  

5.1 Dataset 

Three real-world datasets are employed as experimental data, including Last-FM1, 

MovieLens 100K2 and MovieLens 1M.  

➢ Last-FM  

Last-FM is the music listening dataset collected from Last. FM online music systems. 

It has rich tags. Last.FM tags have been widely used in many studies [82, 83], including 

the research on recommender systems [84, 85]. The dataset has 92,834 user-item 

listening records given by 1,892 users on 17,632 items. 

➢ MovieLens  

MovieLens is a system for movie recommendation. It was developed by the 

GroupLens research group [86]. We use MovieLens 100K and MovieLens 1M for 

experiments. MovieLens 100K dataset is collected from the MovieLens website. It 

contains 100,000 ratings between 943 users and 1,682 items. MovieLens 1M dataset, 

which is also collected from the MovieLens website, contains 951,612 ratings assigned 

by 6040 users over 3,952 items.  

For studying the one-class feedback problem on datasets MovieLens 100K and 

MovieLens 1M, we do not preprocess datasets according to their rating values scale 1-

5, such as keeping the ratings larger than 3 as the observed feedback. We consider all 

observed user-item pairs as positive feedbacks in all experiments [55]. The description 

of the experimental datasets is presented in Table 5.1. 

  For all three datasets, we randomly sample 20% and 50% of user-item interactions 

on each dataset as training data, respectively, and the rest as test data.  

 
1 https://grouplens.org/datasets/hetrec-2011/. 
2 https://grouplens.org/datasets/movielens/. 

https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/movielens/
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Table 5.1 Description of the experimental datasets 

Dataset #Users #Items #Interactions Sparsity 

Last-FM 1,892 17,632 92,834 99.72% 

MovieLens 100K 943 1,682 100,000 93.70% 

MovieLens 1M 6,040 3,952 951,612 96.01% 

5.2 Experimental Design 

We will conduct the following experiments to evaluate the performance of our 

proposed recommendation models. 

➢ Performance of recommendation models 

To evaluate the performance of recommendation models, we compare our proposed 

models with benchmark methods, including PopRank, UIIU, LDA, BPR, GBPR and 

CPLR, by convincing evaluation metrics.  

➢ Impacts of parameters in PBPR 

In PBPR, the trade-off parameter 𝜆1
𝑝
 is used to adjust the preference scores from 

two users. We will investigate the performance of PBPR with different parameter 

settings on three real-world datasets. 

➢ Impacts of components in PBPR* 

Different from PBPR, PBPR* adopts the LDA-based method to calculate potential 

preference scores. In addition, there are two main components in PBPR*. We will test 

and verify the effects of two components in PBPR* on the recommendation results, 

including the parameter 𝑁𝐴 and the confidence coefficients. 

➢ Impacts of parameters in DBPL 

In DBPL, we use the trade-off parameters to a) adjust the preference scores from two 

users and b) consider the potential preference scores into the prediction function. We 

will conduct experiments to study the effects of different parameter settings on the 

recommendation results. 

➢ Discussion 
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We will describe more details of the sampling process in PBPR and DBPL and then 

discuss the explainability in the existing recommendation methods and the 

explainability of potential preference scores in this thesis. 

5.3 Performance of Recommendation Models 

5.3.1 Benchmark methods 

We compare our proposed recommendation models PBPR, PBPR* and DBPL with 

several recommendation methods, including 

⚫ PopRank [54]: PopRank recommends each user a ranking list of items according 

to the item’s popularity in the training data. It is not a personalized 

recommendation approach usually used for solving the user cold-start problem. 

⚫ UIIU: UIIU represents the user-based and item-based recommendation method, 

which we propose in Section 3.2. It can also be used to predict users’ preferences 

via aggregation of the item-item similarity and the like-minded users’ preferences. 

⚫ LDA: LDA represents the LDA-based recommendation method, which we 

propose in Section 3.3. It can also be used to predict users’ preferences via the 

inner product of two distributions. 

⚫ BPR: As introduced in Section 2.3, the Bayesian Personalized Ranking method is 

a state-of-the-art pairwise learning method based on matrix factorization. It 

recommends a personalized ranking list of items for each user only based on the 

user’s historical interactions. 

⚫ GBPR: Group preference-based Bayesian Personalized Ranking method is an 

extension of the BPR model, which relaxes individual and independence 

assumptions in the BPR model. This work is able to accommodate richer 

interactions among users. 

⚫ CPLR: Collaborative Pairwise Learning to Rank is a generalized BPR. It uses the 

influence between users on the preferences for observed items and unobserved 

items to relax the assumption of BPR. 

