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Abstract

Recently, emotional computing has received more and more attention from scholars. Machines

with emotions can give us a better human-computer interaction experience. The expression and

detection of emotions are two important aspects of machines with emotions. This paper is

devoted to exploring machine generation of text with emotion and detection of all emotions

contained in the text.

Text as a carrier of emotion is one of the important research topics in the field of affective

computing. The dialogue system is an important part of this research. So far, most of the mature

dialogue systems are task-oriented based, while non-task-oriented dialogue systems still have a

lot of room for improvement. We propose a data-driven non-task-oriented dialogue generator

“CERG”based on neural networks. This model has the emotion recognition capability and can

generate corresponding responses. We try to concatenate the post and the response with the

emotion, then mask the response part of the input text character by character to emulate the

encoder-decoder framework. We use the improved transformer blocks as the core to build the

model and add regularization methods to alleviate the problems of overcorrection and exposure

bias. In the training process, we mask the response part of the input text character by character

to emulate the encoder-decoder framework to prevent the leakage of information during inference.

We replace the characters with the BERT model predicted characters at random positions of

the input text, which will improve the robustness of the model without disrupting the training

parallelism. We introduce retrieval methods in the inference process. We calculate the weight

scores of similar posts and responses together with beam search, which can make the predicted

responses more in line with the context.

The data we adopt comes from the NTCIR-14 STC-3 CECG subtask. The data set contains 6

emotion categories and the corresponding 1.7 million Chinese Weibo post-response pairs. After

concatenating emotion, post and response, we employ three embedding layers including token,

position and segment embedding layers and 12 transformer blocks for representation. To train

the model with the conventional optimizer, we adjust the position of the layer normalization

in the transformer blocks. We adopt a hard voting manual metric to evaluate the generative

ability of our model. The coherence, fluency, and emotional relevance scores of our model in
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the manual evaluation are higher than the model without the retrieval method and the baseline

model. The proportion of safe and commonplace responses has also been greatly reduced. The

results of the manual evaluation show that our proposed model can make different responses to

different emotions to improve the human-computer interaction experience. This model can be

applied to lots of domains, such as automatic reply robots of social application.

Textual emotion detection is also playing an important role in the human-computer interaction

domain. Texts often contain more than one emotion. The purpose of this paper is to explore

the detection of all possible emotions in a text. The mainstream methods of textual emotion

detection are extracting semantic features and fine-tuning by language models. Current methods

of textual emotion recognition mainly use large-scale pre-trained models fine-tuning. However,

these methods are not accurate enough in the semantic representation of sentences. Contrastive

learning has been shown to optimize the representation of vectors in the feature space. Therefore,

we introduce the contrastive strategies to the textual emotion recognition task. Weintroduce the

contrastive strategies for multi-label textual emotion classification tasks. Based on the large-

scale pre-trained model BERT, we propose two approaches: using self-supervised contrastive

learning before fine-tuning the model, and using contrastive training on the same inputs during

fine-tuning.

Due to the information redundancy in semantics, it is difficult for these methods to accurately

detect all the emotions implied in the text. The prompting method has been shown to make

the language models more purposeful in prediction by filling the cloze or prefix prompts defined.

Therefore, we design a prompting approach for multi-label classification. To stabilize the output,

we design two consistency training strategies.

Neural networks are replacing symbolic approaches as better methods for textual emotion

detection due to their powerful feature extraction capabilities. However, neural networks are

prone to overfitting during training because of the small amount of emotion detection data.

Based on experience or knowledge, symbolic approaches can fit a small amount of data by low-

dimensional features and also outperform neural networks in terms of interpretability. We design

three models combining symbolic approaches with neural networks for detecting all potential

emotions from texts in this article. Due to the importance of emotional words in detection, we

retrieve these words from texts by an emotional dictionary approach; we predict the reaction and

describe the state of the subject to help detect emotions by a commonsense knowledge inference
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approach; we cluster texts by a topic model since texts with similar topics may have similar

emotions. In this article, we employ three symbolic approaches to assist a neural network model

in detecting emotions.

We experiment with the effectiveness of the strategies on two multi-label emotion classification

datasets: Ren-CECps and NLPCC2018. The experimental results demonstrate that using the

contrastive strategy in the classification part is more effective in improving the accuracy of

emotion recognition than using the contrastive strategy in the encoding part. Our proposed

prompt tuning with consistency training for multi-label textual emotion detection (PTC-MTED)

model achieves Macro F1 scores of 0.5432 and 0.5269, respectively. The experimental results

indicate that our proposed method has significant effectiveness in the multi-label textual emotion

detection task. The experimental results show that the symbolic approaches improve the fitting

process, improve the interpretability and increase the accuracy of neural networks. This indicates

that neurosymbolic methods are effective in the multi-label textual emotion detection task.

Keywords: Emotional text generation, Multi-label textual emotion detection, Large-scale

pre-trained language model, Retrieval strategy, Contrastive strategy, Prompt engineering, Neu-

rosymbolic approach.



Chapter 1 Introduction 4

Chapter 1 Introduction

1.1 Motivation and Significance

One of the research motivations in affective computing is to give machines emotional intelli-

gence [1]. Machines with emotional intelligence can better interact with humans [2]. Emotion

generation and emotion detection are two of the important aspects in emotional intelligence

[3]. Text is one of the ways of human-computer interaction.In this article, we focus on emotion

generation and emotion detection in text.

Machine responses with emotions can improve the experience during human-computer interac-

tion. The dialogue system has been receiving much attention since the Turing Test was proposed

[4]. The dialogue system responds to the topics or instructions thrown by the user by simulating

human beings [5].

Based on whether the dialogue system can achieve a specific goal, it can be divided into 2 types:

task-oriented and non-task-oriented dialogue systems (or chatbot) [6]. Task-oriented dialogue

systems are generally used in closed domains like ticket purchase, ordering, and customer service

[7]. There are 2 main types of task-oriented dialogue systems: pipeline-based and end-to-end

methods. A chatbot is generally used in open domains such as psychotherapy applications [8].

There are 3 main types of chatbot: rule-based, retrieval-based, and generation-based methods.

So far, due to the application of slot filling and other technologies, the task-oriented dialogue

system is more mature than the chatbot [9]. With the continuous advancement of big data and

deep learning technologies, we can build a data-driven chatbot [10]. The Chinese Weibo involved

in this article can be regarded as some non-task-oriented dialogue.

Emotion recognition is the process by which a machine identifies human emotion. The response

of the machine based on the user’s emotional state can enhance the user’s experience. Krakovsky

et al. believe that emotion detection is one of the skills that machines can imitate and even

surpass humans [11]. Emotion detection can be applied to several real-world scenarios. For

example, it can be used in intelligent customer service systems to improve user satisfaction [12],

as well as in user satisfaction analysis systems to develop better sales strategies [13]. Machines

usually recognize the emotion by acquiring emotion-induced physiological signals or behavioral
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information [14]. In this article, we focus on emotion detection from the text.

Textual emotion detection can be classified into word level, sentence level, chapter level and

target level according to the research objectives [15]. Building an emotion dictionary is a common

method for word-level emotion analysis [16]. The information of each word in a sentence/chapter

is pooled or concatenated to represent the sentence-level/chapter-level emotion as a whole [17].

The target-level target refers to the emotion of an entity or an attribute [18]. Regardless of the

level, words that contain emotional tendencies are the most critical factors in the process of emo-

tion detection [19]. The mainstream method of classification tasks like textual emotion detection

at this stage is to first fine-tune or extract features from the text by using language models and

then classify them [20]. With these language models, as well as the designed semantic tasks, we

can obtain the feature representation of the text [21]. For example, the bidirectional encoder

representations from transformers (BERT), predict whether the sentences are contextually rele-

vant at the first token position [22]. A large-scale pre-trained language model (PTM) can learn

information between contexts from large amounts of text [23]. The state-of-the-art results for

the textual emotion detection task are almost obtained by these models [24].
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1.2 Outline and Contributions

Dialogue generation is closely related to the technology of natural language generation. Natural

language generation is a process that transforms structured data into natural language. In the

domain of deep learning, the sequence-to-sequence (seq2seq) framework is often used in dialogue

generation [25]. This framework consists of an encoder and a decoder, which is a kind of end-

to-end learning algorithm. The encoder of seq2seq converts the input sequence into a hidden

state vector. The decoder converts the vector into an output sequence, then adopts the output

of the previous step as the input of the next step. With the increase of sequence length, the

problem of gradient disappearance may appear in the calculation. Seq2seq avoids this problem

by using long short-term memory instead of original recurrent neural networks [26]. Because

the recurrent neural network cannot do the parallel calculation, the training speed is slow. The

transformer model proposed by Google Brain parallelizes this calculation process by the multi-

head self-attention mechanism, which greatly improves the calculation efficiency [27]. Thus it

has become the most commonly used model in the seq2seq framework in recent years. There

is some work dedicated to improving the accuracy of translations or the quality of generated

sentences. Some researchers are committed to improving the accuracy of translations or the

quality of generated sentences by disrupting parallel computing [28]. We try to figure out a

method to improve the quality of generated responses without disrupting parallel computing.

Existing data-driven non-task-oriented dialogue systems tend to generate a safe and common-

place response [29], for example, ”I don’t know”. We introduce the retrieval method into the

non-task-oriented dialogue system, aiming to alleviate this problem.

The key to improving the human-computer interaction experience is to make the dialogue

system empathetic. Affective computing is the study that can recognize and simulate human

affects [30]. Affective computing can improve the user-friendliness of the system [31]. Lots of

scholars research dialogue system and affective computing respectively. Few studies have linked

these two aspects [32] [33]. Different emotions used in the same sentence usually express different

meanings. This is one of the difficulties of natural language processing technology.

Chinese Weibo emotional response is a task to study how to properly combine affective com-

puting to a chatbot. The data set we adopt is from the NTCIR-14 STC-3 CECG subtask, which



Chapter 1 Introduction 7

Figure 1.1 Overview of CERG architecture. The input below, from left to right, is emotion, post

and response. The model includes 3 embedding layers and 12 transformer blocks. The current

position predicts the next character.

is constructed from Chinese Weibo posts and replies [34]. This data set contains 6 different emo-

tions: like, sadness, disgust, anger, happiness and other. We aim to find a way to incorporate

affective computing into dialogue generation.

How to combine emotional computing with dialogue generation is a challenge. Zhou et al.

proposed a memory-network-based emotional chatting machine, which introduced emotional

factors into a Chinese dialogue generation system [35]. We once proposed the P&E2R model

based on the LSTM network [36]. On this basis, we build a new model to improve the effect of

emotional response generation. Unlike our previous work, we use the same embedding layers to

deal with the emotion, the post and the response, as shown in Figure1.1. Besides, the encoder and

decoder are no longer established separately. We directly employ multi-block transformers, while

masking the response part of the input text character by character to avoid information leakage.

Based on the teacher-forcing method [37], we add regularization methods such as character

replacement to alleviate the problems of overcorrection and exposure bias while ensuring the

parallel training of the model. Apart from the beam search method, we employ the retrieval

method to improve the semantic relevance of generated responses in inference.

This model has made great progress in the emotional response generation. The coherence,

fluency and emotional relevance scores of our model in manual evaluation, are higher than the
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model without using the retrieval method and the baseline model. The proportion of safe and

commonplace responses has also decreased significantly. These results indicate the effectiveness

of our model. The model can be applied to the automatic reply of social applications like Chinese

Weibo, and emotional chatting robots.

Some scholars regard emotion detection as a single-label classification task [38]. As a matter

of fact, a sentence may contain multiple emotions. We regard emotion detection as a multi-label

classification task [39].

Treating pooled or concatenated word vectors as sentence vectors will inevitably lose infor-

mation. To solve this problem, some language models tend to design semantic tasks to train

feature representations of whole sentences [21]. Large-scale pre-trained language models, such as

bidirectional encoder representations from transformers (BERT), predict whether the sentences

are contextually relevant at the first token position [22]. Semantic text similarity measures the

meaning similarity of sentences. In this kind of task, the state-of-the-art results are almost

obtained by large-scale pre-trained language models [40].

In large-scale pre-trained language models, the representation of word vectors is correlated

with word frequency, resulting in uneven distribution of word vectors in the feature space [41].

The idea of contrastive learning is to represent the features uniformly in the feature space [42].

Therefore, Gao et al. introduce contrastive learning into the training process of large-scale pre-

trained language models, which in turn achieves uniform distribution of sentence vectors in the

feature space [43].

Besides emotional information, textual representations also contain other semantic information

like contextual information, which may cause classification difficulties. The prompting method

further applies the language model to various natural language processing tasks by means of

inserting prompt as cloze or prefix into the input sample [44]. By introducing the prompting

method in the textual emotion detection task, we can abstract the emotional information from

the semantic space. For example, we can ask the language model to fill the blank with an

emotion-bearing word. However, there is often more than one kind of emotion in the text.

As shown in Figure 1.2, a good detection model should be able to detect multiple emotions.

Therefore, we need to redesign the prompt and the model for the multi-label emotion detection

task.

