

Jiao Ziyun

焦 子韵

A Thesis submitted to Tokushima University in partial

 fulfillment of the requirements for the degree of doctor

 of Philosophy

September 2022

Department of Information Science and Intelligent Systems

Graduate School of Advanced Technology and Science

Tokushima University, Japan

Research on Generative Adversarial

Networks for Unconditional Text Generation

Contents

List of Figures ... v

List of Tables .. vii

Acknowledgment .. 1

Abstract ... 1

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Background .. 2

1.2.1 Language Models ... 3

1.2.2 Tasks in Natural Language Generation 7

1.3 Research Objective and Content .. 11

1.3.1 Improved RelGAN with Wasserstein Loss 11

1.3.2 Improved Transformer-Based Implicit Latent GAN................ 11

1.4 Organizations ... 12

2 Related Works .. 13

2.1 Unconditional Text Generation Models 13

2.2 Generative Adversarial Networks for Text Generation 15

2.2.1 Reinforcement Learning for Sequence Generation 16

2.2.2 Wasserstein Distance ... 20

2.2.3 Gumbel-softmax Trick ... 22

2.2.4 Autoencoder Framework .. 23

3 WRGAN: Improved RelGAN with Wasserstein Loss for Text

Generation .. 26

3.1 Problem Definition ... 26

3.2 Overall Framework .. 26

3.3 Relational Memory-Based Generator .. 28

3.4 Rebuild the Discriminator .. 29

3.5 Network Training ... 30

3.5.1 Loss Function ... 30

3.5.2 Training Details .. 31

3.6 Experiments and Analysis .. 32

3.6.1 Evaluation Metrics ... 32

3.6.2 COCO Image Captions .. 33

3.6.3 EMNLP 2017 WMT News .. 34

3.6.4 Chinese Poetry ... 35

3.6.5 Movie Reviews (MR) ... 36

3.6.6 Comparison of RelGAN and WRGAN on COCO Dataset 37

3.7 Impact of Hyperparameters .. 38

3.7.1 Impact of Dimension .. 38

3.7.2 Impact of k .. 39

3.8 Case Study .. 40

3.8.1 The Generation Data from COCO Image Captions 40

3.8.2 The Generation Data from EMNLP 2017 WMT News 41

3.9 Summary .. 42

4 TSGAN: Improved Transformer-Based Implicit Latent GAN with

Multi-head Self-Attention .. 43

4.1 Introduction .. 43

4.2 Overall Framework .. 44

4.3 Multi-head Self-Attention-Based Generator 45

4.3.1 Multi-head Self-Attention .. 45

4.3.2 The Proposed Generator ... 46

4.4 The Proposed Discriminator .. 46

4.5 The Transformer Autoencoder ... 47

4.6 Network Training ... 48

4.6.1 Loss Function ... 48

4.6.2 Training Details .. 49

4.7 Experiments and Analysis .. 49

4.7.1 Evaluation Metrics ... 50

4.7.2 Microsoft Common Objects in Context (MSCOCO) 51

4.7.3 EMNLP WMT News ... 52

4.7.4 Ablation Experiment .. 54

4.8 Impact of Hyperparameters .. 55

4.8.1 Impact of the Head Number ... 55

4.8.2 Impact of the Learning Rate ... 57

4.8.3 Impact of the Initial Distribution.. 59

4.9 Case Study .. 61

4.9.1 The Generation Data from MSCOCO...................................... 61

4.9.2 The Generation Data from EMNLP WMT News 63

4.10 Summary .. 64

5 Conclusion and Future Work ... 65

5.1 Conclusion ... 65

5.2 Future Work ... 66

Bibliography ... 68

List of Figures

Figure 2.1 The original VAE framework. .. 14

Figure 2.2 SeqGAN structure. .. 17

Figure 2.3 LeakGAN structure. .. 18

Figure 2.4 The framework of autoencoder. .. 23

Figure 2.5 The framework of LaTextGAN. ... 24

Figure 3.1 The overall framework of WRGAN. 27

Figure 3.2 The generator framework. .. 28

Figure 3.3 The proposed discriminator framework.................................. 29

Figure 3.4 The Resblock. ... 29

Figure 3.5 The BLEU scores for COCO Image Captions. 34

Figure 3.6 The BLEU scores for EMNLP 2017 WMT News. 35

Figure 3.7 The discriminator loss of RelGAN. .. 37

Figure 3.8 The BLEU-2 scores on the COCO Image Captions compared

with RelGAN ... 38

Figure 3.9 The BLEU-2 scores on COCO Image Captions where the

dimension is 64 and 128. .. 39

Figure 3.10 The BLEU-2 scores on COCO Image Captions where 𝑘 is 5,

1, 1/3, and 1/5. .. 39

Figure 4.1 The overall framework of TSGAN. .. 44

Figure 4.2 The proposed generator framework. 45

Figure 4.3 The proposed discriminator framework.................................. 47

Figure 4.4 The Transformer autoencoder framework. 48

Figure 4.5 Training curves of BLEU-test scores on EMNLP WMT News

dataset. .. 53

Figure 4.6 Training curves of Self-BLEU scores on EMNLP WMT News

dataset. .. 53

Figure 4.7 Ablation Experiment. .. 54

Figure 4.8 Training curves of BLEU-test scores on EMNLP WMT News

dataset with different 𝑛ℎ𝑒𝑎𝑑. .. 55

Figure 4.9 Training curves of Self-BLEU scores on EMNLP WMT News

dataset with different 𝑛ℎ𝑒𝑎𝑑. .. 56

Figure 4.10 Training curves of BLEU-test scores on EMNLP WMT News

dataset with different learning rates 𝑙𝑟. ... 58

file:///C:/Users/60465/Desktop/焦子韵_学位関係提出書類/学位論文.docx%23_Toc112369645

Figure 4.11 Training curves of Self-BLEU scores on EMNLP WMT

News dataset with different learning rates 𝑙𝑟. ... 58

Figure 4.12 Training curves of BLEU-test scores on EMNLP WMT News

dataset with different initialization distributions...................................... 60

Figure 4.13 Training curves of Self-BLEU scores on EMNLP WMT

News dataset with different initialization distributions. 61

List of Tables

Table 1.1 The excellent text generation models in recent years. 5

Table 1.2 Tasks of text generation and corresponding inputs. 7

Table 3.1 The discriminator parameters... 30

Table 3.2 The details of the COCO Image Captions dataset. 33

Table 3.3 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on COCO Image Captions

dataset. .. 33

Table 3.4 The details of the EMNLP 2017 WMT News dataset. 34

Table 3.5 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on the EMNLP 2017 WMT

News dataset... 35

Table 3.6 The details of the Chinese Poetry dataset. 36

Table 3.7 The BLEU-2 scores on the Chinese poetry dataset.................. 36

Table 3.8 The details of the Movie Reviews dataset. 36

Table 3.9 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores for the Movie Reviews dataset.

 .. 37

Table 3.10 The samples generated from the COCO image caption dataset.

 .. 40

Table 3.11 The samples generated from EMNLP 2017 WMT News

dataset. .. 41

Table 4.1 The discriminator parameters... 47

Table 4.2 The details of the MSCOCO dataset. 51

Table 4.3 The BLEU scores on the MSCOCO dataset. 51

Table 4.4 The details of the EMNLP WMT News dataset. 52

Table 4.5 The BLEU scores on the EMNLP WMT News dataset........... 54

Table 4.6 The samples generated from the MSCOCO dataset. 62

Table 4.7 The percentage of sentence types in the MSCOCO dataset..... 62

Table 4.8 The samples generated from the EMNLP WMT News dataset.

 .. 63

Acknowledgment

While writing this thesis, I got the help of many tutors and classmates, and I was

deeply moved. Before I finish the paper, I would like to take this opportunity to express

my sincerest gratitude.

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Fuji Ren

for the continuous support of my Ph.D. study and related research. His serious scientific

attitude, rigorous academic spirit, noble morality, and unpretentious and approachable

personality left an unforgettable imprint on me. He provided me with an excellent

research environment. With his patient guidance and encouragement, I have had the

chance to attend international conferences and publish papers in authoritative journals.

These research experiences broadened my horizon and benefited me throughout my life.

I would thank Prof. Kita, Prof. Fuketa, and Prof. Shishibori for their time and effort

in reviewing my thesis. Their valuable suggestions helped improve this thesis. I would

like to thank all teachers and classmates in Ren Lab for their help during this period.

I want to thank Prof. Xin Kang, who gave me strong guidance in my dissertation

topic selection and preparation stage and excellent support and encouragement for my

chosen research field. At the same time, he made suggestions, encouraging me to work

hard to complete the thesis with a positive attitude.

Meanwhile, I would like to thank my classmates in the A1 group. Thanks to

Mr.Yangyang Zhou, and Mr. Zheng Liu, for their valuable suggestions and shared

experience in research.

Finally, I would like to thank my family for their silent support and encouragement

to me. I would like to thank you for your support and care in my study journey. Your

encouragement is a powerful driving force for me to keep moving forward.

1

Abstract

Language and writing play an irreplaceable role in human communication as natural

products of civilization. As a branch of natural language processing (NLP), natural

language generation (NLG) has received extensive attention since its inception. In the

process of human communication, NLG and natural language understanding (NLU) are

the two most essential components. In modern human-computer interactions, NLG is

also a core functional requirement of machines. As an automated process that generates

human-readable text from input information with specific interaction goals, NLG

employs different inputs for different tasks. From the perspective of input information,

NLG can be classified as text-to-text, data-to-text, multimodality-to-text, or zero-to-

text, also known as unconditional text generation. Because no input is provided in the

task of unconditional text generation, the model is required to generate natural language

text freely. The Generative Adversarial Network (GAN) for text is a standard model for

unconditional text generation tasks.

Initially proposed in 2014, GANs have been widely used in Computer Vision (CV)

tasks. However, the development of GANs for text generation has progressed slowly.

On one hand, the guidance information passed by a discriminator to the generator is

generally extremely weak. On the other hand, gradients cannot be transferred

appropriately between the generator and discriminator, which prohibits normal

gradient-based training. In response to these issues, the key contributions of this thesis

are summarized below.

(1) Compared with the conventional loss function, the Wasserstein Distance can

provide more information to the generator. We proposed a new architecture based on

RelGAN and WGAN-GP, dubbed WRGAN. The discriminator network structure of

WRGAN uses the 1-dimensional convolution of multiple kernel sizes and residual

modules. Correspondingly, we adjusted the network’s loss function with the gradient

penalty Wasserstein loss. This thesis provides and analyzes the experimental results on

2

multiple datasets and the influence of hyperparameters on the model. The experiments

demonstrated that our model outperformed most current models on real-world data.

(2) We improved TILGAN for unconditional text generation by refactoring the

generator. In short, we implemented Multi-head Self-Attention to replace the linear and

BN layers to endow the generator with superior text generation capabilities. Our model

consists of three components: a Transformer autoencoder, a Multi-head Self-Attention-

based generator, and a linear discriminator. In the transformer autoencoder, the encoder

component encodes the distribution of real samples, whereas the decoder decodes real

or generated sentence vectors into text. The loss functions for autoencoder and GAN

are cross entropy and KL divergence, respectively. On the MSCOCO and EMNLP

WMT News datasets, the proposed model has achieved a higher BLEU score than

TILGAN. Our ablation experiments also demonstrate the effectiveness of the proposed

generator network for the unconditional text generation.

1

INTRODUCTION 1

Chapter 1

 Introduction

1.1 Motivation

 Natural Language Generation (NLG) is essential research in the field of Natural

Language Processing (NLP) [1]. NLG system can be defined as generating readable

textual representations using information that is not limited to textual forms as input.

NLG can be regarded as the inverse of Natural Language Understanding (NLU). The

NLU system needs to clarify the meaning of the input sentence and generate a machine

expression language. The goal of the NLG system is how to translate concepts into

readable language. The working process starts from the abstract concept level and

generates text by selecting and executing specific semantic and grammatical rules [2].

Achieving high-quality NLG is a vital sign of the gradual maturity of artificial

intelligence technology. NLG technology has a wide range of applications, such as

intelligent question answering, human-machine dialogue, machine translation,

automatic generation of advertising words, and automatic news generation [3]. NLG

reduces the difficulty of human-machine dialogue. It has a huge impact on our daily life

and work, and has become a typical project in both academia and industry. Text

generation systems such as automated insights, narrative science, and the “Xiao Nan”

and “Xiao Ming” robots have been put into use. With the development of technology,

many excellent models and extensive cutting-edge research have emerged in the field

of NLG, but there are still many problems to be solved. For example, natural language

2

INTRODUCTION 2

is not standardized. Although we can observe some basic rules, natural language is still

too flexible. The same meaning can be expressed in many ways. This causes difficulty

for NLG, whether the aim is to understand natural language based on rules or learn the

inherent characteristics of data through machine learning. Thus, for NLG systems,

computational methodologies need to be continuously developed and optimized for

more natural and smooth text generation.

In general, NLG systems are an essential research field in NLP and still have many

application prospects and research values. For this reason, we chose NLG content for

our research.

1.2 Background

NLG is an essential research branch in NLP with a long history. In the 1950s, NLG

was first proposed as a sub-problem of machine translation [4]. In the 1970s, NLG

began to generate simple explanations for expert systems and to write natural language

answers for the results returned by database queries. In the early 1980s, NLG gradually

emerged as an independent research field within NLP, and researchers began to explore

its unique concerns and research questions. In the 1980s and 1990s, researchers

proposed statistical language models and began to describe language and characters

from the perspective of probability and statistics. Since then, the era of statistical

language models has already started. In 2003, Bengio [5] proposed a feedforward neural

network, which changed the modeling ideas of traditional language models. In 2013,

due to the proposal of the word vector [6], language modeling based on the neural

network began to appear in large numbers. Today, language models based on neural

networks have dominated NLG methods.

3

INTRODUCTION 3

1.2.1 Language Models

NLG is broadly defined as the automated process of generating human-readable

language text from given input information under a specific interaction goal. NLG has

different inputs depending on the task setting, but the output must be readable natural

language text.