5.3.2 Experimental setting 

We set the iteration number T=10,000. To make the comparison fair, we initialize all 

pairwise ranking models (BPR, GBPR, CPLR, PBPR, PBPR* and DBPL) with the 
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same random distribution. We set the same dimensionality and the same hyper-

parameter of the regularization terms for all recommendation models. The 

dimensionality is empirically set to 𝑘 = 20, and the hyper-parameter is set to 𝛽𝑝 =

𝛽∗ = 𝛽𝑑 = 0.01. The learning rate 𝜂 is chosen from {0.02, 0.05, 0.1}. 

  For the GBPR model, we fixed the user group size as |𝐺| = 3, the parameters ρ=1 

and ρ=0.6 are set for the datasets MovieLens 100K and MovieLens 1M, respectively, 

considering the settings in [56]. The parameter ρ=0.8 is set for the dataset Last-FM. For 

the CPLR model, the size of the neighborhood is set to 50, and the control coefficients 

are set to 𝛼 = 𝛽 = 𝛾 = 0.1. 

For the PBPR model, the control coefficient is set as 𝜆𝑝 = 0.7  by default, the 

control coefficient for the dataset Last-FM is set as 𝜆1
𝑝

= 0.8 . The trade-off 

parameter 𝜆1
𝑝
 is set as 0.9 for the datasets MovieLens 100K and MovieLens 1M, and 

𝜆1
𝑝

 is set as 0.3 for Last-FM. For the PBPR* model, the control coefficient 𝜆∗ = 0.7 

for the datasets MovieLens 100K and MovieLens 1M, and the control coefficient 𝜆∗ =

0.8 for the dataset Last-FM. The trade-off parameter 𝜆1
∗  is fixed as 0.9 for the datasets 

MovieLens 100K and MovieLens 1M, and 0.3 for the dataset Last-FM. The parameter 

𝑁𝐴  is set as 1, 0, 4 for the datasets Last-FM (20%), MovieLens 100K (20%) and 

MovieLens 1M (20%), and 𝑁𝐴  is set as 3, 1, 2 for the datasets Last-FM (50%), 

MovieLens 100K (50%) and MovieLens 1M (50%), respectively. 

For the DBPL model, we set the control coefficient 𝜆𝑑 = 0.7 and the trade-off 

parameter 𝜆1
𝑑= 0.2 on all datasets. We add potential preference scores to the prediction 

function of DBPL and denote the recommendation results with the novel prediction 

function as DBPL+. For the DBPL+ model, the user u’s preference score on item i is 

defined as 𝑟𝑢𝑖
′ =  𝑟𝑢𝑖 + 𝛼𝑑 ∙ √𝑆𝑢𝑖, where 𝛼𝑑 is a trade-off parameter for the potential 

preference scores. In experiments, we set 𝛼𝑑  = 0.8 for the datasets Last-FM, 

MovieLens 100K and MovieLens 1M. 

5.3.3 Evaluation metrics 

We report the average performance of users in the test data. Users pay attention to a 

few top-ranked items [87], so we use top-N evaluation metrics [12, 88], including 

precision at rank N (Prec@N) and normalized discounted cumulative gain at rank N 

(NDCG@N), to evaluate the performance of our methods.  

The metric Prec@N [89] for user u is defined as follows: 
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𝑃𝑟𝑒𝑐@𝑁 =
1

𝑁
∑ 𝛿(𝐼𝑖  ∈  𝐼𝑢

+)

𝑁

𝑖=1

 (5.1) 

where 𝐼𝑖  represents the i-th item in the ranking list,  𝛿(∙)  represents the indicator 

function. Its value is equal to 1 when 𝐼𝑖  ∈  𝐼𝑢
+, otherwise 0.  

The normalized discounted cumulative gain (NDCG) [90], which takes into account 

the position of correctly recommended items, is a standard measure of ranking quality. 

It is defined as 

𝑁𝐷𝐶𝐺@𝑁 =
1

𝑍𝑁
∑

2𝑟(𝑗) − 1

log (𝑗 + 1)

𝑁

𝑗

 (5.2) 

where j represents the j-th position in the ranking list, and r(j) presents the relevance of 

the item in position j. 𝑍𝑁 represents the ideal value for the discounted cumulative gain 

(DCG, DCG = ∑
2𝑟(𝑗)−1

log (𝑗+1)

𝑁
𝑗 ). Here, we set N=5 for the metric Prec@N, and we set N=5, 

N=10 for the metric NDCG@N. 