We attempt to prompt each emotion and let the model determine whether the emotion appears
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Figure 1.2 An example of multi-label textual emotion detection. We incorporate the prompting

method in the detection process to make the model more accurately output the emotions implied

in the input text.

in sequence. The representations are different between synonyms in the semantic space [45]. The

different emotion-bearing words are biased with different datasets, which results in the semantics

of the emotion-bearing words not fully covering the real situation in the space. Therefore, we try

to ensemble the prompt with synonyms to improve the model’s ability to recognize ambiguous

emotions.

The perturbations at the input such as adding noise often cause the unstable output of the

model [46]. Consistency training has been shown to alleviate instability caused by these per-

turbations [47]. In addition, regularization methods such as dropout can cause inconsistencies

between the training model and the prediction model. We adopt two kinds of consistency train-

ing strategies to make the output of a pair of synonym prompts tend to be consistent.

Due to the small amount of data for the textual emotion detection task, the neural network

models are prone to overfitting [48]. Based on experience or knowledge, the symbolic approach

can fit small datasets with refined (low-dimensional) features [49]. The symbolic approach here

refers to the process by which machines deal with symbolic codes in an algebraic or logical way

[50]. For example, an expert system simulates an expert in a specific field to answer questions

by formulating rules or retrieving from a knowledge base [51].

In the process of emotion detection, words that contain emotional tendencies are the most

critical factors [19]. Therefore, Li et al. identified emotions through the emotional dictionary

[16]. Words that imply different kinds of emotions can be collected and be used to build an
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emotional dictionary. When an emotional word appears in the input text, we believe that the

text may imply this emotion. Besides, Minsky et al. found that emotions can be detected by

knowledge [52]. For example, the machine can infer what mental state the person is in by using

a knowledge graph.

Although the above symbolic methods are currently less accurate than neural network methods

for emotion detection, it does not mean that they are ineffective. Neural networks often require

additional methods to cope with outliers that are very different from the training data [53]. And

the symbolic approach is superior to the neural network in terms of interpretability [54]. The

combination of symbolic approaches and neural networks may perform better [55]. For example,

the topic model can use statistical methods to cluster texts into several abstract topics [56].

These topics cannot be used directly for emotion classification, but we speculate that texts with

similar topics may imply similar emotions.

Our contributions can be summarized as follows:

• We propose a Chinese emotional response generator CERG, and the results on the Chi-

nese Weibo dataset show that our model is effective. Without disrupting the parallel

computing, we improve the robustness of the model by using the masking and regulariza-

tion methods. We introduce the retrieval method BM25 into the inference process, which

greatly reduces the probability of generating safe and commonplace responses, and im-

proves the diversity and contextual relevance of responses. We directly concatenate posts,

masked responses with emotions, and adopt the embedding layers with shared weight to

generate emotion-related answers, which is different from other models.

• We introduce contrastive strategies in the training phase of multi-label emotion recognition

from text to further improve the recognition accuracy based on large-scale and training

language models. We propose a prompt tuning with consistency training for multi-label

textual emotion detection model. We combine multiple symbolic approaches with neural

networks to improve the fitting process and the classification results of the model on

multi-label textual emotion detection tasks.
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1.3 Thesis Organizations

In this paper, we utilize multiple methods and strategies to improve the model’s ability to

generate text with sentiment, and to detect sentiment from text. The effectiveness of these

methods and strategies is illustrated by our multiple evaluation metrics on multiple datasets.

The remainder of this paper is organized as follows.

Chapter 2: Background

We review the knowledge of text generation and classification, including:

• commonly used text generation methods and strategies

• commonly used text classification methods

• a variety of strategies that may help classification model training and prediction

Chapter 3: Emotional Text Generation

We give a definition of the sentiment text generation task and propose a method for generation

and a strategy for retrieval. We validate the effectiveness of this method and strategy on the

dataset.

Chapter 4: Multi-label Textual Emotion Detection

We define a multi-label textual emotion detection task and then propose different methods in

terms of contrastive learning, prompt engineering, and neurosymbolic approaches. Five evalua-

tion metrics on two datasets demonstrate the effectiveness of these methods.

Chapter 5: Conclusion and Future work

We summarize the main contents of this thesis and give meaningful directions for future work.
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Chapter 2 Background

2.1 Text Generation

In the NTCIR-14 STC-3 CECG subtask, we proposed the P&E2R model and got ranking sec-

ond, as shown in Figure 2.1. After embedding the posts and responses with a shared weighted

layer, we encode them by the recurrent neural networks. The embedding emotions are concate-

nated with the former features. The probability distribution of the current word is generated

by a recurrent neural network decoder. This model is simple but effective. We introduce the

idea of concatenation in this article. The disadvantage of this model is that the calculation of

the recurrent neural network depends on the hidden state of the previous time, and it cannot

be parallelized, which is very time-consuming.

Li et al. proposed the UniLM model [57]. The authors employ the transformer as the core

of this model and make it parallel to improve calculation efficiency. Also, they adopt a special

mask method to skillfully combine the encoder and decoder. Although we do not adopt the pre-

trained model from UniLM in our article, we introduce the idea of the attention mask method

to improve the speed of the generator.

There are still some problems with this method. The teacher-forcing method is the key

technology to ensure that the transformer model can completely calculate all tokens in parallel

during the training process. Zhang et al. pointed out that the ground truth word is used during

model training, but once the predicted word is wrong in a certain position in the inference

Figure 2.1 The baseline model from our previous work. Posts, responses and emotions are

concatenated by different encoding layers. The decoder is used to predict the next characters.
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process, the output of the model will deviate from the predetermined direction [58]. This will

cause the exposure bias problem. The author proposed the word-level oracle and the sentence-

level oracle method to solve the overcorrection problem brought by the teacher-forcing method.

This method will disrupt the parallel computer system of the transformer model. We try to

avoid disrupting the parallel computing mechanism and uses a variety of regularization methods

like predicted character replacement to make the model more robust.

In addition, we also employ a beam search method in the inference process [59]. Beam search

is a search algorithm that explores a graph by expanding the most promising node in a limited

set. On the basis of that, we use the BM25 method and selects the most semantically relevant

response among the k alternatives [60]. BM25 is a ranking function to estimate the relevance of

documents to a given search query. We adopt this method to find the responses of the n closest

posts and calculate their similarity to the predicted responses. The experiments show that using

this retrieval method can make the responses more in line with the context.
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2.2 Textual emotion detection

Textual emotion detection has recently become a hot topic due to its commercial and academic

potential [48]. Textual sentiment analysis is generally performed with positive and negative in

the tasks like product comments analysis [61]. Besides, emotions can be classified into various

categories at fine-grained levels. Some scholars regard emotion analysis as a single-label classifi-

cation task [38]. As a matter of fact, a piece of text may contain multiple emotions. Therefore,

we tend to regard textual emotion analysis as a multi-label classification task [39]. In this article,

the goal of the task is to detect all the possible emotions in the textual expression.

2.2.1 Mainstream Methods

Methods for textual emotion detection can be classified into four categories: rule-based

methods, classical learning-based methods, deep learning methods, and hybrid methods

[24].

The rule-based methods are well interpretable. These methods usually rely on preprocessing

steps including tokenization, lemmatization, POS tagging, and stop words removal [62]. The

emotion rules can be extracted by statistics or linguistic concepts. Lee et al. constructed an

annotated emotion cause corpus and calculated the distribution of cause event types for each

emotion class to recognize emotion cause events [63]. The results show that the rule-based

methods are very sensitive to text quality. Therefore, we try to use rule-based methods to assist

the neural network model to detect emotions instead of recognizing them directly in this paper.

Textual sentiment analysis is generally performed with positive and negative in the tasks like

product comments analysis [61]. The use of a sentiment dictionary can be considered as a rule-

based method when dealing with the textual sentiment analysis tasks. How well the sentiment

analysis results depend basically on how accurately the sentiment dictionary is constructed [64].

Unlike sentiment, emotions can be classified into various categories at fine-grained levels. Most

current emotional dictionary are constructed by adjectives [65]. When the text does not contain

adjectives or other keywords, dictionary-based methods may perform poorly in the emotion

recognition tasks.

WordNet is a database describing the connections between English words [66]. Badaro et al.
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expanded the emotional dictionary with WordNet and treat the dictionary as prior knowledge

for emotion recognition [67]. The expanded dictionary performed better when used for emotion

recognition tasks.

Most of the datasets involve a specific domain rather than an open domain, so there is also

some work to make up for the limitations of the datasets by introducing background knowledge or

prior information [68]. In addition to being used to expand dictionaries, databases like WordNet

are often used for knowledge representation [69]. Seol et al. used information from a third-party

knowledge database directly to recognize emotions, rather than first constructing an emotional

dictionary [70]. Implicit knowledge constructed with the third-party information can help when

the model is unable to infer the emotion by the keywords.

Knowledge bases can be widely used in industries such as medicine, finance, and education [71].

We find that the information in these knowledge bases is objective, and direct application to a

subjective task like emotion recognition may be a bit difficult. Ghosal et al. used commonsense

knowledge to assist utterance-level emotion recognition, and achieved good results [72]. The

authors proved that the causal relations of events or the states of the characters inferred from

common sense contributed to emotion detection.

Classical learning-based methods refer to using traditional machine learning methods such

as support vector machines or logistic regression. These methods rely on extracting and selecting

features with the most information gain, and then outputting the optimal hyperplane [73].

Artificial feature engineering is more interpretable compared to deep learning.

Experiments by Anusha et al. showed that the important part of the sentence is essential for

improving the results of emotion classification [74]. So we believe that similar texts may have

similar emotional expressions. Topic models can retrieve information or extract features from

unstructured documents [75]. We try to cluster the similar texts by a topic model.

Lin et al. used an LDA-based topic model to analyze sentiment [76]. The authors found that

the order of the keywords of the topics might affect the results of the classification. In view of

this, we try to use the keywords of the topics as symbols to assist in detecting emotions while

retaining the original text.

Deep learning methods have the advantage of automatic feature engineering and a large

amount of data information compared to classical learning-based methods [77]. Commonly used

deep learning frameworks include convolutional neural networks, recurrent neural networks,
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transformers, and so on. Majumder et al. used multiple gate recurrent units (a kind of recurrent

neural networks) to model speaker state, global state and emotion representation to detect

emotions in conversations [78].

The previously mentioned Ghosal et al. used commonsense knowledge information based on

the construction of multiple-gate recurrent units to assist in detecting emotions in conversations

[72]. Inspired by them, we attempt to use commonsense knowledge inference to assist in detecting

the emotions from the text.

Recently, PTM based on transformers has been shown to be effective in capturing contextual

information [79]. Such language models can be classified into two categories depending on the

different masking strategies: autoregressive models and autoencoder models. The autoregressive

models, represented by Generative Pre-Training 2 [80], use unidirectional transformers to predict

words. The autoencoder models, represented by bidirectional encoder representations from

transformers (BERT) [22] use bidirectional transformers to integrate contextual information.

The PTM acquires prior information and applies it to downstream tasks by unsupervised

learning on large amounts of data in advance. The autoencoder models are more suitable for

classification tasks due to the information leakage. Kim et al. achieved good results in the

conversation emotion recognition task by using a robustly optimized BERT pretraining approach

[81]. We try to find how symbolic approaches affect emotion detection based on the BERT model

in the experimental chapter.

Hybrid methods inherit the advantages and disadvantages of the other three kinds of methods.

Shaheen et al. constructed annotations of sentences by rules and used the rule-based approach

or k-nearest neighbors algorithm to classify according to the semantic similarity between the

annotations and the sentences [82]. Different from them, we attempt to merge neural features

with symbolic features and explore whether neural networks can achieve better results with

the assistance of the emotional dictionary, commonsense knowledge inference and topic model

clustering approaches than with the approach alone in this article.

2.2.2 Other Strategies

Contrastive learning used a self-supervised approach to avoid the cost of annotating large-scale

datasets in the field of computer vision [83]. Contrastive learning constructs positive and negative

samples by means of data augmentation and adjusts the distribution of features in space. Later,
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contrastive learning was also gradually used in the field of natural language processing. The

most commonly used methods of text data augmentation are replacement, insertion, deletion

and swap [84]. Gao et al. used the property of dropout to implicitly construct positive samples

and achieved state-of-the-art results on several semantic text similarity tasks [43]. Liang et al.

added a regularization strategy to improve the robustness of the model based on the inconsistency

of dropout output [85]. Inspired by the above work, we use dropout and construct two large-

scale pre-trained models based on fine-tuning to explore the influence of contrastive strategies

on emotion recognition.

Consistency training is often used for label-independent semi-supervised learning [86]. Miyato

et al. added a regularization term to make the model more robust to input perturbations by

an adversarial approach [46]. Gao et al. constructed positive samples implicitly in contrastive

learning and achieve good results with the consistency training [43]. Liang et al. used consistency

training to alleviate the output instability caused by dropout in the model [87].

Both prompt ensembling and dropout in the language model may perturb the probability

distribution to be predicted. Inspired by the above work, we attempt to introduce consistency

training into our supervised learning process, to improve the robustness of the model.