According to different generation ideas, NLG models can be roughly divided into the

traditional pipeline [7] and the end-to-end [8] models based on neural networks.

(1) The pipeline model includes multiple independent steps, and the data are processed

by each module to obtain the final output. The classic pipeline model is mainly divided

into six steps [9]. The first step is content determination [10]. The purpose of this step

is to determine what information should be included and excluded in the generated text.

For example, in a ticket booking system, the information about the ticket is obtained by

querying the ticket. This information is the content that should be included in the output

statement. The second step is text structure [11], which aims to organize the order of

the text reasonably or reasonably arrange which information is displayed first and which

information is displayed later. The third step is sentence aggregation [12]. Not every

piece of information needs to be expressed in one sentence. The function of this step is

to cluster the information and express the information that can be combined in one

sentence. Through the first three steps, it is determined how many sentences need to be

generated, what information each sentence contains, and in what order the information

is expressed. The fourth step is grammaticalization [13], which introduces some

connecting words to facilitate the formation of a sentence later. The fifth step is

reference expression generation [14], and the purpose is to select words related to the

content domain for modification and adjustment. At this moment, each sentence is still

a collection of words and does not constitute a real sentence. So the final step is to

formally convert the previous set of sentences into a complete well-structured sentence

[15, 16]. Note that the model proposed in a 2002 paper called plan-based NLG [17]

simplifies the text generation process into three stage: sentence plan generation,

4

INTRODUCTION 4

sentence plan reranking, and surface realization. In the sentence plan generation stage,

the sentence planning tree is generated, each node is an action of the dialogue, and the

sentence planning tree is converted into the final sentence, which is to be generated in

the surface realization stage. Although plan-based NLG simplifies the generation stage,

it still has the disadvantages of pipeline models. The quality of the results of the

previous step directly affects the next step, thus affecting the results of the entire

training. In addition, this model requires a great investment of manpower and time for

the manual annotation of specific fields, and it is difficult to extend to new fields.

(2) End-to-end models mainly refer to the NLP model developed based on neural

networks. When end-to-end models handle the natural language standardization

problem, they no longer divide the sub-problems manually, but include the intermediate

operations in the neural network, eliminating the need for costly and error-prone data

labeling. End-to-end models increase the overall fit of the model and improves the

efficiency of the system in solving problems by reducing manual preprocessing. In

recent years, the NLG field has generally used the end-to-end method. However, the

end-to-end NLG generation framework lacks both the explicit utilization of linguistic

knowledge and the effective means to control the quality of the generated content,

which is not suitable for situations where data are lacking. The advantages and

disadvantages of excellent text generation models in recent years and a brief

introduction of each model are listed in Table 1.1.

5

INTRODUCTION 5

Table 1.1 The excellent text generation models in recent years.

Models Introduction
Advantages and

Disadvantages

RNN [18]

The Recurrent Neural Network (RNN) passes

the sequence information of each item

through the feedforward network. It uses the

output as the input of the next item in the

sequence, and each item stores the previous

step’s information.

A: Get sequence

features of input

data.

D: Cannot generate

long sentences and

parallel compute.

LSTM [19]

The Long Short-Term Memory (LSTM)

networks and their variants can solve the

vanishing gradient problem and generate

longer sentences. They handle the

dependencies in long sequences of inputs

more accurately.

A: Solve the

gradient

disappearance

problem and get

longer sentences.

D: Cannot parallel

compute.

Seq2Seq

[20, 21]

The Sequence-to-Sequence (Seq2Seq) is

generally based on the encoder-decoder

framework. It was proposed to solve the

problem that most sequence lengths are not

equal. For example, in machine translation,

the source language sentences and the target

language often do not have the same length.

The model is good at using the sequence’s

global information, synthesizing the

sequence’s context, and generating another

corresponding representation sequence.

A: Handling

unequal length

sequences.

D: Exposure Bias

and decoder often

fails to align

encoder.

6

INTRODUCTION 6

VAE [22]

The Variational Autoencoder (VAE) is a

popular method for unsupervised learning of

complex probability distributions. The most

significant feature of VAE is to imitate the

learning and prediction mechanism of the

automatic encoder and to encode and decode

between measurable functions.

A: Can learn latent

propertiesand

construct new

elements.

D: Tend to produce

more ambiguous

data.

Transformer

[23]

The Transformer consists of a set of encoders

and decoders. The job of the encoder is to

process the input of arbitrary length and

generate the encoding, and the job of the

decoder is to convert the encoding to words.

The Transformer uses the Self-Attention

mechanism to obtain the relationship between

all other words and generates an encoding for

each word.

A: Directly capture

the relationship

between all words

in a sentence

(global

information).

D: Insensitive to

word position

information.

ELMo [24]

The Embeddings from Language Models

(ELMo) does not use a word corresponding

to a fixed vector but implements a sentence

or a paragraph into the model. The model

infers the word vector corresponding to each

word according to the context. The ELMo

adopts a typical two-stage process: The first

stage is to get the pre-training language

model. The second stage is to extract the

word embedding of each layer corresponding

to the word from the pre-training network as

a new feature to add to downstream tasks.

A: Understand

polysemy

accurately.

D: Still using

LSTM.

7

INTRODUCTION 7

GPT [25-

27]

The Generative Pre-Training(GPT) is a

typical pre-training and fine-tuning two-stage

model. The pre-training stage uses massive

text data to acquire linguistic knowledge

through unsupervised learning. In contrast,

fine-tuning uses the training data of

downstream tasks to obtain models for

specific tasks.

A: Perform very

well on multiple

NLP tasks.

D: Huge amount of

parameters, difficult

to fine-tune.

BERT [28]

The Original BERT is not suitable for NLG

tasks. However, a model called MASS

combined the GPT model to form an

encoder-decoder framework in 2019,

supplemented by sophisticated pre-training

techniques. It performed well in some NLG

tasks. MASS randomly masks a contiguous

segment of the sentence and then generates

the segment by predicting through the

encoder-attention-decoder framework.

A: Unified pre-

training framework

(including GPT and

Bert). The decoder

has strong language

modeling ability.

D: Large amount of

calculation.

1.2.2 Tasks in Natural Language Generation

According to different task requirements and different input formats, NLG can be

roughly divided into text-to-text generation, data-to-text generation, multimodality-to-

text generation, and unconditional text generation. The different generation tasks and

their corresponding inputs are listed in Table 1.2.

Table 1.2 Tasks of text generation and corresponding inputs.

Tasks Input

Text-to-text generation Text sequence

Data-to-text generation Structured data

8

INTRODUCTION 8

Multimodality-to-text generation Image,video and voice data

Unconditional text generation Random noise

(1) Text-to-text generation can be divided according to different tasks: document

summarization [29], sentence compression [30, 31], sentence fusion [32, 33],

and paraphrase generation [34, 35]. Document summarization can be divided

into extractive summarization [36] and generative summarization [37].

Extractive summarization is relatively simple, and usually uses different

methods to evaluate document structural units (e.g., sentences and paragraphs),

assign a certain weight to each structural unit, and then select the most

important structural units to form a summary. The extractive summarization

method is widely used, and the structural unit usually is a sentence. Generative

summarization methods usually need to use NLU technology to analyze the

grammar and semantics of the text, fuse the information, and use NLG

technology to generate new summary sentences. Current document

summarization methods are mainly based on sentence extraction [38]. The

sentence in the original text is used as a unit for evaluation and extraction. The

advantages of this method are that it is easy to implement and can ensure good

readability of the summary sentence. This type of method mainly includes two

steps: the first is to calculate or sort the importance of the sentences in the

document, and the second is to select important sentences and combine them

into a final summary. There are also some researchers who study generative

summarization [39]. They usually represent the original document as a deep

semantic form, then conduct an analysis to obtain a deep semantic

representation of the abstract, and finally generate a summary text from the

deep semantic representation of the abstract, such as Abstract Meaning

Representation (AMR) [40]. Such methods are relatively complex, and the

current methods are still in the exploratory stage. The performance of

generative summarization methods is unsatisfactory. Sentence compression

9

INTRODUCTION 9

and sentence fusion techniques are generally used in text summarization

systems to generate summaries with more compact information. Sentence

fusion technology combines two or more related sentences with overlapping

content to obtain a sentence. According to different purposes, one type of

sentence fusion only retains the common information in multiple sentences and

then filters irrelevant details. The other type of sentence fusion only filters out

multiple sentences. The paraphrase generation technology generates a new

paraphrase text by rewriting the given text. Generally, the output text and input

text have the same mean but different expressions.

(2) In the task of data-to-text generation, the knowledge graphs [41] are widely

used in NLP since 2020, there are many NLG methods that utilize a series of

Resource Description Framework (RDF) triples, AMR graphs, or a series of

table cells. They can generate coherent human-readable text such as

instructions or questions. Mei [42] et al. added the aligner to select important

information based on the encoder-decoder model, and proposed an end-to-end

model for generating text from data based on deep learning. Song [43] et al.

applied a slightly modified Transformer encoder that explicitly handles surface

form relationships and then added two autoencoder losses to the standard

language model losses, which are specifically designed to capture and

linguistically structure the graph.

(3) There are also different tasks in multimodality-to-text generation, such as

image caption, story generation, and visual question answering (VQA) [44]. On

the image caption task, Vinyals et al. use an encoder-decoder-like model for

generation. Xu [45] et al. further added the Self-Attention mechanism. Huang

et al. proposed the task of generating stories for image sequences, and then

provided three levels of datasets: descriptive text for a single image, stories for

a single image, and stories for a sequence of images [46]. While VQA is a task

that combines Computer Vision (CV) and NLP, given a picture and a question,

10

INTRODUCTION 10

its goal is to infer the correct answer to the question from the visual information

of the picture. Shih [47] et al. proposed a model based on the Self-Attention to

encode pictures with VGG, use the word vector to average the problem, and

finally generate the answer through a two-layer network. Wu [48] et al.

proposed integrating image caption models and external knowledge bases to

generate answers.

(4) On the task of unconditional text generation, the sequence GAN (SeqGAN) [49]

created a mode of Generative Adversarial Network (GAN) [50] in text

generation. The maximum-likelihood augmented discrete GAN (MaliGAN)

[51] proposed a new loss function of the generator to replace the Monte-Carlo

[52] tree search (MCTS) and was found to obtain better results. The margin-

ranking GAN (RankGAN) [53] changed the original discriminator from a

binary classification model to a sorting model. The long-text generation via

adversarial training with leaked information (LeakGAN) [54] leaked the

characteristic information of the high-level discriminator to the manager

module to guide the generator to generate long text. The masked-text GAN

(MaskGAN) [55] used the Actor-Critic algorithm in reinforcement learning

(RL) to train the generator and then uses maximum likelihood and stochastic

gradient descent to train the discriminator. The diversity-promoting GAN (DP-

GAN) [56] was proposed by focusing on diversified text generation. The author

improved the discriminator based on SeqGAN and proposed a discriminator

based on the language model. The generating sentimental texts via mixture

adversarial networks (SentiGAN) [57] has multiple generators and a multi-

class discriminator. Multiple generators are trained simultaneously, aiming to

generate text with different emotion labels without supervision. For a detail

introduction to the model of unconditional text generation, refer to Chapter 2.

11

INTRODUCTION 11

1.3 Research Objective and Content

1.3.1 Improved RelGAN with Wasserstein Loss

In this study, we proposed a new architecture based on RelGAN [58] and WGAN-

GP [59] named WRGAN. We rebuilt the discriminator architecture with the 1-

dimensional convolution of multiple kernel sizes and residual modules [60].

Correspondingly, we modify the generator and discriminator loss functions with the

gradient penalty Wasserstein loss. Then, we made the discriminator and the generator

with relational memory coordinated by Gumbel-softmax relaxation to train the GAN

model on discrete data. The paper provided the experimental results on multiple

datasets and analyzed the influence of hyperparameters on the model. The experiments

demonstrated that our model outperformed most current models on real-world data.

1.3.2 Improved Transformer-Based Implicit Latent GAN

In this study, we improved the transformer-based implicit latent GAN (TILGAN) [61]

for unconditional text generation by refactoring the generator. In short, we use Multi-

head Self-Attention [62] to replace the linear and BN layers to endow the generator

with better text generation capabilities. Our model consists of three components: a

Transformer autoencoder, a Multi-head Self-Attention-based generator and a linear

discriminator. The encoder in the Transformer autoencoder encodes the distribution of

real samples. The decoder decodes real or generated sentence vectors into text. The loss

functions for autoencoder and GAN are cross entropy and KL divergence, respectively.

On the MSCOCO [63] and EMNLP WMT News [64] datasets, the proposed model has

achieved a better BLEU [65] score than TILGAN. Our ablation experiments also

verified the effectiveness of the proposed generator network for unconditional text

generation.

12

INTRODUCTION 12

1.4 Organizations

This thesis mainly investigates the background and research status of the NLG task

and then proposes some unconditional text generation approaches for addressing some

existing challenges. The organizational structure of this thesis is as follows:

Chapter 1 discusses the motivation and background of the NLG task and introduces

the main research contents and organizational structure of this thesis.

Chapter 2 introduces related works on the unconditional text generation task. This

chapter first introduces GAN, GAN for text generation methods, and problems of GAN

for text generation. Then, the research status and progress of unconditional text

generation technology in recent years are reviewed.

Chapter 3 introduces the proposed model architecture based on RelGAN and

WGAN-GP, describes the training process, gives the results of the model on multiple

datasets, and explores the influence of hyperparameters for the model.

Chapter 4 introduces the improved model based on TILGAN, describes the training

process, and gives the results of the model on multiple datasets.

Chapter 5 concludes the thesis and discusses future works.

13

RELATED WORKS 13

Chapter 2

 Related Works

2.1 Unconditional Text Generation Models

According to different modeling ideas, unconditional text generation models can be

roughly divided into three categories: the Generative Pre-Training (GPT) models based

on Transformer, the Variational Autoencoder (VAE) models, and the Language GANs.