5.3.4 Results and analysis 

To evaluate the performance of recommendation models, we compared our proposed 

models with benchmark methods by convincing evaluation metrics.  

Our experiments are performed on a Windows 10 with 3.6GHz Intel Core i3, 8 GB. 

The results of all recommendation methods on the datasets Last-FM, MovieLens 100K 

and MovieLens 1M are presented in Table 5.2, Table 5.3, Table 5.4, respectively. The 

numbers in boldface are the best results among all methods. From the three tables, we 

make the following observations: 

(1) From Table 5.2, Table 5.3 and Table 5.4, it is obvious that our proposed 

recommendation models significantly improve BPR in terms of Prec@5, 

NDCG@5 and NDCG@10 on all datasets, which demonstrates the effectiveness 

of our assumptions for enhancing the performance of models. DBPL+ performs 

the best in most cases according to evaluation metrics in Section 5.3.3. The 

experimental results of PBPR∗ outperform PBPR on all datasets, which shows the 

effectiveness of strategies proposed to enhance the performance of PBPR in 

Section 4.2.1. The results of DBPL+  outperform DBPL in most datasets, 

demonstrating the effect of considering potential preference scores into the 

prediction functions. 
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(2) Note that the sparsity of the user-item interaction matrix has an influence on the 

recommendation results. Experimental results on the dataset Last-FM, which has 

the highest sparsity among all datasets, are the smallest compared to the results on 

other datasets. From the three tables, it is significant that the results of the UIIU 

method have a larger gap with other methods on the Last-FM than other datasets, 

implying the performance of the UIIU method also suffers from the data sparsity 

problem. It is obvious in Table 5.3 and Table 5.4 that the overall results of the 

dataset MovieLens 100K are slightly better than MovieLens 1M. 

Table 5.2 Recommendation performance of PopRank, UIIU, LDA, BPR, GBPR, 

CPLR, PBPR, DBPL and DBPL+ on the dataset Last-FM in terms of Prec@5, 

NDCG@5 and NDCG@10 

Dataset Method Prec@5 NDCG@5 NDCG@10 

Last-FM 

(20%) 

PopRank 0.1588 0.1314 0.1441 

UIIU 0.1751 0.1794 0.1637 

LDA 0.3453 0.3380 0.3184 

BPR 0.2874 0.2947 0.2819 

GBPR 0.3131 0.3200 0.3027 

CPLR 0.3169 0.3070 0.2929 

PBPR 0.3226 0.3327 0.3053 

PBPR* 0.3483 0.3554 0.3296 

DBPL 0.3572 0.3605 0.3355 

DBPL+ 0.3687 0.3701 0.3468 

Last-FM 

(50%) 

PopRank 0.1434 0.1538 0.1501 

UIIU 0.2740 0.2870 0.2596 

LDA 0.3573 0.3725 0.3239 

BPR 0.3346 0.3500 0.3062 

GBPR 0.3425 0.3543 0.3135 

CPLR 0.3907 0.4156 0.3581 

PBPR 0.3653 0.3852 0.3362 

PBPR* 0.3875 0.4034 0.3553 

DBPL 0.3906 0.4152 0.3547 

DBPL+ 0.4014 0.4270 0.3623 
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(3) Compared with the training data with 20% user-item pairs, the results of the 

training data with 50% user-item pairs increase in terms of Prec@5, NDCG@5 and 

NDCG@10 because more user-item pairs could provide more information about 

users’ potential preferences. It is obvious recommendation results of PBPR* are 

better than that of PBPR on all evaluation metrics on three datasets, which shows 

the effectiveness of conducting strategies for PBPR.  

 

Table 5.3 Recommendation performance of PopRank, UIIU, LDA, BPR, GBPR, 

CPLR, PBPR, DBPL and DBPL+ on the dataset MovieLens 100K in terms of 

Prec@5, NDCG@5 and NDCG@10 

Dataset Method Prec@5 NDCG@5 NDCG@10 

MovieLens 

100K (20%) 

PopRank 0.4838 0.4960 0.4702 

UIIU 0.4592 0.4729 0.4402 

LDA 0.5519 0.5677 0.5295 

BPR 0.4880 0.4975 0.4769 

GBPR 0.5355 0.5443 0.5223 

CPLR 0.5843 0.5977 0.5719 

PBPR 0.5642 0.5758 0.5478 

PBPR* 0.5720 0.5816 0.5567 

DBPL 0.5840 0.5840 0.5568 

DBPL+ 0.6059 0.6160 0.5860 

MovieLens 

100K (50%) 