Unlike traditional supervised learning, prompt-based learning learns the predicted text prob-

abilities directly with the help of language models [44]. According to the shape of the prompt,

prompting methods can be classified into two categories: cloze prompts and prefix prompts. The

cloze prompts fill in the blanks of the string by the language model [88]. The prefix prompts

continues to generate the next strings [89]. The cloze prompts are more appropriate for the

classification tasks. The method of creating a prompt can be automatic [90] or manual [91]. To

save computational overhead, we try to create pormpt manually.

Since the semantics of the text includes more than just emotional information, it is not easy to

separate multiple underlying emotions from the semantics extracted by the pre-trained language

model. Experiments by Zhao et al. showed that prompt-based learning can improve the perfor-

mance of emotion recognition models [92]. The authors used a language model to predict the

most likely emotion. This method is not applicable to multi-label emotion recognition. In this

paper, we attempt to manually design a new prompt for directly modeling all possible emotions

that are present.

Lots of articles have demonstrated that the multi-prompt learning strategies can further im-
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prove the efficacy of prompting methods. Depending on the different construction methods, there

are four strategies: ensembling, augmentation, composition and decomposition [44]. Ensembling

refers to using multiple similar unanswered prompts to make predictions [93]. Augmentation

refers to demonstrating to the model how to provide answers with several additional answered

prompts [94]. Composition is more suitable for composable tasks such as relation extraction

[95]. Decomposition decomposes the prompt into multiple sub-prompts and is generally used for

named entity recognition tasks [96]. We believe that the most suitable strategy for multi-label

classification tasks is ensembling.
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Chapter 3 Emotional Text Generation

3.1 Task Definition

The emotional response generation task can be formulated as follows:

Given a post Pi = pi0, pi1, · · · , pik and a kind of emotion Ei, Ei ∈ {“anger”, “disgust”,

“happiness”, “like”, “sadness”}. The goal is to predict a response Ri = ri0, ri1, · · · , rin,

(ri0, ri1, · · · , rin ∈ C). C is the character vocabulary of the texts.

We propose a model called CERG. As is illustrated in Figure 1.1, the core of this model is

12 transformer blocks. We take the emotion Ei and the post Pi as the input. After initializing

the parameters θ of the model f randomly, we concatenate the emotion Ei, the post Pi and

the response Ri replaced by the “[MASK]” label in sequence. The sequence turns into the

features after passing three embedding layers. The features are calculated by the transformer

blocks and then turn into the hidden states. We try to train the model to minimize the cross-

entropy loss function l(θ) = −
∑

rj∈w rj log f(e0, p0, · · · , pL−1, r0, · · · , rL−1; θ). The process of

backpropagation θ = θ − η(∂l(θ)/∂θ makes θ approach the optimal value. When predicting, we

adopt the hidden state where the first mask is located hr0(θ) to predict the first character of the

response r1. Then replace the first mask with the first character r1 and continue to predict the

second character r2. Repeat the above process until the end symbol is predicted or the length

of the response reaches the maximum length we set.

3.2 Methodology

3.2.1 Model for Text Generation

As is shown in Figure1.1, we put the emotion label in the first position, then concatenate it

with the post and response. Unlike the baseline, emotion and text share the same embedding

layers. The embedding layers consist of three parts. Token embedding is used to represent each

character; position embedding is used to append the position of the character to the sentence;

segment embedding is used to distinguish between post and response. In the input text, we

adopt the“[SEP]” label to separate the post and the response. We adopt the“[MASK]” label

instead of the current predicted position and the position after it to prevent information leakage.
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Figure 3.1 The left diagram is the structure of the transformer block, the right matrix is an

example of the self-attention mask.

A transformer is a framework in which attention structure replaces loop structure. The tra-

ditional Transformer block consists of a multi-head attention layer and a feedforward neural

network (FFN) as the core. The left side of Figure 3.1 shows that the layer normalization in

each block is placed before the self-attention layer and the feed-forward layer. Xiong et al.

pointed out that placing layer normalization in this way can reduce the dependence of the model

on the warm-up optimizer during training [97].

The attention matrix is shown on the right side of Figure 3.1. Unlike traditional transformers,

we have to prevent the input response from leaking information to the output response. We

employ teacher-forcing technology to expand an n-character response into n responses. During

training, the output of the current character position will be the next character.

We also try to add some regularization methods to recover overcorrection without disrupting

parallel computing. Before training, we adopt the language model BERT to predict replacement

characters at random positions in the input text [22]. The replacement augmentation method
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Figure 3.2 An example of using the retrieval method to select a better response in inference.

The model predicts 2 candidate responses by beam search method. The response with a lower

beam score has a higher retrieval score.

can help to improve the robustness of the model [98]. In case the model is difficult to converge

due to the use of regularization methods at the beginning of training, we sample the replacement

characters with decay from the ground truth characters.

3.2.2 Retrieval Strategy in Reranking

The retrieval method is applied in the inference process. We employ the beam search method

to predict n responses. Then we adopt the BM25 method to find k posts that are closest to

the input post in the training set, and calculate the similarity score q0, q1, · · · , qk−1. Next,

we calculate the similarity score a0,0, a0,1, · · · , a0,k−1 between the first predicted response and

the corresponding responses of the k posts. The weighted score of the first response is a0 =

a0,0 × q0 + a0,1 × q1 + · · · + a0,k−1 × qk−1. Similarly, the weighted score of the nth sentence is

an−1 = an−1,0 × q0 + an−1,1 × q1 + · · ·+ an−1,k−1 × qk−1. Finally, we take the response with the

highest weighted score as the output response. Experiments show that the general safe response

cannot get high weighted scores here. This method can find out the responses that are more in

line with the context of the posts, and increase the diversity of the responses.

For example in Figure 3.2, we employ beam search (beam size = 2) to predict two responses

on the left. We adopt the BM25 method to retrieve the two nearest posts from the training

set. Then, we compare the similarity between the predicted responses and the corresponding
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responses of the retrieved posts. It can be seen from the comparison that, response 2 with a

lower score in beam search obtains a higher weighted score. We choose response 2 as the final

result.
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3.3 Experiment Setups

3.3.1 Datasets

The data set we adopt in this article comes from the NTCIR-14 STC-3 CECG task, which

contains more than 1.7 million Chinese Weibo post-response pairs. The data set has already been

tokenized. Because the size of the vocabulary is too large for the model training, we re-tokenize

the texts into characters. According to our statistics, there are about 0.3% of the texts exceeds

32 characters in length. Considering the training efficiency and possible information loss, we set

the length of the training texts to 32 characters.

Besides, we preprocess the texts. We check the data and find that there are some sentences

without Chinese characters. We do not use these sentences for training. We also remove the

extra duplicate characters and retain 3 times at most.

There are 6 kinds of emotions in this dataset, including“anger”,“disgust”,“happiness”,

“like”,“sadness”and“other”. The emotion labels are classified on the real replies of Chinese

Weibo by a classifier with an accuracy of about 64%, which are for reference only. We regard

the imbalance in the number of categories as the noise of the data set. As can be seen from the

pie chart in Figure 3.3, the“anger” category has the least amount of data. This may be one of

the reasons for the worst performance of the“anger”category. The“other” item can help the

model to generate smooth sentences during the training process, but this emotion is excluded

during the inference process.

Figure 3.3 The distribution of different emotions in the data set.



Chapter 3 Emotional Text Generation 24

3.3.2 Evaluation Metrics

Consistent with the NTCIR-14 STC-3 task, we adopt 200 posts and 5 emotions to predict

1000 responses. Existing generation task automatic evaluation metrics such as BLEU are not

suitable for dialogue systems [99]. For example, here is a post: “Someone injured”. According

to the different contexts,“It is too pitiful” and“Who did it” are both reasonable responses.

However, most of the automatic evaluation metrics calculate the similarity between the predicted

sentence and the reference sentence through semantic or co-occurrence. We can find that not all

reasonable responses can achieve high scores.

Therefore, the NTCIR-14 STC-3 task employs a manual evaluation method. If the predicted

sentence is coherent and fluent, it can get the first point. On this basis, if the emotion of the

sentence is consistent, it can get the second point. In this article, we adopt a similar but different

scoring method. The deep learning generative models tend to predict safe and commonplace

responses. In the experiment, we find that the reply using only emoji, “what’s going on” and

“me too”, are 3 main types of responses with a large number and often context-free. These 3

types of responses will not be scored in our evaluation process. Table 3.1 is an example of our

manual evaluation method.

Hard voting is a commonly used ensemble method [100]. We choose this method in manual

evaluation. In addition, to verify the effectiveness of the retrieval method in our model, we made

statistics and comparisons of the safe and commonplace responses.

Table 3.1 An example of manual evaluation.

Post: Bless me to pass. Emotion: disgust

Response 1: Me too. Label 0 Not coherent or not fluent or a safe response

Response 2: What exam? Label 1 Coherent and fluent

Response 3: You will fail! Label 2 Coherent, fluent and emotion consistent
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3.3.3 Baselines

We adopt the P&E2R model as the baseline in this article. There are a character embedding

layer and an emotion embedding layer in this model. The posts and the responses share the

weight through the character embedding layer. We encode the posts and responses separately

by using two kinds of recurrent neural networks. The responses here are the predicted responses

up to the last moment. The embedded emotions are concatenated with the hidden states of

posts and responses. The decoder is another recurrent neural network. The decoding process is

to predict the probability distribution of the next character based on the concatenated hidden

states. This model achieved ranking second in manual evaluation.

3.3.4 Experimental Details

To balance efficiency and information loss, we set the maximum length of the posts and

responses to 32. The size of the vocabulary is set to 13590. We set the embedding size and

hidden size of the model to 768, which is consistent with the BERT-base model. We adopt 12

transformer blocks. The training experiment shows that the larger the ratio of augmentation

methods, the more difficult it is for the model to converge, and the time cost will also become

larger. As the training epoch increases, we gradually increase the augmentation rate to 5%. We

use NVIDIA 2080ti GPU training with batch size = 128. It takes about 2.3 hours to train an

epoch. The inference experiment shows that with the growth of the beam size and the retrieval

k, the computational overhead becomes larger, but the improvement is not significant. The

autoresponder needs to be timeliness. So we set these two parameters to 2.
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3.4 Experimental Results

We compare the CERG model without the retrieval method and the full version of the CERG

model with the baseline. The baseline results are taken from the responses we submitted to

NTCIR-14. Tables 3.2 to 3.6 are the comparison results and the statistics about commonplace

responses. The reason why the baseline gets lower scores than those published in NTCIR-14 is

that we set all the safe and commonplace responses to label 0.

Table 3.2 The evaluation result and the safe-response statistic of like emotion.

Like Label 0 Label 1 Label 2 Average What’s going on? Me too. Only emoji Proportion of safe responses

Baseline 142 53 5 0.315 0 10 95 0.525

No retrieval CERG 108 69 23 0.575 0 14 24 0.190

CERG 85 61 54 0.845 0 2 6 0.040

Table 3.2 shows the scores of the three models with the like emotion. The weighted average

score of the model we proposed is 0.845, far exceeding the score of baseline. After we removed

the retrieval method, our model also achieves a score of 0.575. Table 3.2 also shows the number

of commonplace responses and their proportion in all responses. Nearly half of the responses

generated by the baseline are emoji only. The emoji may express the respondents’ emotions,

but has little to do with the context. The responses of the “me too” class in the no retrieval

CERG model are more than those of the baseline. However, the proportions’ of commonplace

responses drop significantly in the complete CERG model.

Table 3.3 is about the sadness emotion. The increase in label 2 more likely comes from label 1,

which is different from that of like emotion. The proportion of commonplace responses is also less

Table 3.3 The evaluation result and the safe-response statistic of sadness emotion.

Sadness Label 0 Label 1 Label 2 Average What’s going on? Me too. Only emoji Proportion of safe responses

Baseline 119 77 4 0.425 17 53 20 0.450

No retrieval CERG 104 83 13 0.545 4 27 56 0.435

CERG 99 55 46 0.735 1 9 7 0.085
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than that of like emotion. The changes in the framework do not improve the result much, and

the number of commonplace responses is similar. However, the use of retrieval method increase

the weighted average score to 0.735, and the number of commonplace responses decreases greatly

as well.

Table 3.4 The evaluation result and the safe-response statistic of disgust emotion.

Disgust Label 0 Label 1 Label 2 Average What’s going on? Me too. Only emoji Proportion of safe responses

Baseline 132 67 1 0.345 54 0 19 0.365

No retrieval CERG 101 97 2 0.505 40 0 9 0.245

CERG 103 60 37 0.670 13 0 4 0.085

Table 3.4 shows the experimental results of the disgust emotion. We can see in the table, the

generated responses are more coherent after we replace the framework. The emotional relevance

of the responses also improves by using the retrieval method. Similar to the foregoing, the CERG

model can reduce the proportion of commonplace responses in all the responses.

The experimental results of the anger emotion are shown in Table 3.5. The amount of training

data of anger is the smallest. It might be the reason why the weighted average score of anger

responses is lower than other emotions. Our model improves the average score to 0.625. There is

no emoji in anger responses, and there are not many other commonplace responses. The CERG

model still replaces most of these responses with more semantic and emotional responses.

Table 3.6 shows that there is a lot of emoji flood in happiness responses. We set responses

containing the only emoji to label 0, so the score looks very low. Despite that, our CERG model

raises the weighted average score to 0.755 and reduces the proportion of commonplace responses

to 0.275.