GPT is a typical pre-training and fine-tuning two-stage model. The pre-training stage

uses massive text data to acquire linguistic knowledge through unsupervised learning,

while fine-tuning aims to use the training data of downstream tasks to obtain models

for specific tasks. The structure of the GPT model fulfills two important points: one is

to use Transformer as a feature extractor, and the other is to use a one-way language

model. With the advancement of technology, the GPT model has developed to the third

generation, namely GPT-3. In addition to common NLP tasks, GPT-3 achieves

impressive performance on many difficult tasks. Beyond its excellent performance,

GPT-3 is also huge. GPT-3 is the largest Transformer model released to date in NLP,

with 175 billion parameters, 45 TB of training data, and up to $12 million in training

costs.

As a generative model comparable to GAN, VAE combines the advantages of

Bayesian methods and deep learning. It has an elegant mathematical foundation, a

simple and easy-to-understand architecture, and satisfactory performance. The original

VAE model framework is shown in Figure 2.1.

14

RELATED WORKS 14

Figure 2.1 The original VAE framework.

The ability of VAE to extract disentangled latent variables also makes it more

meaningful than general generative models. VAE is a kind of latent variable model.

The basic idea of the autoencoder is to transform a set of real samples into an ideal data

distribution through the encoder network. Then a set of generated samples is obtained

by passing a decoder network. An autoencoder model is obtained when the generated

samples are close enough to the real samples. VAE has achieved excellent results in

multiple NLP tasks, and similar ideas to VAE can also be seen in language GANs.

Both GAN and VAE are deep generative models that can generate data with a

complex distribution from random noise. However, the data are generated from

different perspectives. They construct different loss function forms to measure the

generated data. For VAE, the researcher believes that the data 𝑥 are generated by a

latent variable 𝑧, and 𝑧 contains the features and information of 𝑥. For GAN, the

researchers believe that the complex distribution of 𝑥 can be obtained from a simple

distribution 𝑝(𝑧) through a series of transformations, where 𝑧 is random noise and

has no physical meaning.

Traditional language models use a combination of teacher forcing and maximum

likelihood in the training process. However, the traditional language models have some

problems that cannot be ignored while training. Using the GAN method can effectively

alleviate the problems of repetitive, short, and meaningless generation caused by the

traditional language models based on the maximum likelihood estimation objective

function. Therefore, many unconditional text generation models choose GAN-based

methods.

15

RELATED WORKS 15

2.2 GAN for Text Generation

 GAN is an unsupervised learning method that was proposed by Ian Goodfellow and

his colleagues in 2014. With the improvement of the theory, GAN has shown its great

potential gradually. Moreover, GAN has produced many fancy CV applications, such

as image generation [66], image conversion [67], style transfer [68, 69], and image

restoration [70]. GAN can be leaned in an unsupervised way by letting two neural

networks play against each other. GAN includes a generator and a discriminator, where

the goal of the generator is to generate fake samples that can fool the discriminator. The

goal of the discriminator to distinguish between the real and fake samples. In the end,

the generator and the discriminator reach a Nash equilibrium in the process of playing

against each other [71]. In this way, learning GAN models can essentially be thought

of as a minimax game, with the objective function given by:

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))], (1)

where 𝑥 represents the real sample, and 𝑧 represents the random noise. The goal of

the generator is:

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑃 (𝐷(𝐺(𝑧))), (2)

and the goal of the discriminator is:

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑃 (𝐷(𝑥)) − 𝑃 (𝐷(𝐺(𝑧))), (3)

In the field of CV, GANs have rapidly become the hotspot in recent years owing to

their superior performance [72]. However, the development has been relatively slow in

NLP. There are some problems when extending the idea of GAN to text generation.

The two main problems are detailed below.

(1) When GAN faces discrete data, the discriminator cannot pass the gradient to

the generator through backward propagation. In Equation 2, 𝐺(𝑧) generates

samples through the 𝑎𝑟𝑔 𝑚𝑎𝑥, which is also called sampling [73]. Because

this operation in text generation is a non-derivable process, gradients cannot

transfer properly between the generator and the discriminator, which prohibits

the normal gradient-based training [74]. For example, we assume the

16

RELATED WORKS 16

vocabulary vector is [“𝑝𝑒𝑛𝑔𝑢𝑖𝑛”, “𝑐𝑎𝑡”] and the vocabulary vector

corresponds to the vector [𝑥0, 𝑥1] = [1,0] . With the 𝑎𝑟𝑔𝑚𝑎𝑥(𝑥0, 𝑥1) , we

always obtain the same word “𝑝𝑒𝑛𝑔𝑢𝑖𝑛,” even if the value of 𝑥1 increases

from 0 to 0.999. In this case, the gradient of 𝑥𝑖 is always equal to 0.

(2) The training process of GAN is unstable. We need to balance the generator and

the discriminator carefully. Moreover, the generation task is much more

complicated than discrimination. Simultaneously, the discriminator’s guidance

to the generator is too weak [75], and the direction contains little information.

For the generator, it can only obtain a “true or false” probability in return.

Furthermore, the discriminator may even “cheat.” Because the real sample uses

one-hot vectors, the discriminator does not need to judge whether the

generating data distribution is closer to the real data [76]. It just needs to

identify whether only one item of the current data is 1, and the rest iterms are

all 0.

For the above problems, text GANs offer some effective solutions, such as RL for

sequence generation, Gumbel-softmax relaxation [77], and Wasserstein Distance [78].

At present, GANs for text generation have been able to generate fluent texts. GANs are

often used in unconditional text generation. In some tasks that need to control the

generation direction, such as machine translation, dialogue generation, text

summarization, GANs do not achieve excellent performance yet. Therefore, this thesis

only involves unconditional text generation. The most wildly used of the evaluation

datasets used for unconstrained text generation include the COCO Image Captions [79],

EMNLP WMT, Chinese Poems [80], MSCOCO.

2.2.1 Reinforcement Learning for Sequence Generation

For the above problems, the first solution is the combination of GAN and RL for

sequence generation [81].

For example, SeqGAN is proposed by Yu et al. with the RL algorithm. This solution

deals with non-differentiable problems by considering the RL algorithm. For the

discriminator’s difficulty in evaluating incomplete sequences, the author proposed to

17

RELATED WORKS 17

draw on the idea of the MCTS, which can evaluate non-complete sequences at any time.

The model structure is shown in Figure 2.2.

Figure 2.2 SeqGAN structure.

In Figure 2.2, 𝐺𝜃 represents the generator and 𝐷𝜑 represents the discriminator.

The policy network is regarded as 𝐺𝜃. The existing node is called the current state, and

the next node to be generated is called action. Because 𝐷𝜑 needs to score a complete

sequence, the MCTS completes the action sequences for obtaining the rewards. 𝐷𝜑

generates rewards for these complete sequences, and sends them back to 𝐺𝜃.

Generally, the authors suggest using the RNN or LSTM as a generator, inputting

word embedding into each node, and combining with a linear hidden layer to get the

probability of outputting each word. The generator can sample a batch of generated

sequences according to this probability. The MCTS selects the next action based on the

probability distribution of each node. After obtaining the sampled sequences, the

discriminator obtains a set of probabilities with the sampled sequences. The average

value of this set of probabilities is considered the reward. When we train the generator

via policy gradient, we can increase the selection probability of actions with more

rewards and decrease the selection probability of actions with fewer rewards.

The LeakGAN, which is an improvement of the SeqGAN, also uses the RL algorithm

for training. Unlike SeqGAN, the author additionally “leaks” some high-level

information of the discriminator to a “manager.” The manager module is an LSTM

18

RELATED WORKS 18

network that acts as an intermediary to help the generator to complete the generation

task. Specifically, in addition to the reward given by the discriminator, the generator

can additionally obtain the high-level feature representation of the discriminator at each

moment. In this way, the generation of long texts is more accurate and diverse. The

model structure is shown in Figure 2.3.

The starting point of LeakGAN is that the discriminator is a specific model set by

humans, such as CNN, rather than a “black box” system. Because the internal structure

of the discriminator is known in advance, the discriminator can provide detailed

structural information to the generator. In LeakGAN, the discriminator is divided into

the feature extractor and the softmax classification layer. The feature extractor obtains

a high-level feature representation based on the current state and provides this

representation to the “manager” as “leak” information. The manager module receives

the “leak” information provided by the discriminator and obtains the action sub-goal

after transformation. After that, the action sub-goal performs a dot product with the

action embedding generated by LSTM. Finally, the generator uses the result to draw a

sample of the next word.

Figure 2.3 LeakGAN structure.

In the training process of SeqGAN, updating the parameters of the generator relies

on the reward of the discriminator combined with RL. In addition to the scalar reward,

the high-level feature representation of the discriminator can be obtained at each

19

RELATED WORKS 19

moment as an additional “feature.” This feature helps the generator to generate text

sequences, which provides a guidance for long-term text generation.

To generate high-quality language descriptions, RankGAN was proposed. The

authors relax the training of the discriminator to a learning-to-rank optimization

problem. Furthermore, they turn the discriminator into a ranker. Correspondingly, the

input of the ranker consists of a generated sentence and multiple human-written

sentences. The goal of the ranker is to rank the generated sentence lower than human-

written sentences. Therefore, the reward of RankGAN contains the ranking score. The

overall optimization goal is:

𝑚𝑖𝑛
𝜃

𝑚𝑎𝑥
∅

ℒ(𝐺𝜃, 𝑅∅) = 𝔼𝑠~𝑃ℎ
[𝑙𝑜𝑔𝑅(𝑠|𝑈, 𝐶−)] + 𝔼𝑠~𝐺𝜃

[𝑙𝑜𝑔(1 − 𝑅(𝑠|𝑈, 𝐶+))], (4)

where 𝑈 is the set of reference data for obtaining relative ordering. 𝐶− is sampled

from generated data when the input 𝑠 is real data. While 𝐶+ is sampled from real data

when 𝑠 is generated data. The model calculates the cosine similarity between the input

𝑠 and the reference data 𝑢 (𝑢 𝜖 𝑈) to obtain the ranking score. The definition of

reward in RankGAN is the same as in SeqGAN. However, the quality of text generated

by RankGAN is superior to SeqGAN due to the additional ranking information of

RankGAN.

SentiGAN has multiple generators and a multi-class discriminator to address the

above problems. In the SentiGAN framework, multiple generators are trained

simultaneously, aiming to generate texts with different sentiment labels in an

unsupervised manner. A penalty-based objective is included in the generator to force

each of the generators to produce diverse examples of a specific sentiment label.

Furthermore, using multiple generators and a multi-class discriminator allows each

generator to focus on accurately generating its examples of specific sentiment labels.

Unlike the previous work, SentiGAN uses a penalty-based loss function instead of a

reward-based loss function. This strategy enables the generator to generate more diverse

sentences. Given 𝐾 categories of sentiments, SentiGAN uses 𝐾 generators and one

discriminator. The goal of the 𝑖 − 𝑡ℎ generator is to generate text with the 𝑖 − 𝑡ℎ

sentiment type, fooling the discriminator as much as possible. The goal of the

20

RELATED WORKS 20

discriminator is to distinguish the generated text from the real text with 𝐾 categories

of sentiments.

In MaskGAN, both the generator and the discriminator use the same Seq2Seq

structure. The generator is trained by the RL algorithm, and the discriminator is trained

by the previous maximum likelihood method. In order to solve the problem that GAN

is non-differentiable in dealing with discrete data, the authors adopt a convenient Actor-

Critic algorithm [82], which can fill in the missing parts of masked sentences according

to the context. To address the problem of training instability in GANs, the authors treat

text generation as a fill-in-the-blank or in-filling task. The text generation process can

rely on the context information around the missing parts for word prediction and word

filling. The generator aims to make the generated text and the corresponding real text

indistinguishable from the discriminator.

Combined with the RL algorithm, the gradient problem caused by the text

discretization output is alleviated. As a result, many RL-based GANs have emerged for

text generation. However, a single scalar reward signal obtained from the RL algorithm

leads to two problems of information sparseness and information incompleteness in

training the generator. Although many methods consider making full use of the

information from the discriminator and providing a highly diverse reward to the

generator, the problem of information sparseness still exists. Thus, the improved

methods can only alleviate the problem rather than solve it.

2.2.2 Wasserstein Distance

Firstly, we explain the distance measurement method called “Earth Mover’s

(Wasserstein) Distance” 𝑊(𝑞, 𝑝), which is informally defined as the minimum cost of

transporting mass in order to transform the distribution 𝑞 into the distribution 𝑝 ,

where the cost is the mass times the transport distance. Under mild assumptions,

𝑊(𝑞, 𝑝) is continuous everywhere and differentiable almost everywhere. The

Wasserstein Distance 𝑊(𝑞, 𝑝) can be defined as:

𝑊(𝑞, 𝑝) = 𝑚𝑖𝑛
𝛾

𝐸(𝑞,𝑝)∼𝛾||𝑞 − 𝑝||, (5)

where γ is a joint probability distribution that satisfies the constraints:

21

RELATED WORKS 21

∫ 𝛾(𝑞, 𝑝)d𝑞 = 𝑃𝑔(𝑞), ∫ 𝛾(𝑞, 𝑝)d𝑝 = 𝑃𝑓(𝑝). (6)

Compared with KL and JS divergence, Wasserstein Distance can still reflect their

distance even if the two distributions do not overlap. On the one hand, the Wasserstein

Distance is smooth. If we use the gradient descent method to optimize the distance

parameters, KL and JS cannot provide gradients in some cases, while the Wasserstein

Distance can solve this problem normally. Similarly, if the two distributions do not

overlap or the overlap is negligible in a high-dimensional space, then KL and JS can

neither reflect the distance nor provide gradients, while the Wasserstein Distance can

provide meaningful gradients. Thus, we calculate the distance between the generated

data distribution and real data distribution through the Wasserstein Distance.