PopRank 0.3862 0.4009 0.3713 

UIIU 0.5007 0.5201 0.4771 

LDA 0.5648 0.5820 0.5394 

BPR 0.5461 0.5613 0.5266 

GBPR 0.5828 0.6006 0.5553 

CPLR 0.5949 0.6123 0.5668 

PBPR 0.5922 0.6098 0.5626 

PBPR* 0.5934 0.6116 0.5678 

DBPL 0.6066 0.6202 0.5716 

DBPL+ 0.6070 0.6210 0.5707 
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(4) PopRank performs comparably poorly than other benchmark methods because it 

does not conduct personalized recommendations. It is worthwhile to note that LDA 

achieves better performance than UIIU and BPR, especially on the dataset Last-

FM. This further shows the benefit of performing each user’s prediction based on 

only his/her own historical items. The LDA-based method does not need to 

calculate the information such as the like-minded users, which may suffer from the 

sparse data. GBPR and CPLR are all extensions of BPR. They achieve better 

performance than BPR across all evaluation metrics, indicating the effectiveness 

of novel assumptions adopted by two models.  

Table 5.4 Recommendation performance of PopRank, UIIU, LDA, BPR, GBPR, 

CPLR, PBPR, DBPL and DBPL+ on the dataset MovieLens 1M in terms of 

Prec@5, NDCG@5 and NDCG@10 

Dataset Method Prec@5 NDCG@5 NDCG@10 

MovieLens 

1M (20%) 

PopRank 0.3611 0.3362 0.3528 

UIIU 0.3917 0.3861 0.3739 

LDA 0.5281 0.5196 0.5103 

BPR 0.5145 0.5213 0.4999 

GBPR 0.5497 0.5552 0.5342 

CPLR 0.5504 0.5502 0.5343 

PBPR 0.5550 0.5575 0.5407 

PBPR* 0.5680 0.5733 0.5525 

DBPL 0.5658 0.5713 0.5504 

DBPL+ 0.5731 0.5769 0.5591 

MovieLens 

1M (50%) 

PopRank 0.3301 0.3454 0.3293 

UIIU 0.4294 0.4379 0.4097 

LDA 0.5214 0.5317 0.5017 

BPR 0.5092 0.5177 0.4912 

GBPR 0.5307 0.5424 0.5110 

CPLR 0.5382 0.5567 0.5153 

PBPR 0.5527 0.5653 0.5292 

PBPR* 0.5566 0.5693 0.5322 

DBPL 0.5588 0.5729 0.5361 

DBPL+ 0.5619 0.5769 0.5361 
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(5) The gaps between the UIIU method and recommendation models are reduced with 

the increase of the training data. It is obvious that the UIIU method could provide 

well results when the training user-item pairs are enough. However, data with high 

density is difficult to obtain in real-life applications. The results of the UIIU method 

could be integrated with the recommendation model to enhance its performance 

and provide more accurate recommendations. 

5.4 Impacts of Parameters in PBPR 

5.4.1 Experimental setting 

In PBPR, 𝜆1
𝑝
 is an important parameter used to fuse preferences from two users. We 

discuss the effects of different parameter settings on the performance of the PBPR-

based recommendation method. 

The parameter 𝜆1
𝑝
 is set to 𝜆1

𝑝
= {0, 0.1, … , 1}. The dimensionality is empirically 

set to 𝑘 = 20, and the hyper-parameter is set to 𝛽𝑝 = 0.01. The learning rate 𝜂 is 

chosen from {0.05, 0.1}. The control coefficient is set as 𝜆𝑝 = 0.7 for the datasets 

MovieLens 100K and MovieLens 1M, and the control coefficient for the dataset Last-

FM is set as 𝜆1
𝑝

= 0.8. 

5.4.2 Results and analysis 

Figure 5.1 shows the experimental results of PBPR with different trade-off parameter 

values on the datasets Last-FM (20%), MovieLens 100K (20%) and MovieLens 1M 

(20%), from which we could see that: 

(1) The experimental results of the datasets Last-FM (20%) and MovieLens 100K 

(20%) have a downward trend with the increasing of the value for the trade-off 

parameter 𝜆1
𝑝
, i.e., considering another user’s preference has an influence on the 

results. PBPR performs best at 𝜆1
𝑝

= 0 on two datasets. Note that when 𝜆1
𝑝

= 0, 

the preference from another user does not take into account. 

