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Abstract 1 

Vincristine treatment may cause peripheral neuropathy. In this study, we identified the 2 

genes associated with the development of peripheral neuropathy due to vincristine 3 

therapy using a genome-wide association study (GWAS) and constructed a predictive 4 

model for the development of peripheral neuropathy using genetic information-based 5 

machine learning. The study included 72 patients admitted to the Department of 6 

Hematology, Tokushima University Hospital, who received vincristine. Of these, 56 were 7 

genotyped using the Illumina Asian Screening Array-24 Kit, and a GWAS for the onset 8 

of peripheral neuropathy caused by vincristine was conducted. Using Sanger sequencing 9 

for 16 validation samples, the top three single nucleotide polymorphisms (SNPs) 10 

associated with the onset of peripheral neuropathy were determined. Machine learning 11 

was performed using the statistical software R package “caret.” The 56 GWAS and 16 12 

validation samples were used as the training and test sets, respectively. Predictive models 13 

were constructed using random forest, support vector machine, naive Bayes, and neural 14 

network algorithms. According to the GWAS, rs2110179, rs7126100, and rs2076549 15 

were associated with the development of peripheral neuropathy on vincristine 16 

administration. Machine learning was performed using these three SNPs to construct a 17 

prediction model. A high accuracy of 93.8% was obtained with the support vector 18 

machine and neural network using rs2110179 and rs2076549. Thus, peripheral 19 

neuropathy development due to vincristine therapy can be effectively predicted by a 20 

machine learning prediction model using SNPs associated with it. 21 

 22 

Keywords: genome-wide association study; peripheral neuropathy; vincristine; 23 

hematopoietic tumor; machine learning 24 

25 
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Introduction 26 

 Vincristine is an antineoplastic drug used for the treatment of many cancers, such 27 

as leukemia and malignant lymphoma. It exhibits its anticancer effects by binding to 28 

tubulin to prevent chromosome segregation, ultimately causing cell death [1]. However, 29 

it can cause serious side effects, especially peripheral neuropathy, which has been 30 

identified as a dose-limiting toxicity of vincristine [2]. Vincristine can cause peripheral, 31 

progressive, and symmetric nerve damage due to the destruction of microtubule structures, 32 

inflammatory processes, and axonal dysfunction [3]. Peripheral neuropathy caused by 33 

vincristine may decrease the quality of life of patients, cause delay or discontinuation of 34 

chemotherapy, and increase medical expenses [4]. Therefore, it is important to identify 35 

markers that can predict the occurrence of side effects to avoid them. 36 

 Nowadays, genome-wide association studies (GWAS) are being conducted to 37 

identify genetic factors that influencing susceptibility to complex diseases. This can 38 

statistically analyze the association between gene polymorphisms and specific traits [5]. 39 

For instance, Human leukocyte antigen (HLA)-A*3101 alleles have been associated with 40 

the risk of carbamazepine-induced adverse skin reactions by GWAS in the Japanese 41 

population [6], and rs9263726 of psoriasis susceptibility 1 candidate 1 (PSORS1C1), an 42 

alternative biomarker of HLA-B*5801, has been reported as a predictor of allopurinol-43 

related Stevens-Johnson syndrome and toxic epidermal necrolysis [7]. However, such 44 

success is rare, and many SNPs discovered by GWAS explain only a small fraction of 45 

cases, with few SNPs progressing to clinical application as predictive markers. 46 

In recent years, artificial intelligence (AI) technology has progressed, and its 47 

practical applications are gaining attention in the medical industry [8]. Recent examples 48 

include using deep learning for computed tomography image analysis in fibrous lung 49 
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disease [9] and quantitative structure–activity relationship model for drug discovery and 50 

predicting the occurrence of drug-induced liver injury [10]. AI is used in a wide range of 51 

medical fields, including drug therapy. Machine learning, which is an AI technology, is a 52 

method of letting a machine learn and discover hidden patterns in a given data and 53 

consequently predict the results for new data. Algorithms such as random forest (RF), 54 

support vector machine (SVM), naive Bayes (NB), and neural networks (NNs) are widely 55 

used. Previously, Oyaga-Iriarte et al. developed a machine learning model to predict the 56 

occurrence of irinotecan side effects in patients with metastatic colorectal cancer [11]. 57 

Additionally, Mo et al. developed a machine learning model to predict the effectiveness 58 

of etanercept treatment in juvenile idiopathic arthritis [12]. Thus, machine learning is 59 

expected to predict side effect occurrence and drug efficacy in the medical field [13]. 60 