To address the unstable training process of GANs, Arjovsky et al. proposed the

WGAN and the WGAN-GP. They provide the theoretical solution. WGAN converts

the discriminator’s task from a binary classification into calculating the Wasserstein

Distance. Forcing the discriminator to calculate the distance between the generated and

the true data distribution prevents the discriminator from “cheating.” The discriminator

can also provide more accurate guidance information to the generator, not just the

probability of “true or false.” Because the weight clipping strategy in WGAN causes

most of the weights to approach two extremes, WGAN-GP was proposed, which uses

gradient penalty to replace weight clipping. This strategy makes the training more stable

and produces higher-quality images.

To address the difficulty in passing the gradient, Wasserstein Distance can directly

calculate the distance between the real and the generated sample distribution without

the 𝑎𝑟𝑔 𝑚𝑎𝑥 . The non-derivable problem no longer exists, theoretically. WGAN

completely solves the problem of unstable GAN training and no longer needs to

carefully balance the training degree of the generator and the discriminator.

Unfortunately, WGAN is used more in CV. The proposal of WGAN is not aimed at

solving the problems of GANs in text generation, and there are few applications in text

generation. For example, when using Wasserstein loss in RelGAN, we found that the

gradient would disappear, and the discriminator loss was almost equal to 0 during

22

RELATED WORKS 22

training. The detailed description and the performance of RelGAN using Wasserstein

loss can be found in section 3.6.6.

2.2.3 Gumbel-softmax Trick

There is a reparameterization trick in VAE that uses random sampling while ensuring

that the gradient can be passed back so that the model can be trained and updated.

Gumbel-softmax is also a reparameterization technique. Gumbel-softmax makes the

process of sampling discrete variables derivable in an approximation.

Gumbel-softmax was first proposed for the reparameterization of categories. The

improvement goal applied to GAN can be considered to design a more “powerful”

softmax, which can replace the sampling operation in the original GAN.

For the discrete variables 𝑧 and the distribution vector 𝜋 = [𝜋1; 𝜋2; … ; 𝜋𝑘], we can

obtain the discrete variables 𝑧 as:

 (7)

where 𝑔𝑖 is a sample taken from a 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1) distribution. The Probability

density function (PDF) function of 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1) is defined as:

 (8)

The 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1) distribution can be sampled using inverse transform sampling

by drawing 𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) and computing 𝑔 = − 𝑙𝑜𝑔(− 𝑙𝑜𝑔(𝑢)) . In order to

enable the derivation of the sample for the statistical parameter, it is also necessary to

solve the problem that 𝑎𝑟𝑔 𝑚𝑎𝑥 cannot be derivable. Then the softmax is used instead

of 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑎𝑟𝑔 𝑚𝑎𝑥), the collected samples can be written as:

 (9)

where 𝜏 is the temperature parameter. The smaller 𝜏 is, the closer the sampling is to

the result of 𝑎𝑟𝑔 𝑚𝑎𝑥, and the closer the sample is to the one-hot vector, but the

23

RELATED WORKS 23

variance of its corresponding gradient estimator is also larger. During normal training,

the 𝜏 will be gradually reduced.

The typical representative network is RelGAN. To address the difficulty in passing

the gradient, RelGAN utilizes Gumbel-softmax relaxation to simplify the model.

RelGAN uses relational memory on the generator, which gives it more vital expression

ability and better generation ability on long text. RelGAN also uses multi-layer word

vector representation on the discriminator to make the generated text more diverse.

Experiments showed that RelGAN achieved good results in the quality and diversity of

the generated text. In addition, multi-channel feature extraction is performed on the

discriminator. The results of more detailed ablation experiments prove that text GAN

can also be based on the traditional GAN framework, and the RL is not necessary. Thus,

we believe that the GAN structure that uses Gumbel-softmax approximate sampling is

more flexible than the RL-based model.

2.2.4 Autoencoder Framework

Firstly, a brief introduction to the autoencoder [83] framework is given. The

framework of autoencoder is shown in Figure 2.4.

Figure 2.4 The framework of autoencoder.

The autoencoder framework consists of two major modules: the encoder and the

decoder. The input data 𝑥 is mapped to 𝑧 in the latent space through the encoder 𝑔.

Then 𝑧 is mapped back to the original space through the decoder 𝑓 to obtain the

reconstructed sample 𝑥̂. In the optimization process, autoencoder does not need to use

the label of the sample. By minimizing the reconstruction error, the autoencoder learns

24

RELATED WORKS 24

the 𝑧 of the sample. This unsupervised optimization method greatly improves the

model generality.

In 2018, David Donahue proposed to introduce autoencoder into GAN. The author

named the model LaTextGAN [84]. The model structure of LaTextGAN is shown in

Figure 2.5.

Figure 2.5 The framework of LaTextGAN.

LaTextGAN consists of three parts: a generator, a discriminator, and textual

autoencoder based on LSTM. 𝑧 is random noise, 𝑠𝑐𝑜𝑟𝑒 is the score of the input

vector by the discriminato. The goal of the generator is to improve the score as much

as possible. Therefore, the latent space vector generated by the generator should be as

close as possible to the latent space vector obtained by the LSTM of the real sentence.

This model architecture relies on the ability of the autoencoder to reproduce text, and

the training process of the autoencoder and GAN must be coordinated. In addition, the

model is prone to mode collapse during the training process. Limited by the extract

sentence features ability of LSTM, LaTextGAN does not perform well in text

generation. However, LaTextGAN is still a good model, opening up new ideas for

subsequent models.

Benefiting from the idea of WGAN and the extensive use of the Transformer

autoencoder, the idea of GAN in text generation can be slightly changed. The

generator’s output is not necessarily a sentence but also a sentence vector in the latent

space. Correspondingly, the task of the discriminator has also changed. The

discriminator needs to judge whether the current sentence vector is true. Therefore,

TILGAN was proposed. Before TILGAN training, the author trains a Transformer-

25

RELATED WORKS 25

based autoencoder on the real corpus. After the training, the sentence vectors in the real

corpus through the encoder are used as real data, while the generated sentence vectors

are used as fake data.

In general, there have been many excellent variants of GAN in the field of text

generation in recent years. Nevertheless, there are still many problems to be solved.

26

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 26

Chapter 3

 WRGAN: Improved RelGAN with

Wasserstein Loss for Text Generation

3.1 Problem Definition

To address the discriminator’s lack of ability to backpropagate the gradient to the

generator, we conducted experimental testing and concluded that Gumbel-softmax

relaxation technology is more effective than RL. However, since the LSTM-based

generator may lack sufficient expressive power for text generation, we employed

relational memory in its place. The discriminator provides insufficient guidance

information to the generator. Therefore, we used the Wasserstein loss accordingly. We

carefully designed the discriminator network corresponding to the Wasserstein loss to

ensure the network can be coordinated. Since the improved model represents an

improved RelGAN model with Wasserstein loss, we dubbed it WRGAN.

3.2 Overall Framework

The overall framework of WRGAN, as illustrated in Figure 3.1, consists of three

major components: a relational memory-based generator, the Gumbel-softmax

relaxation, and a 1-dimensional convolution-based discriminator. After the generator

completed standard MLE training over several epochs, the network initiated adversarial

training. In accordance with RelGAN, for each 𝑀𝑡 at time 𝑡 , we can obtain the

updated memory 𝑀̃𝑡+1 as:

27

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 27

𝑀̃𝑡+1 =  [𝑀̃𝑡+1
1 : … : 𝑀̃𝑡+1

𝐻  ], (10)

𝑀̃𝑡+1
ℎ = 𝜎 (

𝑄𝑡
ℎ𝐾𝑡

ℎ𝑇

√𝑑𝑘
) 𝑉𝑡

ℎ, (11)

where 𝜎 is softmax function. 𝑄, 𝐾, and 𝑉 denote the query, key, and value vectors,

respectively. 𝐻 is the number of heads. Then the output of generator 𝑜𝑡 is given by:

𝑜𝑡 = 𝑓𝜃(𝑀̃𝑡+1, 𝑀𝑡), (12)

where 𝑓𝜃 is a combination of skip connections, multi-layer perceptron (MLP), gated

operations and/or pre-softmax linear transformations [85].

After obtaining the generator output 𝑜𝑡, it is entered into Gumbel-softmax to obtain

the generated data 𝑥̃, defined as:

𝑥̃ = 𝜎(𝛽(𝑜𝑡 + 𝑔)), (13)

where 𝜎 is a softmax function. 𝛽 is a tunable parameter set to 100 in this study. 𝑔 is

defined as:

𝑔 = −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑢)), (14)

where 𝑢 follows a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution.

Figure 3.1 The overall framework of WRGAN.

28

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 28

Then, we put the generated, real, and mixed data into the discriminator to obtain the

loss. This loss, which represents the relative distance between the generated and real

data distributions, is used by the model to adjust network parameters.

3.3 Relational Memory-Based Generator

In this study, we introduce a powerful module in the generator in the form of

relational memory [86], wherein multiple memory slots interact through Self-Attention.

Relational memory module lets the generator to express the data distribution as

comprehensively as possible. The structure of the generator is shown in Figure 3.2.

Figure 3.2 The generator framework.

In the pre-training process, the input consists of real data processed by word

embedding, whereas in the adversarial training process, the input is a normally

distributed random noise vector. After the linear transformation is applied, the input is

merged with the memory slot of the previous moment. Subsequently, through Self-

Attention and splicing operations, the memory of the current moment is formed. This

process essentially enables the generator to obtain global information. As a result, the

generated long text is more accurate, and the generator’s expressive ability is improved.

29

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 29

3.4 Rebuild the Discriminator

The proposed discriminator framework is shown in Figure 3.3, and used parameters

are listed in Table 3.1. We selected one-hot as the input form, and

[𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ] as the input shape. The first layer is

a 1-dimensional convolutional [87] layer for dimension conversion. The second layer

consists of three groups of ResBlock layers with different sizes of 1-dimensional

convolution kernels. The structure of each ResBlock [88] is shown in Figure 3.4. The

sizes of the three groups of convolution kernels are [1,3,5], and the padding is [0,1,2].

The ResBlock also contains a hidden hyperparameter corresponding to its

dimensionality. Different data sizes correspond to different dimensions. A detailed

analysis of this parameter’s impact on the model can be found in Section 3.7. The three

channels are concatenated with different convolution kernel sizes. Notably, the two

linear layers do not contribute any activation functions.

Figure 3.3 The proposed discriminator framework.

Figure 3.4 The Resblock.

30

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 30

Table 3.1 The discriminator parameters.

Layers Input Shape Kernel Shape

Conv1D (Batch size, Vocab size, Max length) (1, Vocab size)

ResBlock (Batch size, Dim, Max length) (1, Dim), (3, Dim), (5, Dim)

Linear1 (Batch size, Dim × Max length × 3)

Linear2 (Batch size, 1000)

Output (Batch size, 1)

We assume that the weight of the convolutional layer is 𝑊𝑑
𝑡, where 𝑑 ∈ [1,2,3]. The

real and generated inputs correspond to [𝑟1: … : 𝑟𝑇] and [𝑦̂1: … : 𝑦̂𝑇], respectively. For

real data, the distributed representation ℎ𝑟
𝑡 is:

ℎ𝑟
𝑡 = 𝑊𝑑

𝑡𝑟𝑡. (15)

The distributed representation ℎ𝑦
𝑡 of generated data is:

ℎ𝑦
𝑡 = 𝑊𝑑

𝑡𝑦̂𝑡. (16)

3.5 Network Training

3.5.1 Loss Function

In this study, we employed the gradient penalty Wasserstein loss. According to

WGAN-GP, the gradient penalty prevents all network parameters from approaching

extreme values, ensuring that the weights are evenly distributed within a specific

interval. Thus, the gradient penalty maintains the stability of adversarial training. The

discriminator loss can be defined as:

𝐿𝐷 = 𝔼[𝐷(𝑥̃)] − 𝔼[𝐷(𝑥)] + 𝜆𝔼[(||𝛻𝑥̂𝐷(𝑥̂)||2 − 1)2], (17)

where 𝑥̂ is mixed data by real and generated data. 𝜆 is the penalty coefficient. All

experiments in this study used 𝜆 = 10. The generator loss is given by:

𝐿𝐺 = −𝔼[𝐷(𝑥̃)]. (18)

31

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 31

By plugging Equations 15 and 16 into Equations 17 and 18, the following expressions

are obtained for 𝐿𝐷 and 𝐿𝐺:

𝐿𝐷 =
1

3𝑇
∑ ∑ 𝐷(ℎ𝑦̂

𝑡)

𝑇

𝑡=1

3

𝑑=1

−
1

3𝑇
∑ ∑ 𝐷(ℎ𝑟

𝑡)

𝑇

𝑡=1

3

𝑑=1

+
𝜆

3𝑇
∑ ∑ (||∇m̃𝐷(ℎ𝑚̃

𝑡)||
2

− 1)
2

𝑇

𝑡=1

3

𝑑=1

,

(19)

 (20)

where 𝑚̃ is obtained by randomly mixing real data and generated data.

3.5.2 Training Details

Limited by hardware equipment, we set the batch size to 64 during the training

process and employed the Adam [89] optimizer. During adversarial training, the

learning rates of the generator and discriminator were both 1  ×  10−4 . The L2

regularization weight decay was 0.01 [90], and the dropout of the discriminator was

0.25. The maximum number of iterations was 2,000, and the generator embedding [91,

92] dimension was 32.

3.5.3 Baseline

To comprehensively evaluate the proposed model, we compared its performance

with that of several baselines:

(1) SeqGAN: a text GAN model based on RL algorithm and MCTS, training on

COCO Image Captions, EMNLP 2017 WMT News, and Chinese poetry

datasets.

(2) RankGAN: a text GAN model based on RL algorithm, training on COCO

Image Captions, EMNLP 2017 WMT News, and Chinese poetry datasets.

(3) LeakGAN: a text GAN model based on RL algorithm and LSTM, training on

COCO Image Captions, EMNLP 2017 WMT News, and Chinese poetry

datasets.