Table 3.5 The evaluation result and the safe-response statistic of anger emotion.

Anger Label 0 Label 1 Label 2 Average What’s going on? Me too. Only emoji Proportion of safe responses

Baseline 181 18 1 0.100 65 13 0 0.390

No retrieval CERG 135 59 6 0.355 16 37 0 0.265

CERG 92 91 17 0.625 1 4 0 0.025
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Table 3.6 The evaluation result and the safe-response statistic of happiness emotion.

Happiness Label 0 Label 1 Label 2 Average What’s going on? Me too. Only emoji Proportion of safe responses

Baseline 178 19 3 0.125 16 3 155 0.870

No retrieval CERG 140 49 11 0.335 10 11 108 0.645

CERG 85 79 36 0.755 6 2 47 0.275
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3.5 Discussion

From the experimental results, we can conclude that the CERG model we proposed not only

improves the speed of generating responses, but also improves the textual representation ability,

making the responses more coherent and fluent. On the basis of that, we also add the retrieval

method to further improve the semantic relevance and emotional relevance of the responses.

From our statistics on commonplace responses, the retrieval method can increase the diversity

of responses and avoid context-free responses.

The CERG model maintains the parallelism of calculation while reducing the impact of expo-

sure bias and overcorrection. During the experiment, using the retrieval method at the beginning

would make the model difficult to converge. Besides, when the proportion of character replace-

ment increases, the loss value decreases slowly. Therefore, we adopt the teacher forcing method

firstly, and gradually replace part of the characters with the augmentation method. This can

improve the robustness of the model.

Due to the training efficiency, the retrieval method we employ only focuses on a single charac-

ter, rather than focusing on the whole word. We will improve this retrieval method in the next

step, like optimizing the collocation between the current word and the previous word.

The anger emotion takes up the least proportion in the training data, which may be the reason

why the evaluation score is not as high as other emotions. From the commonplace responses

analysis table, it can be seen that the response characteristics of each emotion are distinct. For

example, the like emotion does not have“what’s going on” responses, and the disgust emotion

does not have“me too” responses. This may be related to the preference of the training data.

It also shows that if we put the emotion label in the first item of text for input, the model can

effectively distinguish different emotions.

There are more than these types of commonplace responses. We do not list other categories

that are not typical. As can be seen from Figure 3.4, the keywords in posts rarely appear in

commonplace responses. Therefore, we can easily reduce the weight of this type of response by

using retrieval methods, and sort more relevant responses before the commonplace response.
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3.6 Summary

The dialogue system has always been one of the important topics in the domain of artificial

intelligence. So far, most of the mature dialogue systems are task-oriented based, while non-task-

oriented dialogue systems still have a lot of room for improvement. We propose a data-driven

non-task-oriented dialogue generator “CERG” based on neural networks. This model has

the emotion recognition capability and can generate corresponding responses. The data set we

adopt comes from the NTCIR-14 STC-3 CECG subtask, which contains more than 1.7 million

Chinese Weibo post-response pairs and 6 emotion categories. We try to concatenate the post

and the response with the emotion, then mask the response part of the input text character by

character to emulate the encoder-decoder framework. We use the improved transformer blocks

as the core to build the model and add regularization methods to alleviate the problems of

overcorrection and exposure bias. We introduce the retrieval method to the inference process

to improve the semantic relevance of generated responses. The results of the manual evaluation

show that our proposed model can make different responses to different emotions to improve the

human-computer interaction experience. This model can be applied to lots of domains, such as

automatic reply robots of social application.

The emotional dialogue system has user-friendly human-computer interaction capabilities and

can be applied to many domains such as psychotherapy. In this work, we propose the CERG

model for Chinese Weibo emotional response generation. We combine the retrieval method with

this generative model to improve the contextual relevance and diversity of generated responses.

The data we adopt comes from the NTCIR-14 STC-3 CECG subtask. The data set contains 6

emotion categories and the corresponding 1.7 million Chinese Weibo post-response pairs. After

concatenating emotion, post and response, we employ three embedding layers including token,

position and segment embedding layers and 12 transformer blocks for representation. To train

the model with the conventional optimizer, we adjust the position of the layer normalization in

the transformer blocks.

In the training process, we mask the response part of the input text character by character to

emulate the encoder-decoder framework to prevent the leakage of information during inference.

We replace the characters with the BERT model predicted characters at random positions of
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the input text, which will improve the robustness of the model without disrupting the training

parallelism. We introduce retrieval methods in the inference process. We calculate the weight

scores of similar posts and responses together with beam search, which can make the predicted

responses more in line with the context.

We adopt a hard voting manual metric to evaluate the generative ability of our model. The

coherence, fluency, and emotional relevance scores of our model in the manual evaluation are

higher than the model without the retrieval method and the baseline model. The proportion

of safe and commonplace responses has also been greatly reduced. These results show the

effectiveness of our model. The model can be applied to social applications like Chinese Weibo

automatic reply robots.

In the next step, we will pay more attention to the combination of retrieval methods and word

collocations to further reduce exposure bias due to the replacement we used. The code of the

CERG model is available on https://github.com/youngzhou97qz/Beam-Search-Retrieval.
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Chapter 4 Multi-label Textual Emotion Detection

4.1 Task Definition

Before elaborating the details of the model, we first present some necessary notations. Since

the text may contain several emotions, we denote the set of emotions as E:

E = (e1, e2, · · · , ei, · · · , en) (4.1)

where n is the number of emotion categories, and ei denotes the state of the ith emotion. The

emotional state is generally represented by continuous intensity values in the dataset. In this

paper, we use the binary 1/0 labels to indicate the presence/absence of the emotions.

Similar to other natural language processing tasks, the process of textual emotion detection

can be described as follows: given a piece of text X and the corresponding emotion labels E,

the goal is to train a detection model f such that the distribution of the emotion labels mapped

by the model is as close to E as possible:

Y = f(X) (4.2)

where Y is the mapped multivariate Bernoulli distribution:

Y = (y1, y2, · · · , yi, · · · , yn) (4.3)

4.2 Methodology

4.2.1 Encoder and Classifier for Detection

We construct a framework consisting of an encoder and a classifier.

For encoding, we use a large-scale pre-trained model, load the weights, and fine-tune them. In

this paper, we use BERT as the encoder fe. To be unified with BERT, each sentence is prefixed

with a [cls] token at first before it is fed into the model. BERT is designed with two pre-training

tasks. The text involves the masked language modeling task, while the [cls] token involves the

next sentence prediction task. Thus, the first token of the output contains the sentence semantics

to some extent. We use this token for classification.
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Figure 4.1 Overall framework of the model with contrastive strategy added to the encoding part.

We take the fully connected network with bias as a classifier fc. Since the first token does not

contain the sequence axis, we can directly map it to the emotion state e.

e = (e1, e2, ..., en) (4.4)

in which n is is the number of emotion categories. When the output of emotion ei exceeds the

threshold, we believe that sentence s expresses the emotion ei.

We introduce the contrastive strategy into the encoding and classification parts separately to

get two different recognition models.

4.2.2 Contrastive Strategy in Encoding

Given a sentence s, we use an encoder to map s to a representation s′. Then, we use a classifier

to transform s′ into the emotion e.

The semantics represented by sentence vectors is the most critical part of emotion recognition.

Different sentence vectors represented by [CLS] token in BERT have been confirmed to be

very similar and do not represent the semantics well [41]. We try to enhance the semantic

representation of sentence vectors with a contrastive strategy.

According to the description above, contrastive learning is a self-supervised training process,

the same as what large-scale pre-trained models do. We continue to train the weights of the

model with similar samples constructed by dropout on the basis of BERT. We expect that this

weight for fine-tuning will improve the accuracy of emotion recognition.

As shown in Figure 4.1, we fine-tune the encoder before classification. The encoder predicts
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Figure 4.2 Overall framework of the model with contrastive strategy added to the classification

part.

two similar representations Vector1 and Vector2 by dropout from the same input Sentence 1.

Using unsupervised contrastive learning, the parameters of the encoder can be fine-tuned so

that the distribution of the encoded results in the feature space is more favorable for emotion

classification. Based on this, we add the classifier at the top for supervised training.

Contrastive learning adjusts the representation of features by decreasing the distance between

similar samples and increasing the distance between different samples. Similar samples are

generally transformed from the original sample, and we use the dropout method to transform in

this article.

Dropout is a method commonly used to prevent overfitting of neural networks [101]. By

dropping some neurons randomly during the training process, the model can be prevented from

over-relying on some neurons and dependencies. Since dropout has randomness, the model will

produce similar but not the same output each time with the same input. According to the

property of dropout, it is easy to construct two similar samples.

In addition to self-supervised training, we can use the contrastive strategy for supervised

training. Dropout only works at training time, i.e., the model is not consistent at training

and prediction. To reduce the gap of the model between training and prediction, we close the

distance between the outputs of the model after randomly dropping neurons.

Specifically, we take input during training twice through the model and add a Kullback-Leibler

(KL) divergence between the two outputs. KL divergence is a metric used to estimate the
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distance between distributions [102]. When calculating the loss function, adding KL divergence

ensures that the model outputs are closer after each random drop of neurons to reduce the effect

of dropout on the results.

As shown in Figure 4.2, we supervised train the classifier and the encoder at the same time.

Due to dropout, the same input Sentence 1 has similar results Vector 3 and Vector 4 when

prediction. For the stability of results, we introduce the KL loss function during training to

make Vector 3 and Vector 4 as close as possible.

4.2.3 Prompt Engineering in Encoding

To detect the emotions in the text, our first thought is to create an emotion description prompt

and concatenate it with the input text X. For example, if X is “You did a good job.”, the emotion

description prompt can be “I feel [MASK].”. [MASK] is the token to be predicted in the masked-

language model. Although this is a commonly used prompt in multi-class classification tasks, the

emotion representation will be very difficult when a single [MASK] token is used for predicting

multiple possible emotions.

Therefore, we use n emotion query prompts to separately predict the states for each emotion.

For example, “Are you happy? [MASK].” can be used to predict the state of happiness. Since

the subjects of the input texts may not be “you”, in order to prevent semantic bias, we create

prompts with only an adjective, such as “Happy? [MASK].”, instead. Such prompts are short

enough to avoid affecting the semantic representation of the input text X too much in the model

in case there is are a large number of emotion categories.

In multi-label emotion recognition datasets, the emotion labels can often be used as prompts.

Considering that the limited semantic coverage of a single emotion label may lead to biased

predictions, we form a new set of labels with the synonyms of the original emotion labels. As

shown in the top left of Figure 4.3, “happy” is the synonym of “joyful” in the new set. The

prompt ensembling can complement the advantages of different prompts. Introducing the set of

synonym labels improves the inclusiveness of the model for representing text samples that are

slightly far away from the original emotion cluster center in the semantic space. The ablation

experiments partially demonstrate the effectiveness of this approach.

In experiments, we find that if the number of texts containing “fear” in the dataset is small,

and we ask the model to predict “fear” at a fixed position, then the model will be tuned to output
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Figure 4.3 The overview of prompt engineering. The original emotion labels are first changed

into synonyms, then they are randomly combined into two sets of labels, and finally they are

shuffled into a pair of prompts.

0’s (i.e., not fear) much more than 1’s at this position. Although the prediction accuracy is high

during training, the model continues to output 0 when the distribution of “fear” changes in the

test set, resulting in a decrease in the accuracy during predicting. A reasonable interpretation

is that the model might not really understand the semantics of “fear”. To further improve the

understanding ability of the model, we randomly combine the two sets of labels into a pair of

labels (top right of Figure 4.3) and shuffle their order (bottom of Figure 4.3).

The random combination and shuffling are performed during training, rather than during the

pre-processing of the training set. For each epoch during training, two different sets of prompts

are concatenated to each input text. This allows the model to learn to understand the semantics

of the [MASK] token in different positions and predict the presence of that emotion in different

positions for each time the same input text is trained.

We denote the set of prompts for training as P . P can be placed in different positions of the

input. For example, if the detection model is based on a unidirectional recurrent neural network,

P is generally appended to the input text X at the end to avoid the risk of leaking information

by the prompt in advance. Because the detection model we use in this paper is based on a

bidirectional transformer, we put P in front of X:

Y = f(Concatenate(P,X)) (4.5)
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Figure 4.4 The overview framework of the prompt tuning with consistency training model. The

input consists of a prompt and a text, and the output is a multi-label classification result.

In this way, there is no need for the model to additionally calculate the relative shift in the

positions of [MASK] tokens in P due to the different sequence lengths of X.

4.2.4 Consistency Strategy in Training

The input after prompt is generally fine-tuned for downstream tasks by a pre-trained language

model. We adopt an autoencoder pre-trained language model and a single-layer classifier as the

emotion detection model.

For example, we use the BERT model as the language model. As shown in Figure 4.4, we add

the [CLS] token in front of the prompted input and the [SEP] token at the end. This is the normal

operation for BERT model input. The [CLS] token is used for the next sentence prediction task

during pre-training, and is often used for sentence semantic representation in classification tasks

during fine-tuning. We compare the classification fine-tuning method with [CLS] token to our

proposed method in the experimental chapter. [SEP] token is used to distinguish two different

sentences during pre-training. The calculation process of the pre-trained language model is not

altered. After encoding, the input text with the added prompt is represented as a hidden state.