No effective treatment or prediction of vincristine-induced peripheral 61 

neuropathy has been established to date. A marker predicting the onset of peripheral 62 

neuropathy will enable the selection of an appropriate drug treatment for each patient and, 63 

thus, prevent the onset of peripheral neuropathy. Therefore, we hypothesized that gene 64 

polymorphisms associated with side effects could be predictive markers for peripheral 65 

neuropathy development. In addition, we considered that machine learning would be 66 

useful as a tool for utilizing gene polymorphisms related to side effect expression for side 67 

effect prediction. In recent years, gene–gene interaction has attracted attention, and it has 68 

been reported that it is possible to make better predictions using multiple single nucleotide 69 

polymorphisms (SNPs) than only a single SNP [14]. Prediction by machine learning, 70 

which can consider the effects of multiple gene polymorphisms, may yield better results 71 

than prediction by individual gene polymorphisms. 72 

In this study, we identified genes related to the onset of peripheral neuropathy by 73 
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vincristine therapy using GWAS and constructed a model predicting the occurrence of 74 

side effects by machine learning based on multiple SNP information that has been shown 75 

to be related. 76 

  77 
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Methods 78 

Subjects 79 

This study included 72 patients admitted to the hematology department at 80 

Tokushima University Hospital between January 2015 and December 2019 and received 81 

vincristine therapy. Patients enrolled in the study were general inpatients receiving 82 

vincristine for the treatment of leukemia and malignant lymphoma, among other diseases. 83 

Peripheral neuropathy was diagnosed by the treating physician. The severity of 84 

neuropathy ranged from grade 1 to 3, but in this study, grade 1 and above was considered 85 

to be associated with side effects. These clinical data are from chart views. Other diseases 86 

such as diabetes were not investigated. Of the 72 patients, 56 were used for GWAS and 87 

16 were used for validation. This study was approved by the Human Genome, Genetic 88 

Analysis Research ethics committees of the Tokushima University (approval reference 89 

number: H26-29, date: January 5, 2015), and the Clinical Research Ethics Committee of 90 

the Tokushima University Hospital (approval reference number: 2175, date: January 26, 91 

2015). All participants provided written informed consent. 92 

 93 

Genotyping and imputation 94 

Genomic DNA was extracted from saliva samples using Oragene OG-500 Saliva 95 

Collection Kit (DNA Genotek Inc., Ontario, Canada). GWAS samples were genotyped 96 

for 659,184 markers using the Illumina Asian Screening Array V1.0 Kit (Illumina, Tokyo, 97 

Japan), following the manufacturer’s instructions. 98 

For genotyping imputation analysis, strand correction was performed using the 99 

utility program BEAGLE with genotyped data for Asian samples (JPT and CHB). 100 

Genotype imputation was performed using BEAGLE V.4.1 [15,16] with the 1000 101 
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Genomes Project Phase 3 V.5 as a reference panel. SNPs with a P-value of Hardy–102 

Weinberg equilibrium ≤ 10−6, linkage disequilibrium R2 > 0.8, minor allele frequency < 103 

0.05, and indels were excluded. Finally, 4,340,175 SNPs were used for subsequent 104 

association analyses. 105 

For 16 validation samples, rs2110179, rs7126100, and rs2076549 SNPs were 106 

genotyped by Sanger sequencing. 107 

 108 

Statistical analysis 109 

 Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated via 110 

logistic regression analysis using the PLINK version 1.07 software package 111 

(http://pngu.mgh.harvard.edu/~purcell/plink/) [17]. The Manhattan plot was generated 112 

using the qqman package for R software. A regional plot was created by LocusZoom 113 

using the 1000 Genomes Project Asian (ASN) data (November 2014) [18]. Significant 114 

expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) were 115 

searched on the GTEx Portal database (http://www.gtexportal.org/home/] [19], and 116 

HaploReg V.4.1 (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) was 117 

used for the functional annotation of nucleotide variants [20]. 118 

  119 

Machine learning 120 

To predict the occurrence of peripheral neuropathy by vincristine, machine 121 

learning was performed using the "caret" package for the R version 3.5.0 software 122 

(https://cran.r-project.org/web/packages/caret/) [21]. Fifty-six GWAS samples as a 123 

training set and 16 validation samples as a test set were used for machine learning. The 124 

accuracy rates for three SNPs (s2110179, rs7126100, and rs2076549), two SNPs-1 125 
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(rs2110179 and rs7126100), two SNPs-2 (rs2110179 and rs2076549), and two SNPs-3 126 