32

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 32

(4) RelGAN: a text GAN model based on relational memory cell (RMC) and

Gumbel-softmax, training on COCO Image Captions, EMNLP 2017 WMT

News, and Chinese poetry datasets.

(5) SentiGAN: a text GAN model based on RL algorithm and LSTM, training on

Movie Reviews datasets.

(6) CSGAN: a text GAN model based on RL algorithm and RNN, training on

Movie Reviews datasets.

(7) CatGAN: a text GAN model based on RMC and hierarchical evolutionary

learning algorithm, training on Movie Reviews datasets.

3.6 Experiments and Analysis

To evaluate the model’s performance, we tested our model on real-world data,

including the COCO Image Captions, EMNLP 2017 WMT News, Movie Reviews [93],

and Chinese poetry datasets. Specific experimental parameter settings are presented in

each corresponding subsection.

3.6.1 Evaluation Metrics

Similar to other models, we used two evaluation metrics.

The first evaluation metric is the negative log-likelihood (𝑁𝐿𝐿𝑔𝑒𝑛) [94] and its

counterpart (𝑁𝐿𝐿𝑜𝑟𝑎𝑐𝑙𝑒), defined as:

 𝑁𝐿𝐿𝑔𝑒𝑛 = −𝔼𝑌1:𝑇∼𝑃𝑟
𝑙𝑜𝑔𝑃𝜃(𝑌1, … , 𝑌𝑇), (21)

𝑁𝐿𝐿𝑜𝑟𝑎𝑐𝑙𝑒 = −𝔼𝑦1:𝑇∼𝑃𝜃
𝑙𝑜𝑔𝑃𝑟(𝑦1, … , 𝑦𝑇), (22)

where 𝑃𝜃 and 𝑃𝑟 are the generated and real data distributions, respectively. We used

𝑁𝐿𝐿𝑔𝑒𝑛 to evaluate the diversity of generated data.

The other evaluation metrics of real data is bilingual evaluation understudy (BLEU).

The BLEU score is used to compare and count the number of commonly occurring 𝑛 −

𝑔𝑟𝑎𝑚 words for the quality evaluation of the generated text. To enable BLEU scores

as an evaluation metric, we also use test data [95].

33

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 33

3.6.2 COCO Image Captions

The Microsoft COCO dataset consists of 20,000 manually generated image captions.

After preprocessing [96], we got a dictionary with 4,682 unique words, and the

maximum sentence length is 37. Additional properties of this dataset are listed in Table

3.2.

Table 3.2 The details of the COCO Image Captions dataset.

Vocabulary size 4,682

Maximum length 37

Number of training sentences 10,000

Number of test sentences 10,000

A comparison between the BLEU scores of tested models is presented in Table 3.3.

We adopted the same evaluation settings for all models. Except for the BLEU-5 score,

all scores achieved by our model exceeded those produced by other models. This

indicates that our model is highly effective for the COCO dataset. The 𝑁𝐿𝐿𝑔𝑒𝑛 score

shows that the improved model also performed well on data diversity.

Figure 3.5 shows a line graph generated after 2,000 training iterations for a

hyperparameter dimension of 128. No strong fluctuations were observed in the training

process, indicating relative stability in the model. The samples generated from the

COCO dataset can be found in Section 3.8.1.

Table 3.3 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on COCO Image Captions dataset.

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 𝑁𝐿𝐿𝑔𝑒𝑛

MLE 0.731 0.497 0.305 0.189 0.718

SeqGAN 0.745 0.498 0.294 0.180 1.082

RankGAN 0.743 0.467 0.264 0.156 1.344

LeakGAN 0.746 0.528 0.355 0.230 0.679

RelGAN (100) 0.849 0.687 0.502 0.331 0.756

RelGAN (1000) 0.814 0.634 0.455 0.303 0.655

34

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 34

WRGAN 0.853 0.687 0.509 0.318 0.673

Figure 3.5 The BLEU scores for COCO Image Captions.

3.6.3 EMNLP 2017 WMT News

Table 3.5 lists the BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores for the EMNLP 2017 WMT News

dataset, with the dimension of 256. The dataset in question contains approximately

270,000 sentences, as well as 10,000 sentences of testing data. After preprocessing, we

obtained a vocabulary size of 5,255, with a maximum sequence length of 51. The

additional details about the dataset are listed in Table 3.4.

Table 3.4 The details of the EMNLP 2017 WMT News dataset.

Vocabulary size 5,255

Maximum length 51

Number of training sentences 270,000

Number of test sentences 10,000

The training curves corresponding to BLEU scores are shown in Figure 3.6. These

results indicate that, despite slightly weaker data diversity, the improved model

outperformed all other models in terms of BLEU scores. The figure also shows that the

model can achieve higher performance and more stable results even on a large-scale

35

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 35

dataset. Data samples generated from the EMNLP 2017 WMT News dataset can be

found in Section 3.8.2.

Table 3.5 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on EMNLP 2017 WMT News dataset.

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 𝑁𝐿𝐿𝑔𝑒𝑛

MLE 0.768 0.473 0.240 0.126 2.382

SeqGAN 0.777 0.491 0.261 0.138 2.773

RankGAN 0.727 0.435 0.209 0.101 3.345

LeakGAN 0.826 0.645 0.437 0.272 2.356

RelGAN(100) 0.881 0.705 0.501 0.319 2.482

RelGAN(1000) 0.837 0.654 0.435 0.265 2.285

WRGAN 0.952 0.782 0.539 0.336 2.812

Figure 3.6 The BLEU scores for EMNLP 2017 WMT.

3.6.4 Chinese Poetry

The Chinese poetry dataset consists of 16,394 Tang poems, each of which contains

five Chinese words per sentence. Additional details pertaining to this dataset are

presented in Table 3.6.

36

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 36

Table 3.6 The details of the Chinese Poetry dataset.

Vocabulary size 4,140

Maximum length 20

Number of training sentences 8,197

Number of test sentences 8,197

Since we used the BLEU score as the evaluation metric, we randomly selected 8,197

poems as the training set, with the remaining 8,197 poems allocated to the testing set.

After preprocessing, we obtained a vocabulary with a size of 4,140. Table 3.7 lists the

BLEU-2 scores for this dataset. Here, the improved model also achieved satisfactory

results.

Table 3.7 The BLEU-2 scores on the Chinese poetry dataset.

Method SeqGAN RankGAN RelGAN LeakGAN WRGAN

BLEU-2 0.738 0.812 0.817 0.456 0.835

3.6.5 Movie Reviews (MR)

The Movie Reviews (MR) dataset contains two sentiment classes (negative and

positive) and 4,503 total samples. Of these samples, 3,152 were allocated for training,

with the remaining 1,351 set apart for testing. Additional details pertaining to this

dataset are listed in Table 3.8.

Table 3.8 The details of the Movie Reviews dataset.

Vocabulary size 6,216

Maximum length 15

Number of training sentences 3,152

Number of test sentences 1,351

After preprocessing, we obtained a vocabulary with a size of 6,216 and a maximum

sentence length of 15. Table 3.9 lists the BLEU and NLL scores for Movie Reviews

dataset. Except BLEU-5, all scores obtained by the improved model were satisfactory.

37

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 37

Table 3.9 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores for the Movie Reviews dataset.

Method SentiGAN CSGAN CatGAN [97] WRGAN

BLEU-2 0.532 0.452 0.589 0.623

BLEU-3 0.285 0.204 0.335 0.337

BLEU-4 0.167 0.112 0.194 0.193

BLEU-5 0.143 0.082 0.144 0.128

𝑁𝐿𝐿𝑔𝑒𝑛 2.436 2.912 1.619 0.8061

3.6.6 Comparison of RelGAN and WRGAN on COCO Dataset

The discriminator loss when using the Wasserstein loss in RelGAN is shown in

Figure 3.7. We found that the discriminator and generator losses were nearly equal to

zero throughout the training process, ranging from 0.0005 to 0.005. In this case, the

discriminator yields no useful guidance information to the generator, and the two

networks cannot perform adversarial learning. Therefore, the discriminator did not

perform well on these datasets. Excluding some obvious causes of error, we located the

problem in the discriminator structure, which was modified after several experiments.

Figure 3.7 The discriminator loss of RelGAN.

Figure 3.8 compares the BLEU-2 scores of the three RelGAN-based models based

on the COCO dataset with 1,400 iterations. The parameters in the figure represent those

used in the original study. We found RelGAN to exhibit strong fluctuations when using

the Wasserstein loss, which resulted in suboptimal performance.

38

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 38

Figure 3.8 The BLEU-2 scores on the COCO Image Captions compared with

RelGAN.

3.7 Impact of Hyperparameters

3.7.1 Impact of Dimension

This section analyzes the impact of the dimension hyperparameter on the model. In

Figure 3.9, the BLEU-2 scores of the model on the COCO dataset are plotted for

dimensionalities of 128 and 64. For the dimensionality of 128, overfitting is apparent

after approximately 1,000 iterations. However, when the number of dimensions was 64,

there was no clear overfitting. After the experiments, we determined that the

dimensionality should be proportional to the amount of training data. The training curve

for the EMNLP 2017 WMT News dataset confirms this view, as it did not exhibit

obvious overfitting with a dimensionality of 256. The dimension hyperparameter was

not minimized, as the model may not fully obtain the sentence vector’s characteristics

with a small dimensionality. Accordingly, we ensured that the dimensionality was

sufficiently large.

39

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 39

Figure 3.9 The BLEU-2 scores on COCO Image Captions where the dimension is 64

and 128.

3.7.2 Impact of 𝒌

The hyperparameter 𝑘 represents the quotient of the generator and discriminator

steps. As shown in Figure 3.10, the model gradually deteriorated and destabilized as 𝑘

increased. We believe that this was caused by an insufficient amount of discriminator

training, as the generator became too “experienced” to perform adversarial training.

Perhaps, as the number of training sessions increases, the model will gradually stabilize

again. However, this remains conjecture, and 𝑘 cannot be minimized. A smaller value

of 𝑘 corresponds to increased training time for the discriminator, which in turn

accelerates the overfit. Therefore, after several experiments, we set 𝑘 to 1/5.

Figure 3.10 The BLEU-2 scores on COCO Image Captions where 𝑘 is 5, 1, 1/3 and

1/5.

40

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 40

3.8 Case Study

We randomly selected 10 generated samples from the short and long text datasets for

this case study. The maximum lengths of the generated sentences in the two datasets

were 15 and 51. The performance of the model on the two datasets exhibited good

agreement with experimental data. In other words, owing to the relatively simple

distribution of samples in the short text dataset, the model achieved higher accuracy but

poor diversity. In contrast, the generated sentences corresponding to the long text

dataset featured lower precision but higher diversity.

3.8.1 The Generation Data from COCO Image Captions

Table 3.10 lists samples generated during adversarial training with a dimension of 64

and 𝑘 of 1/5, after pre-training with the COCO image caption dataset. The generated

sentences do not have obvious errors, such as the identifiers “EOS” and “BOS.”

However, the samples do exhibit minor grammatical errors. The accuracy of sentences

generated by the model on the short-text dataset is therefore acceptable. We found that

the majority of sentences start with the article “a,” which indicates that sentence

diversity must be improved.

Table 3.10 The samples generated from the COCO image caption dataset.

Samples

a yellow bicycle parked next to a red wall.

a white and blue plane flying in the blue sky.

a white cat has caught a bird on its tail.

a woman in the kitchen is holding a dog.

a man is looking at motorcycle in the road by the building.

two wet young boys on a table.

a bathroom with a toilet and a sink.

a young girl sitting on top of a bike near the ocean.

41

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 41

3.8.2 The Generation Data from EMNLP 2017 WMT News

Table 3.11 lists samples generated during adversarial training from the EMNLP 2017

WMT News dataset for the dimensionality of 256 and 𝑘 of 1/5. The sentences

generated here do not exhibit obvious errors, such as the identifiers “EOS” and “BOS.”

However, these samples show more grammatical errors than those generated with the

short text dataset. This may be because the model is not sufficiently complex to

accurately express the distribution of real samples. In terms of the diversity of generated

sentences, the model performed relatively well without many repeated words.

Table 3.11 The samples generated from EMNLP 2017 WMT News dataset.

Samples

the security services, an independent has already said: “there is a need to follow up

the process of the project in 2017.

i have been together with russia, because we just don’t know if that is the need to

make it,” he said.

he will tell the player he didn’t want to continue to make his opinion on that.

we are making sure that we will better understand that we need to strengthen our

order for the next 18—and we will get ourselves into our future.

in some cases, it is the first time in the past three years, a few of them needed to be

with other. 1% of the population is even more within the trump administration.

after the festival, his wife, who was in contact with a police in the UK.

now, it is amazing when people on the court, including a man from the police.

“I’m really concerned, because it was a very careful in my life,” she said.

he has had to quit from the hospital after a 13-year-old who had been on three

years.

“we are back with this, and we are not about that,” he said in a statement for several

years.

some people on the snow covered field.

many motorcyclists gather in front of a bus.

42

WRGAN: IMPROVED OF RELGAN WITH WASSERSTEIN LOSS FOR TEXT GENERATION 42

3.9 Summary

In this study, we proposed a new and improved model for text generation based on

RelGAN and WGAN-GP and named it WRGAN. We redesigned the model structure

to allow various modules to operate in coordination, applied the Wasserstein Distance

in text generation to provide more useful information to the generator, and employed

relational memory as the generator architecture to reduce mode collapse. Compared

with existing models, our model produced higher evaluation scores and sample quality.

The proposed model also achieved superior results in a comparative experiment using

RelGAN. We then analyzed the effect of hyperparameters on model performance

subsequently, tested the model using multiple real datasets. Several important issues

remain open, including relatively low BLEU-5 scores and suboptimal performance with

synthetic data. However, we still need to adjust the model structure to address these

issues. We plan to continue improving this network in the future and apply it to further

NLP tasks.