We take the hidden states of n [MASK] tokens in the prompt for classification. According

to the language model, these hidden states can be predicted as “yes” or “no” that represent
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positive or negative. We classify these hidden states with a fully-connected layer. Finally, the

output is classified into two categories of 1 and 0 by means of a sigmoid activation function, or

by setting a threshold. Since we randomly shuffle the emotions in the prompt part, we need to

reorder the ground truth labels accordingly for calculating the loss value.

Based on the input of the same and different prompts, we propose two consistency training

strategies.

The “same-consistency” training strategy is similar to R-Drop [87]. Two identical inputs with

the same set of prompts will have slightly different outputs after passing through the model

with dropout. Dropout is a competitive technique for preventing the model from over-relying

on certain neurons by dropping the outputs of some neurons randomly [101]. During training,

the randomness causes each forward pass to be calculated by a different sub-model, while during

testing, all neurons in the model are involved in the computation. Therefore, we adopt the

“same-consistency” training strategy to alleviate the inconsistency in the output distribution.

We denote the two distributions computed from the prompt P1 and the input text X by the

pre-trained model as Y1 and Y ′
1 . Kullback-Leibler (KL) divergence is a metric used to estimate

the distance between distributions [102]. The KL divergence is asymmetric. We use DKL(Y1||Y ′
1)

to represent the KL distance between the distributions Y1 and Y ′
1 . In training, we add a loss

function LJ(same) to minimize the symmetrised KL divergence (or called Jeffreys divergence

[103]):

LJ(same) = DKL(Y1||Y ′
1) + DKL(Y ′

1 ||Y1) (4.6)

There is another set of prompt P2 for the same input text X. We denote the two distributions

of P2 and X as Y2 and Y ′
2 , and apply the “same-consistency” training strategy.

The “different-consistency” training strategy is used between the original labels and the syn-

onyms. As mentioned in chapter 4.1.4, we employ the prompts with synonymous words as

emotion labels to improve the generalization ability of the model. Although the two sets of

prompts are different, we expect the model outputs to be the same. Therefore, we also add a

loss function LJ(diff) between the two different sets of prompts. For example, between Y1 and

Y2:

LJ(diff) = DKL(Y1||Y2) + DKL(Y2||Y1) (4.7)

As shown in Figure 4.5, for an input text X, we predict four results with a pair of prompts.
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Figure 4.5 The overview of the consistency training strategies. A training data point yields four

predictions for a pair of prompts represented by the blue box and the yellow box, respectively.

The loss function of consistency training can be summarized as:

LJ =DKL(Y1||Y ′
1) + DKL(Y ′

1 ||Y1)+

DKL(Y2||Y ′
2) + DKL(Y ′

2 ||Y2)+

DKL(Y1||Y2) + DKL(Y2||Y1)+

DKL(Y ′
1 ||Y ′

2) + DKL(Y ′
2 ||Y ′

1)

(4.8)

4.2.5 Emotional Dictionary Matching in Preprocessing

Emotional keywords are very important factors in textual emotion detection, so our first

thought is to find the emotional keywords in a text by retrieving them from the emotional

dictionary. Since our experimental data are Chinese texts, we have to use a Chinese emotional

dictionary. The Chinese Emotional Dictionary of Dalian University of Technology (DLUTE)

contains seven kinds of emotions: “liked”, “happy”, “sad”, “angry”, “fearful”, “disgusted”,

and “surprised” [104]. Compared with other open-source Chinese emotional dictionaries, this

dictionary has more emotion categories and is more suitable for the dataset we selected.

Figure 4.6 shows the number of words for each emotion in the dictionary. The counts of

“Liked” and “disgusted” are significantly larger than the remaining emotions. The authors

explain that many nuanced categories are included in these categories. For example, words

expressing respect, trust, praise, etc. are classified as “liked” and words expressing jealousy,

suspicion, criticism, etc. are classified as “disgusted”.
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Figure 4.6 Histogram of the number of words for different emotions in the emotional dictionary.

Unlike English, we need to segment the words before processing Chinese text. We use the

“Jieba” word segmentation tool here ∗. In the sentence “I love this movie”, “love” is the word

that belongs to the “liked” category. The model may predict this sentence as “liked”. We believe

that emphasizing the emotional keyword “love” can help the detection model, so we add it to

the input text.

There may be more than one kind of emotion in the text, and there may be more than one

keyword for each emotion. We list all the emotional keywords in front of the input text and

separate them by commas. As shown in Figure 4.7, we match the words in the input text with

the emotional dictionary and find four keywords. We concatenate these four keywords with the

text and then detect the emotions in them:

Y = f(cat(Dw, X)) (4.9)

where Dw is the emotional keywords and cat refers to concatenation. Since BERT is an autoen-

coder model, it does not matter where the emotional keywords are placed.

In addition, we believe that the number of different categories of emotional keywords in the

text may also be related to the emotions. For example, the more keywords belonging to the

∗ https://github.com/fxsjy/jieba



Chapter 4 Multi-label Textual Emotion Detection 41

Figure 4.7 An example of matching keywords with an emotional dictionary and aiding emotion

detection.

Figure 4.8 An example of converting the number of emotional words into a vector to aid emotion

detection.
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“liked” category in a text, the more possible that the text contains the emotion of “liked”. We

use a 1 × n vector Dn to represent the numbers of all emotional keywords. As shown in Figure

4.8, “enjoy”, “attachment”, “fear” and “leave” in the input text correspond to the four emotions

of “happy”, “liked”, “fearful” and “sad” in the emotional dictionary, respectively. We set these

four emotions in the vector to 1 and other emotions to 0, and use the vector to assist in emotion

detection. It is worth mentioning that n here refers to the number of emotion categories in the

dataset.

However, different datasets have different emotion categories. The emotion categories of the

dataset may not correspond to those of the emotional dictionary. For example, if some datasets

have “expect” emotion but no such kind of emotional words in the dictionary, we set the number

of the corresponding position in the vector to 0. If there is not any emotional keyword in the

whole text, we set the “neutral” position (if available) in the vector to 1 and the number of all

the other emotional words to 0.

Considering that adding several numbers to the text may affect the semantics of the input

text, we concatenate the vector Dn with the hidden state of the encoder before classification.

Y = fc(cat(fe(X), Dn)) (4.10)

where fc is the classifier and fe is the BERT encoder.

4.2.6 Commonsense Knowledge Inference in Preprocessing

We attempt to assist emotion detection by the knowledge inference approach. Commonsense

transformers for automatic knowledge graph construction (Comet) is an open-source knowledge

base built automatically based on commonsense knowledge graphs [105]. This knowledge base

can infer the state and the behavior of the person in an event based on commonsense. For exam-

ple, given the event “I want to see a movie.”, the Comet can infer my reaction as “entertained”.

Although the textual descriptions do not have an obvious emotion, if we infer that “I see the

movie” for “entertained” from commonsense, we can find that the emotion implied in the event

may be “happy”. This suggests that the predictions of Comet help detect emotions.

Comet has nine different types of predictions, including six predictions for him-

self/herself/themselves and three predictions for others. During pre-processing on the

experimental datasets, we find that not every type of prediction has a meaningful outcome for
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Figure 4.9 An example of using commonsense knowledge inference to aid emotion detection.

an event. In the previous example of seeing a movie, the Comet infers that others feel “nothing”.

The description of the subject, the reaction of the subject, and what the subject will do next,

which have a high percentage of meaningful predictions, are selected for the experiments.

We put the inferred outcome before the input text and separate them with a period. If

the Comet does not infer a meaningful outcome, we replace the outcome with a “none” word.

When we use multiple predictions, the outcomes are separated by commas. As shown in Figure

4.9, the commonsense knowledge base describes my state as “curious”, predicts my reaction as

“entertained”, and predicts that I will “buy a ticket” after the event “I want to see a movie.”

We concatenate these predictions together with the input text:

Y = f(cat(K,X)) (4.11)

where K is the outcome inferred from the commonsense knowledge base Comet.

4.2.7 Topic Model Clustering in Preprocessing

We believe that semantically close texts may imply similar emotions. Therefore, we try to

cluster the texts in the dataset by a topic model and add the topic categories to the emotion

detection process. Topic to vector (Top2vec) is a model based on joint document and word

semantic embedding to find topic vectors [106]. This model can represent semantic similarity

based on the distance between the topic vectors and the document word vectors. Since clustering
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Figure 4.10 An example of using a topic category to aid emotion detection.

is unsupervised learning, this process includes data from the test set.

As can be seen from Figure 4.10, if a text is classified in the first category, then we prefix it

with “Category 1:” before the text:

Y = f(cat(Tc, X)) (4.12)

where Tc is the topic category number.

Considering that the category number is too abstract for neural networks, we try to replace

the category number with the topic keywords of each category. More than half of the keywords

extracted from English text are nones like “dollar” by the Top2vec model, while a significant

proportion of the keywords extracted from Chinese text are adverbs like “actually”. These

adverbs have no obvious emotional meaning and are not beneficial to emotion detection. In

contrast, adjectives and nouns may be more helpful for emotion detection.

We use the “Jieba” tool to tag the part-of-speech of these topic keywords. The adjectives and

nouns remain. For each topic category, we select five words in ranking order as topic words. If

there are less than five words, we use the co-occurrence graph method to extract keywords for

supplement [107]. We separate these words with commas and place them before the input text.

As shown in Figure 4.11, the topic of the input text is related to the “family”. We concatenate

the clustered topic words with the text:

Y = f(cat(Tw, X)) (4.13)
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Figure 4.11 An example of using topic words to aid emotion detection.

where Tw are the topic words.

4.2.8 Multi-label Loss Function for Detection

In addition to the loss function for consistency training, we also use a multi-label classification

loss function LMC . In multi-label classification tasks, binary cross-entropy (BCE) can be used

for each label if the label is independent of each other [108]. According to the statistics in the

dataset chapter, the probability of co-occurrence between positive emotions tends to be higher

than that between positive and negative emotions. That is, there is some kind of connection

between emotion labels, which is not taken into account in the BCE computation.

Su †proposed a loss function that involves the computation of scores between labels. When

the maximum value of the difference between all non-target class scores and target class scores

is less than zero, it is guaranteed that each target class score is not smaller than each non-target

class score. For example, if there are three emotions in E, with labels 1 for e1 and e2 and 0 for

e3, then when:

max(y3 − y1, y3 − y2)<0 (4.14)

a threshold or mapping can always be found such that the target class scores of y1 and y2 are 1

and the non-target class score of y3 is 0.

† https://www.spaces.ac.cn/archives/7359
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We employ the loss function of Su as the loss function for multi-label classification. The

experimental chapter demonstrates the effectiveness of this loss function.
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4.3 Experiment Setups

4.3.1 Datasets

We select the following two multi-label emotion classification datasets for textual emotion

detection.

The Ren-CECps dataset was obtained from the Chinese weblog containing 34,702 sentences

including 27,008 training sentences and 7,694 test sentences. The texts in the Ren-CECps have

at least 1 and at most 86 Chinese characters, with a median of 30 and a mean of 35.9. There are

eight kinds of emotions annotated in the dataset: “love”, “anxiety”, “sorrow”, “joy”, “expect”,

“hate”, “anger” and “surprise”. Emotional states are in range [0, 1]. We pre-label the emotional

states greater than 0 as 1 and the others as 0. We label the sentences with all 0 emotion scores

as “neutral”. The details of this dataset can be found in the article [109].

To better compare the differences between the experimental results and the ground truth, we

calculate the correlation coefficient of the emotion of the test set in Figure 4.15. As can be seen

from the figure, the correlation coefficient between “Love” and “Joy” is high, and the correlation

coefficient between “Love” and “Sorrow” is low. It shows that the possibility of co-occurrence

between “Love” and “Joy” is greater than that between “Love” and “Sorrow”. The correlation

coefficients between “Surprise” and other emotions are almost close to zero. This indicates that

Figure 4.12 The emotion correspondence between DLUTE and the two datasets. The Ren-

CECps dataset is on the left and the NLPCC2018 dataset is on the right.
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Figure 4.13 Histogram of the number of texts for different emotions in the Ren-CECps dataset.

there is no relevance between “Surprise” and other emotions.

The correspondence between the emotion categories of this dataset and those of the emotional

dictionary DLUTE is shown on the left side of Figure 4.12. There is no emotional word of

“anxiety” or “expect” in the Ren-CECps that can be matched from the dictionary. According

to the correspondence, the “love/liked” has the largest quantity in the Ren-CECps and the

dictionary, while the “surprise/surprised” has the smallest quantity. Figure 4.13 shows the

number of texts for different emotions in the Ren-CECps dataset. The reason why “hate” has a

low number in Ren-CECps but the corresponding “disgusted” has a high number in the DLUTE

is that the “disgusted” also includes emotional words with jealous, skeptical and critical words.

In the Ren-CECps, the percentage of meaningful predictions of “description”, “reaction” and

“next step” inferred by the Comet are 99.90%, 97.10% and 99.31%, respectively. The number

of topics clustered by the Top2vec for this dataset is 160.