(rs7126100 and rs2076549) were compared using RF, SVM, NB, and NN algorithms. 127 

Hyperparameter tuning was performed using 56 GWAS samples as learning data. We 128 

performed 10-fold cross-validation (CV) and adopted a combination of hyperparameters 129 

with the highest CV accuracy. The accuracy rate, sensitivity, specificity, and positive and 130 

negative predictive values were evaluated. 131 

 132 

133 
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Results 134 

 The characteristics of the 72 patients who received vincristine therapy are 135 

presented in Table 1. Peripheral neuropathy due to vincristine treatment occurred in 36 of 136 

the 56 GWAS subjects and in 14 of 16 validation samples. In the GWAS sample, a 137 

significant difference between the age of patients with and without peripheral neuropathy 138 

onset was observed. Of the 56 GWAS subjects, 10 had leukemia (acute myeloid leukemia 139 

and acute myeloid monoctic leukemia), 39 had malignant lymphoma (diffuse large B-cell 140 

lymphoma, Berkitt lymphoma, follicular lymphoma, mucosa-associated lymphoid tissue) 141 

lymphoma, peripheral T-cell lymphoma, enteropathy-type T-cell lymphoma, adult T-cell 142 

leukemia/lymphoma, intravascular large-cell B-cell lymphoma, and unclassifiable 143 

malignant lymphoma), 5 had multiple myeloma, and 1 each had myelodystrophy 144 

syndrome and granulocytic sarcoma. Of the 56 patients, 36 received either CHOP 145 

(cyclophosphamide, doxorubicin, vincristine, and prednisolone) or R-CHOP (rituximab, 146 

cyclophosphamide, doxorubicin, vincristine, and prednisolone) therapy, and the other 147 

patients received COP [+R (rituximab), +ETP (etoposide), +THP (pirarubicin)], A-triple 148 

V (cytarabine, etoposide, vincristine, and vindesine), VAD (doxorubicin, vincristine, and 149 

dexamethasone), or EPOCH (etoposide, prednisolone, vincristine, cyclophosphamide, 150 

and doxorubicin) therapy. Of the 16 validation subjects, three had leukemia (acute 151 

myeloid leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia), 152 

and 13 had malignant lymphomas (diffuse large B-cell lymphoma, adult T-cell leukemia 153 

lymphoma, peripheral T-cell lymphoma, and NK/T-cell lymphoma). Of 16 patients, 10 154 

received either CHOP or R-CHOP therapy, while the others received THP-COP, A-triple 155 

V, LVD (L-asparaginase, vincristine, and dexamethasone), R-DA (dose adjusted)-156 

EPOCH, LSG15 (doxorubicin, vincristine, cyclophosphamide, ranimustine, etoposide, 157 
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vindesine, and carboplatin), or hyper-CVAD (cyclophosphamide, doxorubicin, vincristine, 158 

and dexamethasone) therapy. A single dose of vincristine (0.4–2.0 mg) was administered 159 

intravenously. The initial onset time observed in patients with peripheral neuropathy was 160 

1 day to 3 months after the first administration of vincristine. 161 

 We conducted a GWAS to identify the loci associated with the onset of peripheral 162 

neuropathy due to vincristine therapy. According to study results, the dominant genetic 163 

model showed the lowest P-value (Figure 1). The 4p15.2, 11p15.4, and 20q13.12 loci 164 

were suggested to be associated with the onset of peripheral neuropathy due to vincristine 165 

therapy. The most significant SNPs at each locus were rs2110179 at 4p15.2, rs7126100 166 

at 11p15.4, and rs2076549 at 20q13.12. To verify the accuracy of the typing result by 167 

imputation, these three SNPs were sequenced for the GWAS samples, and the association 168 

was reanalyzed. The strength of the association of each SNPs were as follows: rs2110179 169 

(OR = 0.10, 95% CI = 0.029–0.37, P = 4.3 × 10−4), rs7126100 (OR = 14.0, 95% CI = 3.6–170 

53.9, P = 1.3 × 10−4), and rs2076549 (OR = 7.0, 95% CI = 2.1–23.7, P = 1.7 × 10−3) (Table 171 

2). rs2110179, rs7126100, and rs2076549 were located downstream of the stromal 172 

interaction molecule 2 (STIM2) gene, intron of STIM1 gene, and intron of sulfatase 2 173 