43

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 43

Chapter 4

 TSGAN: Improved Transformer-Based Implicit

Latent GAN with Multi-head Self-Attention

4.1 Introduction

In this study, we propose a new generator architecture based on the Multi-head Self-

Attention and linear layers. The overall structure of GAN is improved from TILGAN.

We rebuilt the generator architecture with Multi-head Self-Attention to make the

generator obtain superior text generation capabilities. Our model consists of a

Transformer autoencoder, a generator with Multi-head Self-Attention, and a linear

discriminator. We use the Kullback-Leibler (KL) divergence as the GAN’s loss

functions. The encoder of the Transformer autoencoder encodes the distribution of real

samples, and the decoder decodes real sample encoding or generated sample encoding

into text. The loss function of autoencoder is cross entropy. The detailed model

structure and parameters can be found in section 4.2. We experiment on the MSCOCO

and EMNLP WMT News datasets. The proposed model has achieved a better BLEU

score than TILGAN. Through the ablation experiments, we prove that the proposed

generator has a better ability for unconditional text generation.

44

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 44

4.2 Overall Framework

The overall framework of our model is shown in Figure 4.1. The model receives a

random noise 𝜀 under a Gaussian distribution and takes in real text samples from a

corpus 𝑋. Through the generator network 𝐺𝜃, random noise 𝜀 is transformed into the

generated sentence vector 𝑍̂. Through the Transformer encoder, the real text sample is

transformed into 𝑍. 𝑋̂and 𝑋̃ represent the sentences obtained by 𝑍̂ and 𝑍 through

the Transformer decoder, respectively.

Figure 4.1 Overall framework of TSGAN.

The proposed GAN framework can be divided into three parts: the Transformer

autoencoder, the generator and the discriminator.

The Transformer encoder is used to generate the distribution of real samples, and the

decoder is used to decode sentence vector into text. The loss function of autoencoder is

cross entropy. The task of Transformer is to minimize the gap between 𝑋 and 𝑋̃ to

ensure the accuracy of the real sentence vector distributions.

The discriminator consists of three linear layers and two BN layers, with the ReLU

activation function for each layer. The loss function of GAN is Wasserstein Distance

or KL divergence. The generator’s goal is to minimize the distance between the

generated sentence vector and the sentence vector of the real sample. On the other hand,

the discriminator tries to maximize the distance between real and fake data.

45

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 45

4.3 Multi-head Self-Attention-Based Generator

Different from the stacking of linear layers and BN layers of the TILGAN generator,

we use Multi-head Self-Attention to build the generator. The proposed generator

framework is shown in Figure 4.2, where ⊗ means the dot product, and the two linear

layers are used for reshaping.

Figure 4.2 Proposed generator framework.

4.3.1 Multi-head Self-Attention

In recent years, the Self-Attention has been widely used in various deep-learning-

based NLP tasks. It learns the similarity between each source word and the other words.

Self-Attention can capture syntactic or semantic features between words in the same

sentence. In essence, the Self-Attention maps the query and a series of key-value pairs

to an output.

The Multi-head Self-Attention performs multiple sets of Self-Attention on the

original input sequence. Then, each set of Self-Attention results is concatenated and

linearly transformed to obtain the final output. Multi-head Self-Attention utilizes

multiple versions of the same query to implement multiple the Attention modules in

parallel. Each head has its multiple query, key, and value vectors. It obtains multiple

queries by linearly transforming the query through different weight matrices.

46

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 46

4.3.2 The Proposed Generator

The essence of the Self-Attention is to obtain the attention weight of each position of

the sentence in the encoding process through a mathematical calculation and then

calculate the implicit vector representation of the entire sentence in the form of the

weighted sum. We note that the essence of the Self-Attention coincides with the

generative process of GAN. GAN also generates complex distributed data through a

series of transformation calculations. We believe that the Self-Attention and GAN can

work well together. Therefore, we add the Multi-head Self-Attention to the GAN

generator. The influence of the hyperparameter head number 𝑛ℎ𝑒𝑎𝑑 on the model and

the choice of the 𝑛ℎ𝑒𝑎𝑑 are described in detail in section 4.8.2.

As shown, the random noise input goes through a linear layer. The primary role of

this layer is to reshape noise. After the weighted calculation of Multi-head Self-

Attention, the sentence vector is generated through another linear layer. Formally, we

employ 𝐿(𝜀) to represent the processed noise 𝜀 through the linear layer. By setting

the number of Attention heads to 𝐼, we can get 𝐼 sets of queries, keys, and values. For

each Attention head, we have:

{

𝑄𝑖 = 𝐿(𝜀)𝑊𝑞
𝑖

𝐾𝑖 = 𝐿(𝜀)𝑊𝑘
𝑖

𝑉𝑖 = 𝐿(𝜀)𝑊𝑣
𝑖.

 (23)

Accordingly, we can get the sentence vector 𝑍̂ by:

𝑍̂ = 𝐿′ (𝜎 (
𝑄𝑖(𝐾𝑖)

𝑇

√𝑑𝑘
) 𝑉𝑖), (24)

where 𝜎 is the softmax function, and 𝑑𝑘 is the column dimension of the keys, 𝐿′ is

the linear layer after Muti-head Self-Attention.

4.4 The Proposed Discriminator

The proposed discriminator framework is shown in Figure 4.3. The 𝐼𝑛𝑝𝑢𝑡 is a

mixture of the generated sentence vector and the sentence vector obtained from the real

sample using a Transformer autoencoder. The mixed input passes through the

47

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 47

discriminator’s three linear layers, two BN layers, and two RELU layers to get the

current batch score. The score, in turn, guides the output of the generator. The input and

output shapes of the three linear layers are listed in Table 4.1.

Figure 4.3 The proposed discriminator framework.

Table 4.1 The discriminator parameters.

Layers Input Shape Output Shape

Linear1 (Batch size, Sentence vector shape) (Batch size, 300)

Linear2 (Batch size, 300) (Batch size, 300)

Linear3 (Batch size, 300) (Batch size, 1)

4.5 The Transformer Autoencoder

The Transformer autoencoder framework is shown in Figure 4.4. The role of

Transformer autoencoder in the model is divided into two parts. The encoder encodes

the input real samples into sentence vectors as positive samples and inputs them into

the discriminator, while the decoder decodes the sentence vectors generated by the

generator into readable sentences in the test and evaluation.

48

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 48

Figure 4.4 The Transformer autoencoder framework.

During the training process, the task of the Transformer autoencoder is to restore the

input samples. 𝑥̂ should be as similar to 𝑥 as possible. In this study, we use cross

entropy as the loss function of the autoencoder. Since the autoencoder directly affects

the generation, we should choose the autoencoder parameters carefully. In section 4.8.2,

we detail the impact of the choice of the learning rate of the autoencoder on model

generation. The best autoencoder parameter choices so far are: 2 layers, 4 heads, 512

hidden dimensions, and a 0.12 learning rate.

4.6 Network Training

4.6.1 Loss Function

As mentioned above, autoencoder uses cross entropy as loss function.The cross

entropy can be defined as:

 (25)

GAN can use Wasserstein Distance or KL divergence as loss function. Since the

Wasserstein Distance has some additional hyperparameters, the current loss function is

temporarily KL divergence. KL divergence can be defined as:

49

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 49

 (26)

4.6.2 Training Details

Limited by hardware equipment, we set the batch size to 64 or 128. We used the

Adam optimizer, the learning rate of the generator is 1 × 10-4. The learning rate of the

discriminator is 1 × 10-4, and the learning rate of autoencoder is 0.12.

4.6.3 Baseline

To comprehensively evaluate the proposed model TSGAN, we compare our model

with the following baselines:

(1) SeqGAN: a text GAN model based on RL algorithm and MCTS, training on

MSCOCO dataset, EMNLP WMT News dataset.

(2) RankGAN: a text GAN model based on RL algorithm, training on MSCOCO

dataset, EMNLP WMT News dataset.

(3) LeakGAN: a text GAN model based on RL algorithm and LSTM, training on

MSCOCO dataset, EMNLP WMT News dataset.

(4) GSGAN [98]: a text GAN model based on Gumbel-softmax and LSTM,

training on MSCOCO dataset, EMNLP WMT News dataset.

(5) WGAN: a GAN model based on CNN and Wasserstein Distance, training on

MSCOCO dataset, EMNLP WMT News dataset.

(6) TILGAN: a text GAN model based on Transformer autoencoder, training on

MSCOCO dataset, EMNLP WMT News dataset.

4.7 Experiments and Analysis

To evaluate the performance of the model, we tested our model on real-world data,

including the MSCOCO and EMNLP WMT News datasets. The specific experimental

parameter settings are given in each subsection.

50

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 50

4.7.1 Evaluation Metrics

In this study, two metrics were used to evaluate the model. The first metric is the

bilingual evaluation under study (BLEU-test). This score indicates the similarity of the

candidate sentence to the reference sentence. The BLEU-test value is in the range [0,1],

and a larger BLEU-test value indicates a better generation result. The BLEU score can

provide an overall assessment of model quality. The BLEU-test can be defined as:

 (27)

where 𝑤𝑛 is the weight of the 𝑛 − 𝑔𝑟𝑎𝑚. Usually, 𝑤𝑛 = 1/𝑁.

𝐵𝑃 is the penalty coefficient. 𝐵𝑃 can be defined as:

𝐵𝑃 = {
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−𝑟/𝑐) 𝑖𝑓 𝑐 ≤ 𝑟,
 (28)

where 𝑐 is the length of the candidate sentence, 𝑟 is the length of the valid reference

sentence.

𝑝𝑛 can be defined as:

 (29)

where 𝑀 is the set of candidate sentences, 𝑚 and 𝑚′ are the 𝑛 − 𝑔𝑟𝑎𝑚 of

candidate sentences 𝐶 and 𝐶′, respectively. 𝐶𝑜𝑢𝑛𝑡 is the number of times that the

𝑛 − 𝑔𝑟𝑎𝑚 appears in candidate sentences. 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑚) can be defined as:

 (30)

where 𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑓 is the number of times that the 𝑛 − 𝑔𝑟𝑎𝑚 appears in reference

sentences.

The second metric is Self-BLEU. Self-BLEU is a diversity metric that calculates the

similarity between a generated sentence and the entire remaining generation. A lower

Self-BLEU score indicates a higher diversity in the generated texts.

Specifically, following Chen [99] et al., we report BLEU-2, 3, 4, 5 for BLEU-test

and BLEU-2, 3, 4 for Self-BLEU.

51

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 51

4.7.2 Microsoft Common Objects in Context (MSCOCO)

In order to test our model, we first conduct experiments on the MSCOCO dataset.

All the preprocessing steps are the same as other models. The details of the dataset are

listed in Table 4.2.

Table 4.2 The details of MSCOCO dataset.

Vocabulary size 27,842

Average length 10.4

Number of training sentences 120,000

Number of test sentences 10,000

We set the Transformer autoencoder with 2 layers, 4 heads, and 512 hidden

dimensions. In addition, we set the generator with 4 heads, a 256 head size, and 32

hidden dimensions. All the sentences will be padded to the maximum length during

training. Then the BLEU scores on the MSCOCO dataset are listed in Table 4.3. The

proposed model has achieved significantly better performance than the existing models

in BLEU-2, 3, and 4 and Self-BLEU-2, and 3. The results suggest that our text

generation model is generally more effective on the MSCOCO dataset than the existing

models.

Table 4.3 The BLEU scores on MSCOCO dataset.

Method
BLEU-test Self-BLEU

BLEU-2 BLEU-3 BLEU-4 BLEU-5 BLEU-2 BLEU-3 BLEU-4

SEQGAN 0.820 0.604 0.361 0.211 0.807 0.577 0.278

RANKGAN 0.852 0.637 0.389 0.248 0.822 0.592 0.288

LEAKGAN 0.922 0.797 0.602 0.416 0.912 0.825 0.689

GSGAN 0.810 0.566 0.335 0.197 0.785 0.522 0.230

WGAN 0.730 0.538 0.342 0.125 0.904 0.809 0.690

TILGAN 0.967 0.903 0.772 0.532 0.616 0.356 0.099

Our model 0.986 0.928 0.799 0.420 0.548 0.270 0.121

52

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 52

4.7.3 EMNLP WMT News

We also conduct experiments on the EMNLP WMT News dataset. All the

preprocessing steps are the same as other models. The details of the dataset are listed in

Table 4.4.

Table 4.4 The details of EMNLP WMT News dataset.

Vocabulary size 5,728

Average length 27.8

Number of training sentences 278,000

Number of test sentences 10,000

We set the Transformer autoencoder [100] with 2 layers, 4 heads, and 512 hidden

dimensions. In addition, we set the generator with 2 heads, a 256 head size, 32 hidden

dimensions, and 128 batch size. All the sentences will be padded to the maximum length

during training. The model is iterated 100 times on the EMNLP WMT News dataset.

The curve changes of the BLEU-test and Self-BLEU scores of the model are shown in

Figure 4.5 and Figure 4.6, respectively. For BLEU-test, the higher the model score can

reflect the higher quality of the generated text to a certain extent so that the BLEU-test

score should be as high as possible. For Self-BLEU, the lower the model score, the

lower the repetition of the generated text is, and the more diverse the generated texts

are. Therefore the score of Self-BLEU should be as low as possible. As a result, the

training process is to reduce the Self-BLEU score as much as possible while ensuring

a high BLEU-test score to achieve the optimal solution of the model.

53

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 53

Figure 4.5 Training curves of BLEU-test scores on EMNLP WMT News dataset.

Figure 4.6 Training curves of Self-BLEU scores on EMNLP WMT News dataset.

Then the BLEU scores on the WMT News dataset are listed in Table 4.5. The

proposed model has achieved significantly better performance than the existing models

in BLEU-2, 3, and 4 and Self-BLEU-2. The results suggest that our text generation

model is generally more effective on the EMNLP WMT News dataset than the existing

models.

54

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 54

Table 4.5 The BLEU scores on EMNLP WMT News dataset.