(2) Contrary to the above, the results on the dataset MovieLens 1M (20%) increase 

when the parameter 𝜆1
𝑝

 ranges from 0 to 0.9. From Figure 5.1 c), fusing the 

preference from another user improves the performance of PBPR. 
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We also conduct experiments for the trade-off parameter 𝜆1
𝑝
 on three datasets Last-

FM (50%), MovieLens 100K (50%), and MovieLens 1M (50%)), for further studying 

its influence on the recommendation results.  

   

a) Last-FM (20%) 

   

b) MovieLens 100K (20%) 

   

c) MovieLens 1M (20%) 

Figure 5.1 The influence of the trade-off parameter on the performance of PBPR on 

Last-FM (20%), MovieLens 100K (20%) and MovieLens 1M (20%) in terms of 

Prec@5, NDCG@5 and NDCG@10 
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The experimental results are illustrated in Figure 5.2, from which we make the 

following observations: 

(1) It is significant that the results of the dataset Last-FM (50%) have a downward 

trend with the increasing of the value for the trade-off parameter 𝜆1
𝑝

, and the 

   

a) Last-FM (50%) 

   

b) MovieLens 100K (50%) 

   

c) MovieLens 1M (50%) 

Figure 5.2 The influence of the trade-off parameter on the performance of PBPR on 

Last-FM (50%), MovieLens 100K (50%) and MovieLens 1M (50%) in terms of 

Prec@5, NDCG@5 and NDCG@10 
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results on the datasets MovieLens 100K (50%) and MovieLens 1M (50%) have a 

growing trend with the increasing of the parameter 𝜆1
𝑝
. 

(2) Different from the resulting trend on the dataset MovieLens 100K (20%), the 

experimental results on the dataset MovieLens 100K (50%) increase when the 

trade-off parameter ranges from 0 to 1. The reason for this difference might be the 

performance of the potential preference scores. 

5.5 Impacts of Components in PBPR* 

5.5.1 Experimental setting 

We adopt several strategies to enhance the performance of PBPR for obtaining better 

recommendation results. From Table 5.2, Table 5.3 and Table 5.4, we can see that the 

PBPR*-based method outperforms the PBPR-based method on all evaluation metrics, 

which shows the effectiveness of conducting strategies in Section 4.2. The novel model 

is named PBPR*. Compared with PBPR, PBPR* mainly has two novel components, 

including 

Component one: for user u’s two unobserved items, at least an unobserved item of user 

u has been observed by at least 𝑁𝐴 users; 

Component two: the confidence of pairwise preferences is adjusted by confidence 

coefficients.  

To have a deep understanding of the effect of these components, we conduct 

experiments to test and verify the performance of different PBPR*-based methods 

(PBPR*-1, PBPR*-2, PBPR*-3 and PBPR*), which are listed in Table 5.5, on all 

datasets. The dimensionality is also set to 𝑘 = 20, and the hyper-parameter is set to 

𝛽∗ = 0.01 . The learning rate 𝜂  is chosen from {0.02, 0.05, 0.1}. The control 

Table 5.5 Description of recommendation models on different components 

 Component one Component two 

PBPR*-1   

PBPR*-2 ✓  

PBPR*-3  ✓ 

PBPR* ✓ ✓ 
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coefficient is set as 𝜆∗ = 0.7 for the datasets MovieLens 100K and MovieLens 1M, 

and the control coefficient for the dataset Last-FM is set as 𝜆1
∗ = 0.8. 

 

 

 

Figure 5.3 The influence of different components on the performance of PBPR* in 

terms of Prec@5, NDCG@5 and NDCG@10 on Last-FM (20%), MovieLens 100K 

(20%) and MovieLens 1M (20%) 
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For the component one, the parameter 𝑁𝐴 is set as 1, 1, 4 for the datasets Last-FM 

(20%), MovieLens 100K (20%) and MovieLens 1M (20%), and 𝑁𝐴 is set as 3, 1, 2 for 

the datasets Last-FM (50%), MovieLens 100K (50%) and MovieLens 1M (50%), 

respectively. 

5.5.2 Results and analysis 

The experimental results of different PBPR*-based recommendation methods on all 

real-world datasets are shown in Figure 5.3 and Figure 5.4. From Figure 5.3 and Figure 

5.4, we can see that the experimental results of PBPR* are better than PBPR*-1 in terms 

of Prec@5, NDCG@5 and NDCG@10 on all datasets. That verifies the effectiveness 

of components in PBPR*. We use PBPR*-2 and PBPR*-3 to test and verify the effects 

of the two components, respectively. 