(SULF2) gene, respectively (Figure 2). The results of searching for eQTLs and sQTLs 174 

with these SNPs revealed that rs2110179 was not associated with a significant eQTLs and 175 

sQTLs, but the addition of the minor allele of rs7126100 significantly downregulated 176 

STIM1 expression levels in the brain cerebellum (Supplementary Figure S1), whereas that 177 

of the minor allele of rs2076549 significantly increased SULF2 intron excision ratio in 178 

the nerve tibia (Supplementary Figure S2). According to the HaploReg database, 179 

rs2110179 did not reside in the regulatory motifs, but many SNPs in high linkage 180 

disequilibrium (LD) with rs2110179 resided Promoter Histone Marks, Enhancer Histone 181 
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Marks, DNase I hypersensitive, Proteins Bound and/or Motifs Changed regions 182 

(Supplementary Table S1). In contrast, rs7126100 and rs2076549 resided in the 183 

regulatory motifs (Supplementary Tables S2 and S3, respectively). 184 

 Next, to verify whether the three SNPs can predict peripheral neuropathy onset 185 

due to vincristine therapy, we determined the genotype for 16 validation samples collected 186 

separately (Table 3) and calculated the accuracy rate. The accuracy rate of prediction of 187 

peripheral neuropathy onset due to vincristine therapy for rs2110179, rs7126100, and 188 

rs2076549 in validation samples were 68.8%, 43.8%, and 62.5%, respectively (Table 4). 189 

We then used machine learning to construct a better predictive model. Supplementary 190 

Table S4 presents the optimized hyperparameter combinations and the CV accuracy for 191 

each model. In the model using the two SNPs-2 (rs2110179 and rs2076549), a high 192 

accuracy rate of 93.8% (sensitivity, 100%; specificity, 50.0%; positive predictive value, 193 

93.3%; and negative predictive value, 100%) was obtained for SVM and NN algorithms 194 

(Table 5). 195 

  196 
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Discussion 197 

The details of the mechanism by which vincristine administration induces 198 

peripheral neuropathy are unknown, and no system has been established to predict its 199 

occurrence. In this study, we identified genes associated with peripheral neuropathy onset 200 

due to vincristine therapy using GWAS, and constructed a prediction model for it by 201 

machine learning using the associated SNPs. As a result of GWAS, three SNPs 202 

(rs2110179, rs7126100, and rs2076549) associated with peripheral neuropathy onset were 203 

identified by the dominant genetic model. rs2110179, rs7126100, and rs2076549 were 204 

located downstream of STIM2, in the intron of STIM1, and in the intron of SULF2, 205 

respectively. Both STIM1 and STIM2 contribute to intracellular Ca2+ influx by store-206 

dependent Ca2+ channels by activating the plasma membrane channel calcium release-207 

activated calcium modulator 1 (Orai1) [22, 23]. This store-operated Ca2+ influx has also 208 

been confirmed in nerve cells [24]. SULF2 regulates the cellular signaling 209 

microenvironment by editing the sulfate pattern of heparan sulfate proteoglycans [25]. 210 

Elevated SULF1/2 expression in oligodendrocyte progenitor cells limits myelin sheath 211 

remodeling by directly impairing progenitor cell recruitment and subsequent 212 

oligodendrocyte production [25]. Vincristine destabilizes microtubules, which play a 213 

fundamental role in nerve fiber myelination, and alters oligodendrocytes structure and 214 

function, causing abnormal myelination and loss of peripheral sensory fibers [2]. Since 215 

these genes are involved in neurotransmission [26-29], it is suggested that they may have 216 

some effect on peripheral neuropathy onset caused by vincristine therapy. SNPs are 217 

located in the intron or downstream of each gene; however, it remains unknown how they 218 

affect these genes. Nevertheless, it has been reported that some SNPs located on introns 219 

affect gene expression [30]. eQTLs analysis revealed that the minor allele of rs7126100 220 
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significantly downregulated STIM1 expression levels in the brain cerebellum. It has been 221 

reported that hereditary cerebellar ataxia causes peripheral neuropathy by affecting the 222 

peripheral nerves due to neurodegenerative disorders [31]. It has been suggested that 223 

neurotransmission suppression due to decreased STIM1 expression causes a decrease in 224 

cerebellar function and contributes to peripheral neuropathy development [26]. In 225 

addition, sQTL indicated that the minor allele of rs2076549 significantly increased the 226 