Method
BLEU-test Self-BLEU

BLEU-2 BLEU-3 BLEU-4 BLEU-5 BLEU-2 BLEU-3 BLEU-4

SEQGAN 0.630 0.354 0.164 0.870 0.728 0.411 0.139

RANKGAN 0.774 0.484 0.249 0.131 0.672 0.346 0.118

LEAKGAN 0.920 0.725 0.502 0.321 0.857 0.696 0.373

GSGAN 0.723 0.440 0.210 0.107 0.682 0.410 0.231

WGAN 0.891 0.774 0.502 0.267 0.933 0.910 0.886

TILGAN 0.929 0.817 0.617 0.407 0.663 0.445 0.280

Our model 0.937 0.840 0.640 0.400 0.638 0.464 0.312

4.7.4 Ablation Experiment

To indicate that our changes to the generator are effective, we also conduct an

ablation experiment on the MSCOCO dataset. We keep all model parameters the same

with TILGAN except the generator (including learning rate, model structure, number

of autoencoder layers, and number of hidden layers). The BLEU-3 curve is shown in

Figure 4.7. The overfitting part is not shown in the figure.

The curves show that our generator converges much faster than TILGAN. The results

show that our generator has better text generation ability. Our model can achieve better

results on large datasets and for long text generation than the original generator.

Figure 4.7 Ablation Experiment.

55

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 55

4.8 Impact of Hyperparameters

The model inevitably contains hyperparameters. The appropriateness of the

hyperparameters also affects the performance of the model. In this section, we select

three representative hyperparameters for discussion: head number 𝑛ℎ𝑒𝑎𝑑 , learning

rate 𝑙𝑟 of the Transformer autoencoder, and initial distribution of the input noise.

Notably, the single-variable principle is used in all hyperparameter experiments.

4.8.1 Impact of the Head Number

This study uses the Multi-head Self-Attention mechanism to enhance the generator’s

performance. As a result, the number of heads significantly impacts the model’s

performance and the diversity of generated data. After 100 iterations on the EMNLP

WMT News dataset, the performance of the model when 𝑛ℎ𝑒𝑎𝑑 is 2 and 4 is shown

in Figure 4.8, where 𝐵𝐿𝐸𝑈𝑥 − ℎ2 (𝑥 = 2, 3, 4, 5) represents the corresponding

BLEU scores when 𝑛ℎ𝑒𝑎𝑑 is 2 . Correspondingly, 𝐵𝐿𝐸𝑈𝑥 − ℎ4 represents the

BLEU scores when 𝑛ℎ𝑒𝑎𝑑 is 4.

Figure 4.8 Training curves of BLEU-test scores on EMNLP WMT News dataset with

different 𝑛ℎ𝑒𝑎𝑑.

56

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 56

From the figure, we find that the scores of BLEU-4,5 of the model when 𝑛ℎ𝑒𝑎𝑑 is 4

are much lower than that when 𝑛ℎ𝑒𝑎𝑑 is 2 , whereas the scores of BLEU-2,3 are

relatively close for the same scenarios. This result shows that the sentences generated

when 𝑛ℎ𝑒𝑎𝑑 is 4 are trivial and of relatively poor quality. In addition, the data of the

first ten iterations suggest that there is another possibility that the model may overfit.

This is also one of the reasons why we finally chose 2 heads. Subsequently, we obtained

the Self-BLEU score map of the model iterated 100 times on the dataset.

The Self-BLEU score curve of the model iterating 100 times on the dataset is shown

in Figure 4.9. The three blue curves represent the scores of Self-BLEU-2, 3, and 4 when

𝑛ℎ𝑒𝑎𝑑 is 2. Correspondingly, the three orange curves represent the scores of Self-

BLEU-2, 3, and 4 when 𝑛ℎ𝑒𝑎𝑑 is 4. Since the lower the Self-BLEU score, the better,

we find that the model with 4 heads outperforms that with 2 heads on the diversity of

the generated text. It again shows that the data generated by the model when the

𝑛ℎ𝑒𝑎𝑑 is 4 is scattered. In contrast, perhaps because of the characteristics of the Multi-

head Self-Attention mechanism, each head pays attention to different aspects of the data,

making the generated text more diverse.

Figure 4.9 Training curves of Self-BLEU scores on EMNLP WMT News dataset with

different 𝑛ℎ𝑒𝑎𝑑.

57

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 57

In addition, the experimental results of Figure 4.8 and Figure 4.9 also confirm an

inversed relationship between the quality and diversity of the generated samples.

Therefore, during the training process, we must find a delicate balance between the

generation quality and diversity of the model. Thus, the generated samples have both

excellent quality and diversity. Subsequently, we also conducted experiments with 1

head. When the 𝑛ℎ𝑒𝑎𝑑 is 1, the model fails to converge. We believe the model is not

sufficiently complex to express the latent space distribution of the current dataset when

the 𝑛ℎ𝑒𝑎𝑑 is 1. We will continue to explore this question in future research.

4.8.2 Impact of the Learning Rate

Adjustment of learning rate is a significant part of parameter adjustment. The

learning rate is one of the the essential hyperparameters. Our model had the largest

effective capacity when the learning rate was optimal. Therefore, to train a neural

network, one of the critical hyperparameters that must be set is the learning rate [101].

Choosing the optimal learning rate is essential because it determines whether the neural

network can converge to a global minimum. Larger or smaller learning rates will trap

the model at the saddle point. We determined the current optimal learning rate on the

EMNLP WMT News dataset by gradually increasing the learning rate 𝑙𝑟 of the

Transformer autoencoder for each experiment. When the learning rate 𝑙𝑟 of the

autoencoder is 0.12 and 0.15, respectively, the BLEU-test and Self-BLEU scores of the

model are shown in Figure 4.10 and Figure 4.11, respectively. The blue curve

corresponds to the BLEU-test and Self-BLEU score curves of the model when 𝑙𝑟 is

0.12. Correspondingly, the orange curve represents the BLEU-test and Self-BLEU

score curves of the model when 𝑙𝑟 is 0.15

58

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 58

Figure 4.10 Training curves of BLEU-test scores on EMNLP WMT News dataset

with different learning rates 𝑙𝑟.

Figure 4.11 Training curves of Self-BLEU scores on EMNLP WMT News dataset

with different learning rates 𝑙𝑟.

We found that when the initial learning rate of the autoencoder is increased from 0.12

to 0.15, the performance of the generator will drop rapidly. At the same time, when 𝑙𝑟

is 0.15, the Self-BLEU curve no longer shows a gradual downward trend. Instead, it

59

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 59

becomes chaotic. These signs indicate that the generator cannot complete the generation

task correctly, and the generated samples are chaotic. Based on the analysis, we believe

there are two reasons for this. First, as the learning rate of the autoencoder is too high,

the gap between the sentence vector of the real sample and the sentence vector

generated by the generator is too large. There is little overlap between the distributions

of the two sets of sentence vectors. The KL divergence is invalid in this case. The score

given by the discriminator cannot guide the generator, and the generator cannot learn

any meaningful information. Second, owing to the high learning rate of the autoencoder,

the autoencoder falls into a saddle point. The autoencoder cannot effectively encode

sentence vectors of real samples. The discriminator cannot provide helpful information

to guide the generator. However, regardless of the problem, the generator can generate

samples with higher scores when 𝑙𝑟 is 0.12 and the learning rate of the autoencoder

used by the current model is 0.12.

4.8.3 Impact of the Initial Distribution

Data initialization also has a considerable impact on the performance of the model.

Commonly used initialization distributions are as follows:

(1) zeros initialization: Initialize with zero matrix

(2) constant initialization: Initialize with specified constant

(3) ones initialization: Initialize with all-ones matrix

(4) identity initialization: Initialize with identity matrix

(5) random normal initialization: Initialize with random normal (Gaussian)

distribution

(6) random uniform initialization: Initialize with uniform distribution in a given

interval [𝑓𝑟𝑜𝑚, 𝑡𝑜]

In this section, we discuss only the impact of Gaussian and Uniform initializations

on the model. The scores of BLEU-test and Self-BLEU on the EMNLP WMT News

dataset with different initialization distributions of noise input are shown in Figures

4.12 and 4.13. The orange curve (named 𝐵𝐿𝐸𝑈𝑥 − 𝑛 and 𝑠𝑒𝑙𝑓𝑥 − 𝑛) represents the

scores of BLEU-test-2, 3, 4, 5 and Self-BLEU-2, 3, 4 when the model initialization

60

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 60

input follows a Gaussian distribution, and the blue curve (named 𝐵𝐿𝐸𝑈𝑥 − 𝑓 and

𝑠𝑒𝑙𝑓𝑥 − 𝑓) indicates that the model initialization input follows a Uniform distribution.

The initialization parameters of Gaussian distribution are a 𝑚𝑒𝑎𝑛 of 0 and a

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 of 1, and the initialization parameters of Uniform distribution

are a 𝑓𝑟𝑜𝑚 of 0 and a 𝑡𝑜 of 1.

We found that the Gaussian distribution is slightly better regarding the quality of

generated sentences but slightly worse in diversity than the Uniform distribution.

Considering the comprehensive situation, we chose to use the Uniform distribution as

the initial random noise distribution on the EMNLP WMT News dataset.

Figure 4.12 Training curves of BLEU-test scores on EMNLP WMT News dataset

with different initialization distributions.

61

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 61

Figure 4.13 Training curves of Self-BLEU scores on EMNLP WMT News dataset

with different initialization distributions.

4.9 Case Study

We randomly selected 10 generated samples from the short and long text datasets for

the case study. The maximum lengths of generated sentences in the two datasets are 15

and 32, respectively. The performance of the model on the two datasets exhibited in

good agreement with the experimental data.

4.9.1 The Generation Data from MSCOCO dataset

Table 4.6 lists the samples generated from the MSCOCO dataset. We set the

Transformer autoencoder with 2 layers, 4 heads, and 512 hidden dimensions. The

generator had 4 heads, a 256 head size, and 32 hidden dimensions. All the sentences

were padded to their maximum length during training. From the table, we found that

the generated sentences do not have obvious errors, such as identifiers “EOS” and

“BOS.” In terms of sentence grammar, occasionally, the subject and object of the

62

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 62

sentence or the use of prepositions are inappropriate. The results show that the accuracy

of the sentences generated by the model on the short sentence dataset was acceptable.

Meanwhile, we find that sentences starting with “a” accounted for the majority,

which indicates that the diversity of sentences generated by the model on the short

sentence dataset needs to be improved. We believe that there are two possible reasons

for this finding. First, inappropriate parameter selection of the model makes the model

too complex relative to the sample distribution of the MSCOCO dataset, resulting in

overfitting. Second, we count 120,000 training data in the MSCOCO dataset and found

that 81,450 sentences begin with “a,” and 4,950 sentences begin with “an.” The

proportion of sentence types in the MSCOCO dataset is listed in Table 4.7. Therefore,

the samples generated by the model will most likely start with “a.” In this case, we can

only attempt to adjust the parameters to reduce the degree of overfitting of the model.

Table 4.6 The samples generated from the MSCOCO dataset.

Samples

a man and bathtub in a small wooden building

a man is standing on the side of a street

a tree on a grassy field next to some rocks

young man and woman in a small wooden building

a police performs a trick in makeshift lines window

a man is standing by a woman holding a child

a man is sitting on a bench with a dog

a close up of a person riding a bicycle

a man is standing in front of a bus

a group of people standing around a table eating food

Table 4.7 The percentage of sentence types in the MSCOCO dataset.

Beginning with “a” “an” other

Percentage 67.875% 4.125% 28.00%

63

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 63

4.9.2 The Generation Data from EMNLP WMT News

Table 4.8 lists the samples generated from the EMNLP WMT News dataset during

adversarial training. We set the Transformer autoencoder with 2 layers, 4 heads, and

512 hidden dimensions. The generator had 2 heads, a 256 head size, 32 hidden

dimensions, and a batch size of 128. All the sentences will be padded to their maximum

length during training. Our model performed better on the EMNLP WMTNews dataset

than the MSCOCO dataset. From the table, we can see that the generated sentences do

not have apparent errors. In terms of sentence grammar, occasionally, the subject and

object of the sentence or the use of prepositions are inappropriate. Our model’s

performance benefits from the huge data volume of 270,000 and the excellent

expressive ability of the generator in medium and long text generation.

Table 4.8 The samples generated from the EMNLP WMT News dataset.

Samples

It’ s a big-time job to get a lot of people, but i‘ m not sure they’re going to be a good

team.

I’ m not sure how much you can do with him, but i think he’s going to get the ball.

We’ re going to get a good job and get to the best, and we can do that.

the former secretary of state, said that the government would be able to take over the

next few weeks, but it was not clear.

the first of the year, a new york businessman has been killed by a man who has been

killed by a police officer in the past.

“we’re going to get a lot of people in the world, and that’s what we’re doing,” he

said.

in the past, the number of people who have been killed in the past year has risen to

more than a decade ago.

he said he would be able to get a job of keeping it in the car on the road, which is not

the case.

“ this is a very important part of the world, and it is a great opportunity to play,” he

said.

64

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention

 64

it is not clear whether the man was arrested on suspicion of murder, but it was not

believed to be in the case.

4.10 Summary

This study proposes an improved model for text generation. We rebuilt the generator

architecture with Multi-head Self-Attention to improve the text generation capabilities

of the generator. Our model consists of a Transformer autoencoder, a generator with

Multi-head Self-Attention, and a linear discriminator. We use the KL divergence as the

GAN’s loss functions. The encoder of the Transformer autoencoder is used to generate

the distribution of real samples, and the decoder is used to decode the real samples

encoding or the generated samples encoding into text. The loss function of the

autoencoder is cross entropy. Our model has higher evaluation scores and diversity on

MSCOCO and EMNLP WMT News datasets than existing models. Finally, we

analyzed the influence of hyperparameters on the model. In future work, we will

continue to conduct experiments on other datasets while seeking the best model

parameters to obtain better performance.