There are 6,728 sentences of training data and 1,200 sentences of test data in the NLPCC2018

dataset. The texts in the NLPCC2018 have at least 9 and at most 213 Chinese characters, with

a median of 68 and a mean of 77.6. This dataset contains five kinds of emotions: “happiness”,

“sadness”, “fear”, “anger” and “surprise”. As with the Ren-CECps dataset, we add the “neutral”

to the labels. The details of this dataset can be found in the article [110].



Chapter 4 Multi-label Textual Emotion Detection 49

Figure 4.14 Histogram of the number of texts for different emotions in the NLPCC2018 dataset.

The correspondence between the emotion categories of the NLPCC2018 and those of the

DLUTE is shown on the right side of Figure 4.12. The two major categories “liked” and “dis-

gusted” in the DLUTE are not matched. Figure 4.14 shows the number of texts for different

emotions in the NLPCC2018 dataset. In the NLPCC2018, the percentage of meaningful pre-

dictions of “description”, “reaction” and “next step” inferred by the Comet are 96.49%, 92.72%

and 94.37%, respectively. The number of topics clustered by the Top2vec for this dataset is 47.

4.3.2 Evaluation Metrics

Unlike the evaluation metrics for single-label classification tasks, the commonly-used accuracy

does not reflect the effectiveness of multi-label classification models well. We use the following

evaluation metrics.

F1 score is a combination of precision and recall. Micro F1 score is calculated for all categories

as a whole. When micro F1 scores are used for imbalanced datasets, the error may be large.

Macro F1 score is calculated separately for different categories with the same weight. This score

is susceptible to extreme precision and extreme recall. Average precision (AP) is the average

score of precision for recall from 0 to 1. For the above three metrics, higher values indicate

better model performance.

Coverage error (CE) indicates the average number of labels that can cover the ground truth
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Figure 4.15 The emotional correlation coefficient matrix of the Ren-CECps test set.

labels. Ranking loss (RL) is the proportion of misclassifications after weighting by the number

of relevant labels. For the above two metrics, lower values indicate better model performance.

4.3.3 Baselines

The multi-label emotion detection architecture from sentence (MEDA-FS) is a hierarchical

model [111]. This model captures the underlying emotion-specified features through a multi-

channel feature extractor and then predicts emotion sequences through an emotion correlation

learner. MEDA-FS achieves the best-published results on the two datasets mentioned above.

Other baseline models commonly used for multi-label classification, such as BP-MLL [112], are

also compared in the article of MEDA-FS. We do not list the results in this paper.

In addition, we also try to compare with the classification fine-tuning method with [CLS]

token. The [CLS] token of large-scale pre-trained models is often used to fine-tune downstream
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tasks. But our proposed method does not use the [CLS] token as the semantic representation

of the input text. It is worth mentioning that we also use the loss function of Su in the fine-

tuning method with [CLS] token experiment since we do not make any modification to this loss

function. More experiments related to [CLS] token or other semantic representations can be

found in Appendix.

4.3.4 Experimental Details

In multi-label classification tasks, binary cross-entropy can be used for each label if the label

is independent of each other [108]. However, the probability of co-occurrence between posi-

tive emotions tends to be higher than that between positive and negative emotions. That is,

the connection between emotion labels is not taken into account in the binary cross-entropy

computation.

We employ a loss function that involves the computation of scores between labels proposed by

Su for multi-label classification ‡. When the maximum value of the difference between all non-

target class scores and target class scores is less than zero, it is guaranteed that each target class

score is not smaller than each non-target class score. For example, if there are three emotions

in E, with labels 1 for e1 and e2 and 0 for e3, then when:

max(y3 − y1, y3 − y2)<0 (4.15)

a threshold or mapping can always be found such that the target class scores of y1 and y2 are 1

and the non-target class score of y3 is 0.

We used the hugging face open source large-scale pre-training model BERT (chinese-bert-

wwm-ext) as our backbone [113] [114]. When predicting, if the output result of an emotion is

greater than the boundary threshold, we assume that the emotion is expressed.

For the model with contrastive strategy added to the encoding part, 0.1M news titles are used

for contrastive learning to adjust the semantic expressiveness of sentence embedding. For the

model with contrastive strategy added to the classification part, we add KL loss between the

replicated data points in a batch.

The length of the input text is truncated at 100 except for the prompt part. The dropout rate

is the default value of 0.1. We use the AdamW optimizer to train the model [115]. The learning

‡ https://www.spaces.ac.cn/archives/7359
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rate of the pre-trained language model is 1e-5. The learning rate of the classifier is 1e-4. We use

layer normalization between the pre-trained language model and the classifier.
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4.4 Experimental Results

Table 4.1 shows the results of the Ren-CECps dataset. MEDA-FS uses the feature extraction

approach for downstream tasks. BERT FT refers to fine-tuning approach with BERT on the

dataset. The BERT FT improves from 60.76/48.31 to 65.42/53.57 in f1 scores compared to

MEDA-FS. CE model means that the weights are adjusted with the self-supervised contrastive

learning approach before fine-tuning. This method makes the evaluation metrics worse, especially

the macro f1 score of 45.80 which is even lower than that of the MEDA-FS. CC model refers to

the addition of supervised contrastive training to fine-tuning. This method improves the f1 score

from 65.42/53.57 to 66.16/53.75 compared to the BERT FT. CC model also performs better in

AP, CE and RL metrics.

Table 4.2 shows the results of the NLPCC2018 dataset. The results are similar to those in

Table 1.1. In terms of evaluation metrics, the fine-tuning approach outperforms the feature

extraction approach to a certain extent. BERT FT achieves scores of 85.13 on the AP metrics,

which is the best results in the comparison. Compared to BERT FT, the macro f1 score of the

CE model decrease from 49.94 to 43.40. Compared to BERT FT, the macro f1 scores of the CC

model improve to 50.57. CC model also achieves scores of 1.2775 and 0.1090 on the CE and RL

metrics. It proves that the model with a contrastive strategy added to the classification part is

more effective in the textual emotion recognition task than to the encoding part.

Table 4.1 The experimental results of contrastive strategies on the Ren-CECps dataset. In this

paper, for the metrics of Micro F1, Macro F1 and AP, higher values indicate better performance;

For the metrics of CE and RL, lower values indicate better performance.

Micro F1 Macro F1 AP CE RL

MEDA-FS 60.76 48.31 76.51 2.2226 0.1062

BERT FT 65.42 53.57 81.99 1.9046 0.0871

CE model 61.78 45.80 79.58 2.0187 0.1008

CC model 66.16 53.75 82.00 1.9021 0.0868
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Table 4.2 The experimental results of contrastive strategies on the NLPCC2018 dataset.

Micro F1 Macro F1 AP CE RL

MEDA-FS 63.02 49.42 77.12 1.7288 0.1681

BERT FT 59.05 49.94 85.13 1.2883 0.1114

CE model 60.67 43.40 84.74 1.2958 0.1137

CC model 58.68 50.57 85.09 1.2775 0.1090

Table 4.3 The ablation experimental results of prompt consistency on the Ren-CECps dataset.

Micro F1 Macro F1 AP CE RL

MEDA-FS 0.6076 0.4831 0.7651 2.2226 0.1062

CLS-FT 0.6542 0.5357 0.8199 1.9046 0.0871

PTC-MTED 0.6627 0.5432 0.8233 1.8851 0.0850

-shuffle 0.6509 0.5209 0.8187 1.9056 0.0869

-random 0.6574 0.5314 0.8221 1.8858 0.0847

-synonym 0.6554 0.5313 0.8159 1.9240 0.0899

-LJ(diff) 0.6561 0.5384 0.8189 1.8990 0.0865

-LJ(same) 0.6549 0.5314 0.8196 1.9062 0.0871

-LMC 0.6550 0.5269 0.8161 1.8963 0.0861

Table 4.3 shows the experimental results of each evaluation metric on the Ren-CECps dataset.

MEDA-FS is a BERT-based feature extraction model, and the experimental results are directly

taken from the original paper. The [CLS] token fine-tuned baseline model (CLS-FT) refers to

the result of the fine-tuning on the [CLS] token by the same pre-trained language model as

PTC-MTED with the loss function of Su. This model substantially outperforms the results of

the MEDA-FS model in the evaluation of all five metrics. Our proposed PTC-MTED model
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achieves scores of 0.6627/0.5432/0.8233/1.8851/0.0850 on Micro F1/Macro F1/AP/CE/RL met-

rics, respectively. The scores of the PTC-MTED model on these metrics are further improved

compared to the CLS-FT model, which demonstrates the effectiveness of our method.

The last six rows of Table 4.3 show the ablation experiments for each component of the PTC-

MTED model. “-shuffle” means that the order of the emotions in the prompt set is not shuffled.

“-shuffle” is lower than PTC-MTED on Micro F1 score by 0.0118. “-random” means that the

original emotions and synonyms in a pair of prompts are not randomly exchanged. “-random”

surpasses PTC-MTED in RL scores, and only slightly trails in other metrics. “-synonym”

means that only original emotion labels are used as the prompt. Since there is no pair of prompt

sets, the “different-consistency” training strategy cannot be adopted. “-synonym” is the worst

performing model in ablation experiments on AP/CE/RL metrics. “-LJ(diff)” and “-LJ(same)”

refer to training without different and same consistency strategies, respectively. “-LJ(diff)” and

“-LJ(same)” are lower than PTC-MTED in Macro F1 score by 0.0048 and 0.0118. “-LMC” refers

to replacing Su’s loss function with BCE. “-LMC” is lower than PTC-MTED on AP score by

0.0072. The ablation experiments prove that each of the proposed components contributes to

the final performance of the PTC-MTED model.

Table 4.4 shows the experimental results of each evaluation metric in the NLPCC2018 dataset.

The models to which the names refer are the same as in Table 4.3. CLS-FT performs bet-

ter than MEDA-FS in AP/CE/RL metrics, but does not have an advantage in F1 scores.

Our PTC-MTED achieves scores of 0.6401/0.5269/0.8755/1.2275/0.0959 on Micro F1/Macro

F1/AP/CE/RL metrics, respectively. Compared with the models above, our proposed model

shows significant improvements in all metrics, indicating that our method is more effective.

In the ablation experiments in Table 4.4, “-shuffle” is 0.0194 lower than PTC-MTED in Micro

F1 score. “-random” is still close to PTC-MTED in F1 metrics. “-synonym” is 0.0156 lower than

PTC-MTED in AP score. “-LJ(diff)” and “-LJ(same)” are 0.0063 and 0.0145 lower than PTC-

MTED in Macro F1 score. “-LMC” is the almost worst performing model in ablation experiments

on five metrics. Each component in the ablation experiment affects the performance of the model

more or less.

Table 4.5 and Table 4.6 show the experimental results for each evaluation metric on the Ren-

CECps dataset and the NLPCC2018 dataset, respectively. BERT-FT refers to the results of

fine-tuning the [CLS] token based on the BERT model. We regard it as the baseline model for
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Table 4.4 The ablation experimental results of prompt consistency on the NLPCC2018 dataset.

Micro F1 Macro F1 AP CE RL

MEDA-FS 0.6302 0.4942 0.7712 1.7288 0.1681

CLS-FT 0.5905 0.4994 0.8513 1.2883 0.1114

PTC-MTED 0.6401 0.5269 0.8755 1.2275 0.0959

-shuffle 0.6207 0.5233 0.8639 1.2525 0.1024

-random 0.6245 0.5241 0.8631 1.2600 0.1040

-synonym 0.5958 0.5225 0.8599 1.2717 0.1069

-LJ(diff) 0.6197 0.5206 0.8600 1.2583 0.1042

-LJ(same) 0.5948 0.5124 0.8544 1.2875 0.1110

-LMC 0.5812 0.4883 0.8441 1.3367 0.1233

comparison experiments here.

BERT+Dw refers to the results of detecting emotions with the aid of emotional words matched

in DLUTE. BERT+Dn refers to the results of detecting emotions with the aid of the vector

with the number of emotional words. BERT+Dwn refers to the results of using both of the

approaches. The micro F1 scores of BERT+Dwn on both datasets are 0.0069 and 0.0432 higher

than the baseline model respectively, indicating that the emotional dictionary approach helps

the BERT model to detect emotions.

BERT+Kd refers to the results of using Comet inferred descriptions to aid in emotion de-

tection. BERT+Kr refers to the results of using Comet inferred reactions to aid in emotion

detection. BERT+Kn refers to the results of using Comet inferred next behaviors to aid in

emotion detection. Multiple subscripts refer to experimental results where multiple inferences

are used simultaneously. The AP scores of BERT+Kdrn on both datasets, which are 0.0024

and 0.0117 higher than the baseline model, indicate that the commonsense knowledge inference

approach helps the BERT model to detection emotions.
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Table 4.5 The experimental results of neuro-symbolic approaches on the Ren-CECps dataset.