SULF2 intron excision ratio in the nerve tibia. Thus, the minor allele of rs2076549 results 227 

in the expression of a different isoform of SULF2, which affects myelination, suggesting 228 

that it causes peripheral neuropathy. rs2110179 was not associated with a significant 229 

eQTLs and sQTLs, but many SNPs in high LD with rs2110179 resided regulatory motifs. 230 

Therefore, it was suggested that SNPs, which are LD with rs2110179, affect the 231 

expression level of STIM2 and cause peripheral neuropathy due to abnormal 232 

neurotransmission. 233 

Next, we calculated the predictive rate of peripheral neuropathy onset due to 234 

vincristine therapy using three SNPs that were associated with peripheral neuropathy 235 

onset in GWAS using 16 validation samples. However, of the three SNPs, the accuracy 236 

rate for rs2110179 was the highest (68.8%). Next, a peripheral neuropathy onset 237 

prediction model was constructed by machine learning using each algorithm, and its 238 

prediction rate was evaluated using 16 validation samples. Results showed that SVM and 239 

NN using rs2110179 and rs2076549 had the highest accuracy rate (93.8%). This accuracy 240 

rate was superior to the accuracy rate (84.2%) of vincristine-induced peripheral 241 

neuropathy by machine learning using metabolite data [32]. The combination of SNPs 242 

with the highest accuracy rate did not include rs7126100, which indicated the strongest 243 

association with the onset of peripheral neuropathy in GWAS. However, the average 244 
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accuracy of hyperparameter tuning by the machine learning model trained with GWAS 245 

sample data of three SNPs, including rs7126100, was the highest in both algorithms. This 246 

indicates that the machine learning model using three SNPs is more suitable for the 247 

GWAS sample data than the model using two SNPs (rs2110179 and rs2076549). In 248 

contrast, the model using rs2110179 and rs2076549 predicted the occurrence of 249 

peripheral neuropathy in the validation sample with higher accuracy than the average 250 

accuracy.  251 

This study had several limitations. The 72 patients used in this study may be too 252 

few. For example, for rs2110179, which has the lowest P-value, the power was 0.7 when 253 

calculated with OR 14 using the Japanese minor allele frequency 0.281, according to the 254 

human genetic variation database. In general, power 0.8 or higher is considered good, but 255 

our results are slightly lower. This may be the reason why the predictive rate of a single 256 

SNP was low in the validation analysis. A small number of validation samples can also 257 

be a factor, but if you have more than 1000 samples, it may find an SNP that is clinically 258 

applicable as a predictive marker. To verify the validity of this result, it is necessary to 259 

balance case/control for both study data and test data and try to learn and verify further 260 

models using more samples and additional sample sets. 261 

In conclusion, a machine-learning predictive model using SNPs that have been 262 

associated with vincristine-induced peripheral neuropathy in GWAS will be a useful tool 263 

in determining the applicability of vincristine-based chemotherapy by predicting the 264 

likelihood of peripheral neuropathy onset in individual patients. 265 

 266 

Data availability 267 

The datasets generated and/or analyzed during the current study are available from the 268 
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Figure and Table Legends 426 

Figure 1. Manhattan plot of associations from the GWAS of peripheral neuropathy 427 

The negative log10-transformed P values (Y axis) of genotyped and imputed SNPs are 428 

shown according to their positions on chromosome. The horizontal line represents 429 

suggestive thresholds. 430 

 431 

Figure 2. Regional association plot for a peripheral neuropathy-associated locus 432 

The negative log10-transformed P-values (Y axis) of genotyped and imputed SNPs located 433 

in the 400 kb upstream and downstream regions of the GWAS-lead SNP rs2110179 (A), 434 

rs7126100 (B), and rs2076549 (C) are shown according to their chromosomal positions. 435 

Purple diamond and circles represent the lead SNP and other SNPs within the region, 436 

respectively, with the color of each circle indicating the range of pairwise r2 value with 437 

lead SNP. The right Y axis shows the recombination rates estimated from the 1000 438 

Genomes project Asian (ASN) data (Nov 2014). The RefSeq gene within the region is 439 

shown in the panel below. 440 

 441 

Table 1. Characteristics of subjects 442 

Case refers to patients who developed peripheral neuropathy due to vincristine treatment, 443 

and control refers to patients who did not. 444 

Data are presented as mean ± standard deviation. P values of age and BMI were obtained 445 

using unpaired Student’s t-test, and P values of the male sex were obtained using Fisher’s 446 

exact test. 447 

 448 

Table 2. Top SNP in each loci identified the association (P < 10−4) in GWAS for 449 
vincristine-induced peripheral neuropathy 450 
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Chr, chromosome; SNP, single-nucleotide polymorphism; AF, allele frequency 451 