To widen the preference gap of each pair of unobserved items in the sampling process, 

we propose a strategy (component one) in Section 4.2 that at least an unobserved item 

of user u has been observed by at least 𝑁𝐴 users. This strategy is easy to implement 

but requires to be adjusted on each dataset. Comparing the experimental results of 

PBPR*-2 with that of PBPR*-1, we can observe that component one does not improve 

the results on the datasets MovieLens 100K (20%) and MovieLens 1M (20%). However, 

it could improve the recommendation results of the model on the dataset Last-FM, 

especially on the dataset Last-FM (50%). We will study the more complicated strategy 

for good performance on different datasets. 

From Figure 5.3 and Figure 5.4, it is obvious that component two improves the results 

on all datasets, especially on the datasets MovieLens 100K (20%) and MovieLens 1M 

(20%). That demonstrates the effectiveness of considering confidence coefficients, 

which are calculated based on the potential preference scores, for further distinguishing 

each user’s preference differences. 

Besides, by jointly comparing tables (Table 5.2, Table 5.3 and Table 5.4) and figures 

(Figure 5.3 and Figure 5.4), we observe that the results of PBPR*-1 are not better than 

PBPR in some cases. Actually, the potential preference scores calculated by the LDA-

based method significantly outperform those calculated by the UIIU method. It is clear 

that a novel integration method is needed to combine the potential preference scores 

with recommendation models. 
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Figure 5.4 The influence of different components on the performance of PBPR* in 

terms of Prec@5, NDCG@5 and NDCG@10 on Last-FM (50%), MovieLens 100K 

(50%) and MovieLens 1M (50%) 
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5.6 Impacts of Parameters in DBPL 

5.6.1 Experimental setting 

As mentioned before, 𝜆1
𝑑 is an important parameter for DBPL and DBPL+, and 𝛼 

is the trade-off parameter used for fusing potential preference scores into the prediction 

function. We discuss the effects of different parameter settings on the performance of 

the DBPL-based recommendation method. 

To have a deep understanding of the effect of taking into account another user’s 

preference for DBPL and DBPL+ in terms of Prec@5, NDCG@5 and NDCG@10 on 

the datasets Last-FM (20%), MovieLens 100K (20%) and MovieLens 1M (20%), we 

conduct experiments with the parameter is chosen from 𝜆1
𝑑 ∈ {0.1, 0.2, … , 1}.  

We study the influence of the trade-off parameter 𝛼𝑑 on the performance of DBPL+ 

on the datasets Last-FM (50%), MovieLens 100K (50%) and MovieLens 1M (50%). 

The parameter 𝛼𝑑 is set to 𝛼𝑑 = {0.1, 0.2, … , 1}. We define the preference score of 

user u on item i as 𝑟𝑢𝑖
′ =  𝑟𝑢𝑖 + 𝛼𝑑 ∙ √𝑆𝑢𝑖 . In this equation, the difference between 

potential preferences could be reduced by a square root operation. We use another 

definition equation 𝑟𝑢𝑖
′′ =  𝑟𝑢𝑖 + 𝛼𝑑 ∙ 𝑆𝑢𝑖 , which is denoted as Comparison_DBPL+ 

(C_DBPL+), for comparing the effectiveness of 𝑟𝑢𝑖
′  on recommendation results. 

5.6.2 Results and analysis 

Experimental results of the DBPL-based recommendation method with different 

values of the parameter 𝜆1
𝑑 are shown in Figure 5.5, from which we could see that: 

(1) Overall, the results of the datasets MovieLens 100K (20%) and MovieLens 1M 

(20%) have a downward trend with the increasing of the value for the parameter 

𝜆1
𝑑 , i.e., considering less preference from another user affect results. It can be 

inferred from the experimental results in Figure 1 that preference differences of 

unobserved items could not be combined with the potential preference matrix well 

on the datasets MovieLens 100K (20%) and MovieLens 1M (20%).  

(2) Contrary to the above, the results on the dataset Last-FM (20%) increase when the 

parameter 𝜆1
𝑑  ranges from 0.1 to 1. DBPL performs best at 𝜆1

𝑑 = 1. Another 

user’s preference is not taken into account when 𝜆1
𝑑 = 1. 
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Figure 5.6 shows the results of DBPL, C_DBPL+ and DBPL+ with different settings 

of the parameter 𝛼𝑑  on the datasets Last-FM (50%), MovieLens 100K (50%) and 

MovieLens 1M (50%). 