Micro F1 Macro F1 AP CE RL

BERT-FT 0.6542 0.5357 0.8199 1.9046 0.0871

BERT+Dw 0.6615 0.5359 0.8194 1.8868 0.0851

BERT+Dn 0.6537 0.5280 0.8190 1.8949 0.0858

BERT+Dwn 0.6611 0.5304 0.8191 1.8901 0.0852

BERT+Kd 0.6624 0.5394 0.8215 1.8846 0.0847

BERT+Kr 0.6595 0.5340 0.8201 1.8845 0.0845

BERT+Kn 0.6591 0.5363 0.8203 1.8938 0.0858

BERT+Kdr 0.6594 0.5303 0.8225 1.8860 0.0844

BERT+Kdn 0.6612 0.5425 0.8212 1.8785 0.0838

BERT+Krn 0.6618 0.5296 0.8257 1.8730 0.0831

BERT+Kdrn 0.6622 0.5346 0.8223 1.8799 0.0835

BERT+Tc 0.6559 0.5371 0.8159 1.9010 0.0871

BERT+Tw 0.6609 0.5364 0.8206 1.8972 0.0862

BERT+Tcw 0.6620 0.5378 0.8228 1.8858 0.0845

BDwnKdrn 0.6652 0.5418 0.8255 1.8735 0.0830

BDwnTcw 0.6591 0.5309 0.8211 1.8822 0.0842

BKdrnTcw 0.6603 0.5323 0.8216 1.8853 0.0843

BDwnKdrnTcw 0.6633 0.5407 0.8260 1.8706 0.0824

all-LQ 0.3444 0.0699 - - -

w/o-text 0.5584 0.4269 - - -
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Table 4.6 The experimental results of neuro-symbolic approaches on the NLPCC2018 dataset.

Micro F1 Macro F1 AP CE RL

BERT-FT 0.5905 0.4994 0.8513 1.2883 0.1114

BERT+Dw 0.6108 0.5273 0.8605 1.2633 0.1055

BERT+Dn 0.6138 0.5207 0.8609 1.2583 0.1044

BERT+Dwn 0.6337 0.5118 0.8699 1.2500 0.1019

BERT+Kd 0.6295 0.5330 0.8636 1.2600 0.1044

BERT+Kr 0.6165 0.5236 0.8629 1.2425 0.0996

BERT+Kn 0.6114 0.5132 0.8597 1.2592 0.1042

BERT+Kdr 0.6191 0.5216 0.8654 1.2400 0.0993

BERT+Kdn 0.6043 0.5219 0.8555 1.2650 0.1061

BERT+Krn 0.6202 0.5270 0.8648 1.2450 0.1009

BERT+Kdrn 0.6276 0.5295 0.8630 1.2385 0.0990

BERT+Tc 0.6115 0.5310 0.8528 1.2783 0.1090

BERT+Tw 0.6108 0.5265 0.8530 1.2642 0.1066

BERT+Tcw 0.6378 0.5338 0.8602 1.2503 0.1020

BDwnKdrn 0.6242 0.5231 0.8633 1.2492 0.1021

BDwnTcw 0.6306 0.5261 0.8635 1.2527 0.1025

BKdrnTcw 0.6137 0.5339 0.8603 1.2500 0.1018

BDwnKdrnTcw 0.6140 0.5266 0.8610 1.2392 0.0998

all-LQ 0.4450 0.1160 - - -

w/o-text 0.5136 0.3642 - - -
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BERT+Tc refers to the results of using clustered topic categories to aid in emotion detection.

BERT+Tw refers to the results of using clustered topic words to aid in emotion detection.

BERT+Tcw refers to the results of using both of the above approaches. The micro F1 scores of

BERT+Tcw on both datasets are 0.0078 and 0.0473 higher than the baseline model respectively,

indicating that the topic model clustering approach helps the BERT model to detect emotions.

We mix the above three approaches and combine them with the BERT model. BDwnKdrn

achieves the best result with the micro F1 score on the Ren-CECps dataset. BKdrnTcw achieves

the best result with the macro F1 score on the NLPCC2018 dataset. BDwnKdrnTcw achieves

the best results with AP, CE and RL scores on the Ren-CECps dataset.

All-LQ refers to the results of setting all predictions to the emotion that accounts for the largest

quantity of the dataset (“love” in Ren-CECps and “happiness” in NLPCC2018). W/o-text refers

to removing text from BDwnKdrnTcw and only using symbolic features to detect emotions. W/o-

text has much higher experimental results than all-love/all-happiness but is slightly inferior to

BERT-FT, indicating that the symbolic features contain emotional information.
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4.5 Discussion

4.5.1 About Contrastive Strategy

Compared to feature extraction, fine-tuning has better performance in downstream tasks. The

large-scale pre-trained model utilizes a large corpus for self-supervised learning, and this corpus

may deviate a little from the corpus used for the downstream task. The fine-tuning approach

adaptively adjusts the model weights to make it more accurate in feature representation for

downstream tasks. This is reflected in both Table 4.1 and Table 4.2. However, fine-tuning

requires supervised learning, so the computational overhead is greater.

The self-supervised contrastive learning is adopted before fine-tuning, but the results become

worse. We intended to represent the sentence semantics that was slighted in the pre-training

task better by contrastive learning. However, this approach was not effective enough in the

textual emotion classification task. The CE model does not perform well in all metrics for both

datasets.

We originally thought the possible reason was that emotion classification did not depend

entirely on sentence semantics. However, after fine-tuning by replacing the [cls] token with

pooled word vectors, the results slightly decreased. This suggests that sentence semantics plays

a bigger role in emotion classification than word embeddings. Therefore, the reason for the

worse results may be that the semantics compared to contrastive learning is not exactly related

to emotion. That is, a better comparison scheme may improve the results.

Another possible reason is the inconsistent training goals of the model at different stages. The

CE model focuses on sentence similarity rather than classification when encoding. Compared to

the CE model, the CC model has better performance because it adds the comparison of hidden

states similarity to the classification part.

We tried fine-tuning the pre-contrastive training with data from the unlabeled training set. We

combined the textual parts of Ren-CECps and NLPCC2018 (excluding labels) for unsupervised

training. The results were worse than the classification results obtained with the additionally

found title data. This indicates that the self-supervised learning corpus affects the training

results. A more general, larger corpus facilitates parameter fine-tuning during unsupervised

learning.
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The contrastive training on the same sample representation is adopted during fine-tuning

and the results are improved. This suggests that the contrastive strategy used in models with

dropout is beneficial to the textual emotion classification task.

We experimented with the effect of different drop rates on the results. In this kind of task,

the classification results get worse as the drop rate increases. We believe that dropout is a

regularization method, so the larger the drop rate, the stronger the constraint on the model

and the more unstable results predicted by the model. Under the contrastive strategy, stability

training becomes more difficult as the drop rate increases. If the amount of data is large enough,

a larger drop rate may have a better performance. However, in our experiment, the best result

is achieved by the BERT model with a default rate of 0.1.

We also tried both contrastive learnings before and during fine-tuning. The results are better

than the CE model but worse than the CC model. We believe that the two contrastive strategies

are independent and do not affect each other. Overall, the strategy of contrastive training during

fine-tuning is a better choice for the textual emotion classification task.

4.5.2 About Fine-tuning

Figure 4.16 shows the emotional correlation coefficient matrix of the Ren-CECps test set pre-

dicted by PTC-MTED. Compared to Figure 4.15, the positive/negative correlations between

emotions do not change substantially. In terms of degree, the biggest change is that the cor-

relation between the two negative emotions of “Anxiety” and “Sorrow” increased from +0.05

to +0.57. Taking “Love” as an example, its negative correlation degrees with “Anxiety”, “Sor-

row” are slightly higher than the ground truth, and its positive correlation degrees with “Joy”,

“Expect” are also slightly higher than the ground truth, and the correlation degrees with other

emotions do not change significantly. The significantly correlated emotions learned by PTC-

MTED are “Anxiety” and “Sorrow” (+0.57), “Hate” and “Anger” (+0.40), “Love” and “Joy”

(+0.36). These results are consistent with the ground truth, indicating that PTC-MTED has

learned the correlation between emotions.

Table 4.7 shows the confusion matrices evaluated on the NLPCC2018 test set predicted by

PTC-MTED. “True” denotes the number of ground truth labels, and “Pred” denotes the number

of predicted labels. The label numbers for “Anger”, “Fear” and “Surprise” count for a very small

proportion, which is less than 10% of the total number of emotion labels in the test set. The
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Figure 4.16 The emotional correlation coefficient matrix learned by PTC-MTED.

false negative predictions of PTC-MTED are still high on these minority emotion categories.

In contrast, PTC-MTED performs much better on the majority emotion categories, such as

“Happiness”. This indicates that our proposed model has a certain learning ability when the

data is imbalanced.

From the experimental results on both datasets, the BERT-based fine-tuning model outper-

forms the BERT-based feature extraction model. CLS-FT is only lower than MEDA-FS on the

Micro F1 metric of the NLPCC 2018 dataset. This indicates that although the feature extrac-

tion method has a small number of parameters, it does not fit the downstream task as well as

the fine-tuning method. The language model has been pre-trained on a very huge corpus, while

the downstream emotion classification datasets that our model learns on are smaller in size and

different in content. The fine-tuning method can adjust the weight of the model according to

the corpus of the downstream task, but it also has a larger computational overhead.
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Table 4.7 The confusion matrices for six emotions on the NLPCC2018 test set. True represents

the ground truth, and Pred represents the predicted result.

Happiness Sadness Anger

Pred 0 Pred 1 Pred 0 Pred 1 Pred 0 Pred 1

True 0 630 80 830 74 1098 34

True 1 148 342 137 159 33 35

Fear Surprise Neutral

Pred 0 Pred 1 Pred 0 Pred 1 Pred 0 Pred 1

True 0 1064 25 1099 64 683 272

True 1 56 55 26 11 38 207

CLS-FT uses the [CLS] token to semantically refine the input text, while PTC-MTED focuses

on the model by giving a prompt to the input text. Our results on both emotion datasets suggest

that the prompting method is generally better than the method with [CLS] token. The [CLS]

token contains more redundant semantic information than the prompt tokens. In contrast, the

goal of the prompting method is more direct, that is, to predict the presence of each emotion

label directly. Because prompt increases the overall length of the input, the computational

overhead of the prompt-tuning increases slightly.

Although the experiments in this paper use BERT as the pre-trained language model, it is

in fact very easy to be replaced with other pre-trained autoencoder language models such as

RoBERTa [116].

4.5.3 About Prompt Engineering

The results of “-synonym” are slightly worse than the results of CLS-FT on the Ren-CECps

dataset and slightly better than those of CLS-FT on the NLPCC2018 dataset. This indicates

that a single emotional word in different datasets cannot completely cover its actual semantics of
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Figure 4.17 The Macro F1 score performance of the PTC-MTED model with different sizes of

NLPCC2018 training data.

the corresponding emotion category in the semantic space, resulting in no significant advantage

of using only the original emotion label as prompt over traditional tuning. When we extent the

prompt with synonyms of the emotional words, the experimental results are improved. This

indicates that synonyms can indeed complement the semantic representations of the emotion

labels.

The performance of “-random” on both datasets is second only to that of PTC-MTED. This

result indicates that the representation of two synonyms in the semantic space is only slightly

different from each other. Randomly swapping synonyms within the emotion sets can slightly

improve the generalization ability of the model, but the effect is limited.

We believe that fixing the position of the emotion in the prompt will make the model learn

to output “no” for the minority emotion categories, which is a general problem caused by the

biased training data. The “-shuffle” experiment proves that this does reduce the learning ability

of the model. Shuffling the prompts order allows the model to understand which emotion is

being predicted, which makes the learning of all emotion labels more purposeful.

The prompting method based on pre-trained language models has been proven to reduce the

reliance on large amounts of supervised data [117]. We select the NLPCC2018 dataset with a

small amount of data to test the learning efficiency of the PTC-MTED model under different

proportions of training data. Figure 4.17 shows the Macro F1 score performance of the model
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from random 10% data to full data. Using 40% of the training data (about 2.7k), the model

achieves a result close to the CLS-FT method. This indicates that the PTC-MTED model has

good learning ability with a small amount of data.

4.5.4 About Multi-label Loss Function

Two synonyms have different cluster centers in the semantic space. The experimental results

of “-LJ(diff)” indicate that the consistent training for the prediction results of the pair of prompts

can simultaneously shorten the distance between the data points and the two cluster centers in

space. It suggests that the “different-consistency” training strategy is helpful for PTC-MTED.

The experiment results of “-LJ(same)” indicate that the “same-consistency” training strategy

is very effective. Dropout is a regularization method that makes the model different at training

and prediction phases. Increasing the drop rate will strengthen the constraint on the model,

which will cause the instability of the model when predicting. The scale of the NLPCC2018

dataset is smaller than that of Ren-CECps, so the scores of “-LJ(same)” on the NLPCC2018

dataset drop more significantly compared to those of Ren-CECps. This observation suggests

that smaller datasets are more susceptible to dropout instability. It also suggests that the

“same-consistency” training strategy is generally effective to reduce the instability caused by

dropout.

“-LMC” performs much worse than PTC-MTED on both datasets. This illustrates that Su’s

loss function is effectively taking the connection between different labels into the multi-label

classification loss calculation, and is more suitable for this task than the BCE loss.