 452 

Table 3. Allele frequency in the validation samples 453 

SNP, single-nucleotide polymorphism; AF, allele frequency 454 

 455 

Table 4. Accuracy rate of prediction of the onset of peripheral neuropathy due to 456 

vincristine therapy of rs2110179, rs7126100 and rs2076549 in validation samples 457 

 458 

Table 5. Accuracy rate of prediction of the onset of peripheral neuropathy due to 459 

vincristine therapy using machine learning in validation samples 460 
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Table 1. Characteristics of subjects 
 
 GWAS (N=56)  Validation (N=16) 
 Control (N=20) Case (N=36) P-value  Control (N=2) Case (N=14) P-value 
Age (years) 66.5±8.0 59.5±9.6 0.010  53.5±1.5 61.6±9.5 0.82 
Male sex – no. (%) 14 (70.0) 19 (52.8) 0.26  2 (100) 5 (35.7) 0.18 
BMI (kg/m2) 21.9 ± 3.6 22.1 ± 2.8 0.86  19.0 ± 0.3 19.6 ± 3.4 0.28 

 
Case refers to patients who developed peripheral neuropathy due to vincristine treatment, and control refers to patients who did not. 
Data are presented as mean ± standard deviation. P values of age and BMI were obtained using unpaired Student’s t-test, and P values of 
the male sex were obtained using Fisher’s exact test. 



Table 2. Top SNP in each loci identified the association (P < 10−4) in GWAS for vincristine-induced peripheral neuropathy 

 
Chr, chromosome; SNP, single-nucleotide polymorphism; AF, allele frequency 

Chr. SNP Gene locus Allele Control (N=20)  Case (N=36) OR (95%CI) P-value 
    Genotypes AF  Genotypes AF   
4 rs2110179 STIM2 downstream G/A 6/11/3 0.43  29/5/2 0.13 0.10 (0.029-0.37) 4.3×10-4 
11 rs7126100 STIM1 intron A/T 16/4/0 0.10  8/22/6 0.47 14.0 (3.6-53.9) 1.3×10-4 
20 rs2076549 SULF2 intron C/T 14/3/3 0.23  10/16/10 0.50 7.0 (2.1-23.7) 1.7×10-3 



Table 3. Allele frequency in the validation samples 
 
 
 
 

SNP, single-nucleotide polymorphism; AF, allele frequency

SNP Allele Control (N=2)  Case (N=14) 
  Genotypes AF  Genotypes AF 
rs2110179 G/A 0/2/0 0.50  9/3/2 0.25 
rs7126100 A/T 1/1/0 0.25  8/5/1 0.25 
rs2076549 C/T 1/1/0 0.25  5/7/2 0.39 



Table 4. Accuracy rate of prediction of the onset of peripheral neuropathy due to 
vincristine therapy of rs2110179, rs7126100 and rs2076549 in validation samples 

Accuracy 
rate (%)

Sensitivity 
(%)

Specificity 
(%)

Positive 
predictive 
values (%)

Negative 
predictive 
values (%)

rs2110179
rs7126100
rs2076549



Table 5. Accuracy rate of prediction of the onset of peripheral neuropathy due to vincristine therapy using 
machine learning in validation samples 

SNP Algorithm 
Accuracy 
rate (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Positive 
predictive 
values (%) 

Negative 
predictive 
values (%) 

<3 SNPs> 
rs2110179 
rs7126100 
rs2076549 

RF 62.5 57.1 100 100 25 
SVM 62.5 57.1 100 100 25 
NB 81.3 78.6 100 100 40 
NN 62.5 57.1 100 100 25 

<2 SNPs-1> 
rs2110179 
rs7126100 

RF 37.5 28.6 100 100 16.7 
SVM 37.5 28.6 100 100 16.7 
NB 75 78.6 50 91.7 25 
NN 37.5 28.6 100 100 16.7 

<2 SNPs-2> 
rs2110179 
rs2076549 

RF 68.8 64.3 100 100 28.6 
SVM 93.8 100 50 93.3 100 
NB 87.5 100 0 87.5 NA 
NN 93.8 100 50 93.3 100 

<2 SNPs-3> 
rs7126100 
rs2076549 

RF 68.8 78.6 0 84.6 0 
SVM 43.8 42.9 50 85.7 11.1 
NB 43.8 42.9 50 85.7 11.1 
NN 68.8 78.6 0 84.6 0 