   

a) Last-FM (20%) 

   

b) MovieLens 100K (20%) 

   

c) MovieLens 1M (20%) 

Figure 5.5 The influence of the trade-off parameter on the performance of DBPL on 

Last-FM (20%), MovieLens 100K (20%) and MovieLens 1M (20%) in terms of 

Prec@5, NDCG@5 and NDCG@10 
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The results of DBPL+ are better than C_DBPL+ across all evaluation metrics on 

three datasets, demonstrating that considering the square root of potential preference 

scores into the prediction function can improve the recommendation results. As can be 

concluded from Figure 5.6, the potential preference scores behave differently on varied 

datasets. They can enhance results with some settings of the parameter 𝛼𝑑 in most 
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c) MovieLens 1M (50%) 

Figure 5.6 The influence of the parameter 𝛼𝑑 on the performance of C_DBPL+ and 

DBPL+ on Last-FM (50%), MovieLens 100K (50%) and MovieLens 1M (50%) in 

terms of Prec@5, NDCG@5 and NDCG@10 

0.386

0.390

0.394

0.398

0.402

0.10.20.30.40.50.60.70.80.9 1

Pre@5

DBPL
C_DBPL+
DBPL+

0.410

0.415

0.420

0.425

0.430

0.10.20.30.40.50.60.70.80.9 1

NDCG@5

DBPL
C_DBPL+
DBPL+

0.353

0.356

0.359

0.362

0.365

0.10.20.30.40.50.60.70.80.9 1

NDCG@10

DBPL
C_DBPL+
DBPL+

0.590

0.595

0.600

0.605

0.610

0.10.20.30.40.50.60.70.80.9 1

Pre@5

DBPL
C_DBPL+
DBPL+

0.605

0.610

0.615

0.620

0.625

0.10.20.30.40.50.60.70.80.9 1

NDCG@5

DBPL
C_DBPL+
DBPL+

0.560

0.563

0.566

0.569

0.572

0.10.20.30.40.50.60.70.80.9 1

NDCG@10

DBPL
C_DBPL+
DBPL+

0.555

0.557

0.559

0.561

0.563

0.10.20.30.40.50.60.70.80.9 1

Prec@5

DBPL

C_DBPL+

DBPL+

0.570

0.572

0.574

0.576

0.578

0.10.20.30.40.50.60.70.80.9 1

NDCG@5

DBPL

C_DBPL+

DBPL+

0.530

0.532

0.534

0.536

0.538

0.10.20.30.40.50.60.70.80.9 1

NDCG@10

DBPL

C_DBPL+

DBPL+



 
 

 

 
 

EXPERIMENTS AND ANALYSIS                                                            71 

cases except the result of NDCG@10 on the dataset MovieLens 100K (50%). This is 

possibly caused by different performances of potential preference scores calculated 

based on user-item interactions. The UIIU method performs the best on the dataset 

MovieLens 100K (50%) compared with other datasets, so the current prediction 

function may not improve final results well. The novel prediction function should be 

studied in the future to achieve a balance between the performance of potential 

preference scores and recommendation results, making the model adaptive to different 

performances of potential preference scores. 

5.7 Discussion 

5.7.1 More details in the sampling process 

We leverage the UIIU method to calculate potential preference scores between users 

and items for further distinguishing each user’s preference difference between each pair 

of unobserved items. However, for a user, the potential preference scores of the user’s 

unobserved items might be all equal to zero when lacking the information about like-

minded users and similarities between items. 

We empirically adopt the second strategy for picking two unobserved items in 

Algorithm 2 and Algorithm 4. We pick the unobserved item observed by more than 

two users as the unobserved item j and randomly pick another unobserved item as 

the unobserved item k. This sampling strategy has been used for solving the above 

sampling problem on the dataset Last-FM. 

5.7.2 Explainability of potential preference scores 

Explainability becomes critically important for recommender systems to provide 

convincing results [18]. Explainability helps to improve the transparency, 

persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation 

systems [91]. Explainable recommender systems [92] aim to reveal why a user might 

like the item, and it helps improve users’ satisfaction or acceptance of recommendation 

results [93]. The explanations for recommender systems are usually based on phrase 

sentiment [94], aspect [95], and social networks [96]. 

  In this thesis, we adopt two calculation methods to calculate users’ potential 

preference scores on their unobserved items, which are (1) the user-based and item-
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based collaborative filtering method and (2) the LDA-based users’ chosen intentions 

method. Both of them provide an explainable reason for why the user might have an 

interest in the items with higher potential preference scores. Therefore, in PBPR, 

PBPR* and DBPL, the potential preference scores provide an explainable reason for 

why the user u might prefer the unobserved item j over the unobserved item k.  

5.8 Summary 

In this section, we conducted a series of experiments to test and verify the 

performance of our proposed recommendation models. 