The weight of the loss function for consistency training also affect the performance of the

model:

L = LMC + αLJ (4.16)

We set four reference values according to the R-Drop article [87]. As can be seen from Table 4.8,

the model performs the best on the Ren-CECps dataset when α is 1/8, and the model performs

the best on the NLPCC2018 dataset when α is 1/2. We apply the best-performing α to the

comparison experiments and the ablation experiments.
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Figure 4.18 The emotional correlation coefficient matrix of the Ren-CECps test set. The top is

the matrix of BERT-FT, and the bottom is the matrix of DwnKdrnTcw.
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Table 4.8 The results of experiments with the weight of the consistency training on the two

datasets.

Ren-CECps Micro F1 Macro F1 AP CE RL

α = 1/8 0.6627 0.5432 0.8233 1.8851 0.0850

α = 1/4 0.6598 0.5368 0.8202 1.8928 0.0856

α = 1/2 0.6602 0.5311 0.8229 1.8886 0.0852

α = 1 0.6569 0.5327 0.8198 1.9070 0.0867

NLPCC2018 Micro F1 Macro F1 AP CE RL

α = 1/8 0.6175 0.5193 0.8571 1.2725 0.1074

α = 1/4 0.5963 0.5147 0.8526 1.2992 0.1138

α = 1/2 0.6401 0.5269 0.8755 1.2275 0.0959

α = 1 0.6251 0.5267 0.8666 1.2600 0.1038

4.5.5 About Neurosymbolic Approaches

Figure 4.18 shows the emotional correlation coefficient matrix of the Ren-CECps test set.

Compared to ground truth, BERT-FT is essentially the same in terms of positive/negative

correlations of emotions, indicating that the baseline model has learned the correlation between

emotions. In terms of degree, the absolute values of correlation coefficients such as “love/anxiety”

and “anxiety/sorrow” are higher than those of ground truth, indicating that the baseline model

is a little bit overfitting to some extent. In general, the absolute values of some of the correla-

tion coefficients become closer to those of the ground truth after the addition of the symbolic

approaches. This indicates that the symbolic approaches can effectively alleviate the overfitting

of the baseline model.

The emotional dictionary approach improves more on the NLPCC2018 dataset than on the

Ren-CECps dataset, possibly because the emotion categories in the NLPCC2018 dataset all cor-
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respond in DLUTE. “Expect” in the Ren-CECps dataset has no corresponding emotion category

in DLUTE, which may lead to the correlation coefficients of this emotion with other emotions

deviating from the ground truth. In the NLPCC2018 test set, there are 49.67% of the texts

that contain the keywords in the dictionary with the emotion and also have this emotion in the

ground truth (including the cases where no emotional word is matched and the ground truth is

“neutral”). This proportion is 44.29% in the Ren-CECps test set, which is slightly lower than

that in the NLPCC2018 test set. This may also be the reason why the emotional dictionary

approach performs better on the NLPCC2018 dataset.

The syntactic structure can also affect the role of emotional words in emotion detection [118].

If there is a negation word in a text, it seems that the text may not have a certain emotion.

In the sentiment analysis task, the rule of identifying negation words in the text can further

increase accuracy since there are only two categories: positive and negative. When there are

emotional words and a negation word in a text, the proportion of the ground truth with this

emotion is 6.15% in the Ren-CECps test set, and the proportion without this emotion is 11.10%.

These proportions are 8.75% and 11.83% in the NLPCC2018 test set. This shows that the rule

of identifying negation words is not applicable in the emotion detection task.

The commonsense knowledge inference approach shows a significant improvement in the eval-

uation metrics on both datasets, which indicates that this approach is effective in helping the

baseline model to detect emotions. Taking the descriptions of the subject in the event inferred

by Comet as an example, “happy” is inferred 79 times, which is the most frequent description

in the NLPCC2018 test set. Of the texts with “happy” description, 78.48% shows “happiness”

emotion in the ground truth. In the entire dataset, 31.96% of the texts show “happiness” emo-

tion. This suggests that the commonsense knowledge inference approach is effective in explicitly

extracting emotion features. Similar results can be found in Ren-CECps. “Sad” is inferred 387

times in the Ren-CECps test set, in which 264 texts show “sorrow” emotion in the ground truth.

Of the 264 texts with the “sorrow” emotion, the BERT with a “sad” description successfully

detects 260 texts, while the BERT without a “sad” description only detects 255 texts. This indi-

cates that the description of the subject inferred from commonsense knowledge is beneficial for

emotion detection. Using multiple inference outcomes simultaneously seems to further improve

the evaluation metrics.

The topic model clustering approach outperforms BERT-FT on both datasets. As can be
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Figure 4.19 Histogram of proportionally normalized emotions in Ren-CECps texts of two topics.

The vertical coordinate refers to the proportion of the emotion in the texts of the topic compared

to that in the whole dataset.

seen from the results of Tc and Tw, the topic words contain more clustering information and

therefore can better help the baseline model to detect emotions compared to only given the

number of clustered categories. The texts clustered by the topic model have significantly different

distributions in terms of emotions. As shown in Figure 4.19, texts related to “friends” tend to

show positive emotions, while texts related to “work” show more negative emotions. Due to

the imbalance in the number of emotions, we have normalized the proportion in Figure 4.19.

This indicates that the topic model clustering approach can give emotional information to the

detection model. Compared with the commonsense knowledge inference approach, the topic

model clustering approach does not introduce new information, only emphasizes information to

help detect emotions by feature engineering on the existing data. This may be the reason why

the topic model clustering approach does not improve as much as the commonsense knowledge

inference approach.

From the experimental results, a mixture of the above-mentioned symbolic approaches per-
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Figure 4.20 A case study of a visualization that explains the neurosymbolic approach by SHAP.

The effect of the symbolic information in emotion detection is at the top. The effect of text

information in emotion detection is at the bottom. Numbers with absolute values over 0.03 are

shown above the words.

forms better on the Ren-CECps dataset. This may be since shorter texts are more likely to

be affected by the added symbolic information when representing text semantics with the lan-

guage model. From the statistics of the datasets chapter, the average length of the texts in the

Ren-CECps dataset is smaller than that in the NLPCC2018 dataset. Therefore, the mixture of

symbolic approaches is more beneficial for shorter texts.

W/o-text performs significantly better than all-LQ, indicating that the symbolic information

can effectively help emotion detection. Comparing the results of w/o-text and BERT-FT, the

text information is more advantageous than the symbolic information in emotion detection.

SHapley Additive exPlanations (SHAP) is a tool to explain the output of the model in terms

of the classic Shapley values from game theory [119]. As shown in Figure 4.20, SHAP scores

each token of the input text to measure its contribution in emotion detection (the darker the

color, the greater the contribution). “Birthday”, “happy” and “lonely” are the emotional words.

“Happy”, “life”, “together”, “photo” and “memory” are the topic words. “Sad”, “sad” and “go

home” are the outcomes of knowledge inference. The text in the case study implies “happi-

ness” and “sadness” emotions. When the symbolic approaches are not used, the “happy” and

“lonely” in the text contribute more than other words (“happiness” in red here). When using

the symbolic approaches, most of the words contribute significantly to the emotion detection

process (“sadness” in red here). This illustrates that the symbolic approaches assist the neural

networks by explicit features in detecting emotions while improving the interpretability of the

neural networks.
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4.6 Summary

This chapter is devoted to investigating how contrastive strategies affect the accuracy of multi-

label emotion recognition from text. Using unsupervised contrastive learning to adjust param-

eters before fine-tuning a large-scale pre-trained language model has no significant benefit for

emotion recognition. In contrast, adding a supervised contrastive learning approach to fine-

tune the large-scale pre-trained language model is beneficial for accuracy improvement. We

experiment on two multi-label emotion classification datasets: Ren-CECps and NLPCC2018.

We also devote to designing a prompting method and two consistency training strategies for

the multi-label textual emotion detection task. We experiment on two mentioned multi-label

emotion classification datasets. The best-published result is achieved by a feature extraction

approach of the language model [111]. Our model achieves over 6% and 3% improvement in

Macro F1 scores on two datasets with new state-of-the-art results, respectively. This indicates

a clear benefit of using the prompting method and the consistency training strategies in the

multi-label textual emotion detection task.

We combine neural networks with symbolic approaches and train new emotion detection mod-

els to help the neural networks improve the fitting process. Specifically, we explore the effective-

ness of the emotional dictionary, knowledge inference, and topic model clustering approaches

on the PTM in this article. We experiment on two multi-label emotion classification datasets

mentioned above. With the aid of the symbolic approaches, the proposed approaches get im-

provements on both datasets. Multiple experimental results demonstrate that the combination

of symbolic approaches and neural networks is effective for multi-label textual emotion detection.
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Chapter 5 Conclusion and Future work

5.1 Conclusion

Textual emotion recognition is an important part of the human-computer interaction field.

Current methods of textual emotion recognition mainly use large-scale pre-trained models fine-

tuning. However, these methods are not accurate enough in the semantic representation of

sentences. Contrastive learning has been shown to optimize the representation of vectors in

the feature space. Therefore, we introduce the contrastive strategies to the textual emotion

recognition task. We propose two approaches: using self-supervised contrastive learning before

fine-tuning the pre-trained model, and using contrastive training on the same inputs during

fine-tuning. We experiment on two multi-label emotion classification datasets: Ren-CECps

and NLPCC2018. The experimental results demonstrate that the latter contrastive approach

effectively improves the accuracy of emotion recognition.

We introduce the contrastive strategies for multi-label textual emotion classification tasks.

Based on the large-scale pre-trained model BERT, we propose two approaches: using self-

supervised contrastive learning before fine-tuning the model, and using contrastive training

on the same inputs during fine-tuning. We experiment with the effectiveness of the strategies

on two multi-label emotion classification datasets: Ren-CECps and NLPCC2018. The experi-

mental results demonstrate that using the contrastive strategy in the classification part is more

effective in improving the accuracy of emotion recognition than using the contrastive strategy

in the encoding part.

Textual emotion detection is playing an important role in the human-computer interaction

domain. The mainstream methods of textual emotion detection are extracting semantic fea-

tures and fine-tuning by language models. Due to the information redundancy in semantics,

it is difficult for these methods to accurately detect all the emotions implied in the text. The

prompting method has been shown to make the language models more purposeful in prediction

by filling the cloze or prefix prompts defined. Therefore, we design a prompting approach for

multi-label classification. To stabilize the output, we design two consistency training strategies.

We experiment on two multi-label emotion classification datasets: Ren-CECps and NLPCC2018.
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Our proposed prompt tuning with consistency training for multi-label textual emotion detection

(PTC-MTED) model achieves Macro F1 scores of 0.5432 and 0.5269, respectively. The experi-

mental results indicate that our proposed method has significant effectiveness in the multi-label

textual emotion detection task.

In this paper, a prompt tuning with consistency training model is proposed for the multi-

label textual emotion detection task. We change the emotion labels into a pair of prompts and

fine-tune the model with two consistency training strategies. Our experimental results on the

Ren-CECps dataset and the NLPCC2018 dataset demonstrate the effectiveness of our proposed

model.

Neural networks are replacing symbolic approaches as better methods for textual emotion

detection due to their powerful feature extraction capabilities. However, neural networks are

prone to overfitting during training because of the small amount of emotion detection data.

Based on experience or knowledge, symbolic approaches can fit a small amount of data by low-

dimensional features and also outperform neural networks in terms of interpretability. We design

three models combining symbolic approaches with neural networks for detecting all potential

emotions from texts in this article. Due to the importance of emotional words in detection, we

retrieve these words from texts by an emotional dictionary approach; we predict the reaction and

describe the state of the subject to help detect emotions by a commonsense knowledge inference

approach; we cluster texts by a topic model since texts with similar topics may have similar

emotions. We supplement a large-scale pre-trained language model with symbolic approaches

and experiment on two multi-label emotion classification datasets, which are Ren-CECps and

NLPCC2018. The experimental results show that the symbolic approaches improve the fitting

process, improve the interpretability and increase the accuracy of neural networks. This indicates

that neurosymbolic methods are effective in the multi-label textual emotion detection task.

The neural network approach, while performing well in emotion detection tasks, is prone to

overfitting on the dataset. In this article, we employ three symbolic approaches to assist a neu-

ral network model in detecting emotions. Our experimental results on the Ren-CECps dataset

and the NLPCC2018 dataset demonstrate that the neurosymbolic approach can alleviate over-

fitting, increase detection accuracy, and improve interpretability. The commonsense knowledge

inference approach introduces new information and has a better performance compared to the

emotional dictionary approach and the topic model clustering approach. The code of the model
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is available at https://github.com/youngzhou97qz/Neurosymbolic-multi-label-textual-emotion-

detection and https://github.com/youngzhou97qz/Prompt-consistency-for-multi-label-emotion-

detection.
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5.2 Future work

In the future, we will investigate the relationship between word embeddings and [cls] token to

minimize the loss of emotional information contained in sentences during training. The emotion

labels are treated as 0 or 1 in this paper, which may cause the information loss of the emotional

intensity. Therefore, we will focus on handling the continuous labels through prompt tuning. In

addition, our future work will focus on other kinds of symbolic approaches and effective methods

for merging neural features with symbolic features.
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