We first compared our proposed recommendation models with benchmark methods 

on three real-world datasets. And then, we investigated the effects of a) the trade-off 

parameters in PBPR and DBPL; and b) the components in PBPR* on recommendation 

results. Finally, we discussed more details in the study. 

Experimental results of our proposed recommendation models are better than the 

previous model on three real-world datasets, demonstrating the effectiveness of the 

assumptions in Section 4. We also evaluated the effects of different parameter settings 

on the performance of recommendation models. The improvement work could be 

considered in the future, such as studying the novel integration method for potential 

preference scores and the recommendation model. 
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6 Conclusion and Future Work 

With the rapid spread of multimedia Web applications, a large number of contents 

are being generated online in real-time. Users will spend much effort in finding 

interesting things from the massive data. Therefore, recommender systems are proposed 

to deal with information overload and meet users’ personalized interests. In many real-

world applications, only user-item interactions (one-class feedback) can be observed. 

In this thesis, we focused on studying recommendation models for one-class 

collaborative filtering. We will summarize the whole thesis and then give our future 

work in this section. 

6.1 Conclusion 

The recommendation methods have been studied for personalized ranking with one-

class feedback in recent years. Pairwise ranking methods have been widely used for 

dealing with the one-class problem with the assumption that users prefer their observed 

items over unobserved items. BPR is a well-performed pairwise ranking model. We 

studied novel recommendation models, which are extensions of BPR, for obtaining 

more accurate recommendations. The concrete summaries and contributions of this 

thesis are summarized as follows:  

(1) We considered the users' preference differences on their unobserved items by 

distinguishing the fine-grained preference difference between any two unobserved 

items of the user, rather than dividing the users' unobserved items into different groups 

and studying the preference differences between unobserved items from different 

groups. Therefore, we studied two calculation methods to calculate users’ potential 

preference scores on their unobserved items. The potential preference scores, which is 

calculated only with users' historical interaction, could be used to (a) measure the 

relative preference of users on their unobserved items; (b) relax the data sparsity 

problem by providing potential preference scores between users and items; (c) integrate 

with the individual preference for better results; (d) adjust the confidence of pairwise 

preferences. 
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(2) We proposed three recommendation models for one-class collaborative filtering, 

including PBPR, PBPR* and DBPL. They are all extensions of the popular pairwise 

learning model BPR and relax the limitation in BPR that the equal importance of the 

unobserved items by considering the relative preference of users on any two unobserved 

items. In addition, motivated by the assumption that the user’s preference difference 

between the observed item and the unobserved item can be reduced by fusing a 

relatively smaller preference difference between another pair of items, DBPL is 

proposed by taking two pairwise preferences into the previous model for further 

alleviating the vanishing gradient problem in the learning process. Three 

recommendation models can be realized based on only user-item interactions without 

any additional social information and can be adjusted for the social information from a 

specific dataset.  

(3) Recommendation methods based on PBPR, PBPR* or DBPL only need 

information about historical interactions, which is easy to obtain. They could be 

considered as generic recommendation models and improved by considering more 

auxiliary information for specific recommended scenarios, such as measuring users’ 

relative preference differences on microblogs according to the topic information [97]. 

Empirical results show that PBPR, PBPR* and DBPL significantly improve the 

previous model performance with all evaluation metrics in three real-world datasets 

indicating the effectiveness of assumptions adopted by the proposed models. The 

DBPL-based recommendation method performs best among all recommendation 

methods in all cases. It is obvious from the experimental results that recommendation 

methods based on our proposed models can provide more accurate recommendations. 

6.2 Future Work 

For future work, we are interested in (1) considering side information from other 

domains (affective computing, data mining), such as using sentiment analysis 

techniques [98] to analyze why users like items (user A prefers action movies) or study 

users’ preferences by considering the auxiliary feedback via the hybrid emotion 

recognition system [99]; this helps to construct explainable recommender systems; (2) 

exploring the multi-task learning tasks, which conduct the calculation of potential 

preference scores and recommendation model learning together.  
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We observe several meaningful directions. Recently, hash collaborative filtering has 

become a popular and efficient recommendation technique. It can reduce the storage 

requirement and make similarity calculations efficient by learning the binary 

representations of users and items [100]. In addition, recommender systems must be 

designed to interact with human beings. Researches about the issues and advantages of 

bridging different fields for the development of recommender systems shaping 

cognitive architectures should be received sufficient attention for further providing 

recommendations to agents in order to interact with the environment [101]. Therefore, 

we will also focus on (1) investigating hash collaborative filtering; and (2) studying 

more bridging cognitive models for the recommendation in the future.  
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