65

Chapter 5

 Conclusion and Future Work

With successive improvements, the theory behind GANs has gradually shown a high

degree of potential, and many excellent variants of GANs have been developed for text

generation. Nevertheless, many problems are yet to be addressed, including poor

consistency, logical contradictions, insufficient information, and redundancy in

generated content. All of these challenges indicate excellent development potential.

This thesis focuses on the GANs for unconditional text generation. This chapter

summarizes the entire thesis and suggests future work.

5.1 Conclusion

This thesis focuses on the research of GANs for unconditional text generation. We

proposed methods for generating high-quality and diverse texts. Overall, our work

revolves around the remaining challenges in the field of unconditional text generation.

(1) Gradients cannot transfer appropriately between the generator and the

discriminator.

(2) The training process of a GAN is unstable, and the generation task is

significantly more complicated than discrimination, as the discriminator’s

guidance for the generator is too weak.

(3) Mode Collapse: The generator begins to degenerate, as it continuously

generates the same samples, and cannot learn any meaningful information.

To address these challenges, we proposed two models.

66

(1) We proposed a novel architecture based on RelGAN and WGAN-GP, dubbed

WRGAN, which effectively solves the issues identified above. We rebuilt the

discriminator architecture with the 1-dimensional convolution of multiple

kernel sizes and residual modules. Correspondingly, we modify the generator

and discriminator loss functions with gradient penalty Wasserstein loss. Then,

the discriminator and generator with relational memory were coordinated by

Gumbel-softmax relaxation to train the GAN model on discrete data.

(2) We improved TILGAN for unconditional text generation by refactoring the

generator. In short, we used Multi-head Self-Attention to replace the linear and

BN layers to endow the generator with superior text generation capabilities.

Our model consists of three components: a Transformer autoencoder, a Multi-

head Self-Attention-based generator, and a linear discriminator. In the

transformer autoencoder, the encoder generates the distribution of real samples,

whereas the decoder decodes real or generated sentence vectors into text. The

loss functions for autoencoder and GAN are cross entropy and KL divergence,

respectively.

We then demonstrated the effectiveness of our proposed models by comparing their

performance with that of existing models on multiple datasets. We also analyzed the

effect of some typical hyperparameters in the proposed model. Our ablation

experiments also demonstrated the effectiveness of the proposed generator network for

unconditional text generation.

5.2 Future Work

This thesis comprises studies on unconditional text generation. There is still

significant potential for improvement in this field, such as the creation of a model

suitable for more datasets, particularly small datasets, and the development of a more

suitable structure to enable the generation of high-quality samples. To apply the model

to conditional text generation so that the model can generate text as we wish.

67

In the future, we will explore more effective methods for generating high-quality and

diverse samples. However, there is still a significant gap between the language

generated by machines, and that developed by humans. At the same time, we will

neither limit the GAN models nor the field of NLG. Currently, the model based on

multi-modal fusion is more in line with human cognition than a single-modal model.

With the continuous development of technology, multi-modal generation will continue

to be an important subject of research.

68

Bibliography

[1] E. Reiter, “20 Natural Language Generation,” The Handbook of

Computational Linguistics and Natural Language Processing, pp. 574, 2010.

[2] E. Reiter and R. Dale, “Building Applied Natural Language Generation

Systems,” Natural Language Engineering, vol. 3, no. 1, pp. 57-87, 1997.

[3] B. Zhang, D. Xiong, and J. Su, “Neural Machine Translation with Deep

Attention,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 42, no. 1, pp. 154-163, 2018.

[4] M. J. Nye, “Speaking in Tongues: Science’s Centuries-Long Hunt for a

Common Language,” Distillations, vol. 2, no. 1, pp. 40-43, 2016.

[5] Y. Bengio, R. Ducharme, and P. Vincent, “A Neural Probabilistic Language

Model,” in Proceedings of the Conference on Neural Information Processing

Systems, vol. 13, pp. 932-938, 2000.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space,” in Proceedings of the International

Conference on Learning Representations Workshop Track, pp. 1-12, 2013.

[7] D. Elliott and F. Keller, “Image Description Using Visual Dependency

Representations,” in Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pp. 1292-1302, 2013.

[8] M. Hodosh, P. Young, and J. Hockenmaier, “Framing Image Description as a

Ranking Task: Data, Models and Evaluation Metrics,” Journal of Artificial

Intelligence Research, vol. 47, pp. 853-899, 2013.

[9] A. Karpathy and L. Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3128-3137, 2015.

[10] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng, “Grounded

Compositional Semantics for Finding and Describing Images with Sentences,”

69

Transactions of the Association for Computational Linguistics, vol. 2, pp. 207-

218, 2014.

[11] X. Chen and C. Lawrence Zitnick, “Mind’s Eye: a Recurrent Visual

Representation for Image Caption Generation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2422-2431,

2015.

[12] R. Barzilay and M. Lapata, “Aggregation via Set Partitioning for Natural

Language Generation,” in Proceedings of the Human Language Technology

Conference of the Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

pp. 359-366, 2006.

[13] J. Donahue et al., “Long-Term Recurrent Convolutional Networks for Visual

Recognition and Description,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2625-2634, 2015.

[14] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: a Neural

Image Caption Generator,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3156-3164, 2015.

[15] C. Friedman, P. O. Alderson, J. H. Austin, J. J. Cimino, and S. B. Johnson, “A

General Natural-Language Text Processor for Clinical Radiology,” Journal of

the American Medical Informatics Association, vol. 1, no. 2, pp. 161-174,

1994.

[16] H. Fang et al., “From Captions to Visual Concepts and Back,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

1473-1482, 2015.

[17] A. Moryossef, Y. Goldberg, and I. Dagan, “Step-by-Step: Separating Planning

from Realization in Neural Data-to-Text Generation,” in Proceedings of the

Annual Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 2267-2277,

2019.

70

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations

by Back-Propagating Errors,” Nature, vol. 323, no. 6088, pp. 533-536, 1986.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[20] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with

Neural Networks,” in Proceedings of the Conference on Neural Information

Processing Systems, vol. 27, pp. 3104-3112, 2014.

[21] K. Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder

for Statistical Machine Translation,” in Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing, pp. 1724-1734, 2014.

[22] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in

Proceedings of the International Conference on Learning Representations,

pp.1-14, 2014.

[23] A. Vaswani et al., “Attention is All You Need,” in Proceedings of the

Conference on Neural Information Processing Systems, vol. 30, pp. 5998-

6008, 2017.

[24] J. Sarzynska-Wawer et al., “Detecting Formal Thought Disorder by Deep

Contextualized Word Representations,” Psychiatry Research, vol. 304, pp.

114135, 2021.

[25] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving

Language Understanding by Generative Pre-Training,” URL https://s3-us-

west-2.amazonaws.com/openai-assets/researchcovers/language-

unsupervised/language_understanding_paper.pdf, 2018.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

“Language Models are Unsupervised Multitask Learners,” OpenAI blog, vol.

1, no. 8, pp. 9, 2019.

[27] T. Brown et al., “Language Models are Few-Shot Learners,” in Proceedings of

the Conference on Neural Information Processing Systems, vol. 33, pp. 1877-

1901, 2020.

71

[28] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-Training of

Deep Bidirectional Transformers for Language Understanding,” in

Proceedings of the Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

pp. 4171-4186, 2019.

[29] R. McDonald, “Discriminative Sentence Compression with Soft Syntactic

Evidence,” in Proceedings of the 11th Conference of the European Chapter of

the Association for Computational Linguistics, pp. 297-304, 2006.

[30] T. A. Cohn and M. Lapata, “Sentence Compression as Tree Transduction,”

Journal of Artificial Intelligence Research, vol. 34, pp. 637-674, 2009.

[31] J. Clarke and M. Lapata, “Global Inference for Sentence Compression: an

Integer Linear Programming Approach,” Journal of Artificial Intelligence

Research, vol. 31, pp. 399-429, 2008.

[32] K. Thadani and K. McKeown, “Supervised Sentence Fusion with Single-Stage

Inference,” in Proceedings of the Sixth International Joint Conference on

Natural Language Processing, pp. 1410-1418, 2013.

[33] M. Elsner and D. Santhanam, “Learning to Fuse Disparate Sentences,” in

Proceedings of the Workshop on Monolingual Text-to-Text Generation, pp.

54-63, 2011.

[34] C. Quirk, C. Brockett, and B. Dolan, “Monolingual Machine Translation for

Paraphrase Generation,” in Proceedings of the 2004 Conference on Empirical

Methods in Natural Language Processing, pp. 142-149, 2004.

[35] A. Fujita, K. Inui, and Y. Matsumoto, “Exploiting Lexical Conceptual

Structure for Paraphrase Generation,” in Proceedings of the International

Conference on Natural Language Processing, pp. 908-919, 2005.

[36] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking Sentences for Extractive

Summarization with Reinforcement Learning,” in Proceedings of the 2018

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, vol. 1, pp. 1747-

1759, 2018.

72

[37] L. Liu, Y. Lu, M. Yang, Q. Qu, J. Zhu, and H. Li, “Generative Adversarial

Network for Abstractive Text Summarization,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 32, no. 1, pp. 8109-8110, 2018.

[38] U. Hahn and I. Mani, “The Challenges of Automatic Summarization,”

Computer, vol. 33, no. 11, pp. 29-36, 2000.

[39] J. Li, T. Tang, W. X. Zhao, and J. R. Wen, “Pretrained Language Models for

Text Generation: a Survey,” in Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, pp. 4492-4499, 2021.

[40] L. Banarescu et al., “Abstract Meaning Representation for Sembanking,” in

Proceedings of the 7th Linguistic Annotation Workshop and Interoperability

with Discourse, pp. 178-186, 2013.

[41] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A Review of Relational

Machine Learning for Knowledge Graphs,” in Proceedings of the IEEE, vol.

104, no. 1, pp. 11-33, 2015.

[42] H. Mei, M. Bansal, and M. R. Walter, “What to Talk About and How?

Selective Generation Using LSTMs with Coarse-to-Fine Alignment,” in

Proceedings of the Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

pp. 720-730, 2016.

[43] E. Reiter, “An Architecture for Data-to-Text Systems,” in Proceedings of the

11th European Workshop on Natural Language Generation, pp. 97-104, 2007.

[44] S. Antol et al., “VQA: Visual Question Answering,” in Proceedings of the

IEEE International Conference on Computer Vision, pp. 2425-2433, 2015.

[45] K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with

Visual Attention,” in Proceedings of the International Conference on Machine

Learning, pp. 2048-2057, 2015.

[46] T. H. Huang et al., “Visual Storytelling,” in Proceedings of the 2016

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 1233-1239,

2016.

73

[47] K. J. Shih, S. Singh, and D. Hoiem, “Where to Look: Focus Regions for

Visual Question Answering,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4613-4621, 2016.

[48] Q. Wu, P. Wang, C. Shen, A. Dick, and A. Van Den Hengel, “Ask Me

Anything: Free-Form Visual Question Answering Based on Knowledge from

External Sources,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4622-4630, 2016.

[49] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 31, no. 1, pp. 2852-2858, 2017.

[50] I. J. Goodfellow et al., “Generative Adversarial Nets,” in Proceedings of the

Conference on Neural Information Processing Systems, pp. 2672-2680, 2014.

[51] T. Che et al., “Maximum-Likelihood Augmented Discrete Generative

Adversarial Networks,” arXiv preprint arXiv:1702.07983, 2017.

[52] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree

Search,” in Proceedings of the International Conference on Computers and

Games, pp. 72-83, 2006.

[53] F. J. Xu, R. Dey, V. N. Boddeti, and M. Savvides, “RankGAN: a Maximum

Margin Ranking GAN for Generating Faces,” in Proceedings of the Asian

Conference on Computer Vision, pp. 3-18, 2018.

[54] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long Text Generation

via Adversarial Training with Leaked Information,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 32, no. 1, pp. 5141-5148,

2018.

[55] W. Fedus, I. Goodfellow, and A. M. Dai, “MaskGAN: Better Text Generation

via Filling in the __,” in Proceedings of the International Conference on

Learning Representations, pp, 1-17, 2018.

[56] J. Xu, X. Ren, J. Lin, and X. Sun, “Diversity-Promoting GAN: a Cross-

Entropy Based Generative Adversarial Network for Diversified Text

74

Generation,” in Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pp. 3940-3949, 2018.

[57] K. Wang and X. Wan, “SentiGAN: Generating Sentimental Texts via Mixture

Adversarial Networks,” in Proceedings of the International Joint Conferences

on Artificial Intelligence, pp. 4446-4452, 2018.

[58] W. Nie, N. Narodytska, and A. Patel, “RelGAN: Relational Generative

Adversarial Networks for Text Generation,” in Proceedings of the

International Conference on Learning Representations, pp. 1-20, 2019.

[59] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,

“Improved Training of Wasserstein GANs,” in Proceedings of the Conference

on Neural Information Processing Systems, vol. 30, pp. 5767-5777, 2017.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 770-778, 2016.

[61] S. Diao, X. Shen, K. Shum, Y. Song, and T. Zhang, “TILGAN: Transformer-

Based Implicit Latent GAN for Diverse and Coherent Text Generation,” in

Proceedings of the Association for Computational Linguistics, pp. 4844-4858,

2021.

[62] J. Li, Z. Tu, B. Yang, M. R. Lyu, and T. Zhang, “Multi-Head Attention with

Disagreement Regularization,” in Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pp. 2897-2903, 2018.

[63] T. Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in

Proceedings of the European Conference on Computer Vision, pp. 740-755,

2014.

[64] N. Rossenbach, J. Rosendahl, Y. Kim, M. Graça, A. Gokrani, and H. Ney,

“The RWTH Aachen University Filtering System for the WMT 2018 Parallel

Corpus Filtering Task,” in Proceedings of the Third Conference on Machine

Translation: Shared Task Papers, pp. 946-954, 2018.

[65] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “BLEU: a Method for

Automatic Evaluation of Machine Translation,” in Proceedings of the 40th

75

Annual Meeting of the Association for Computational Linguistics, pp. 311-

318, 2002.

[66] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks,” in Proceedings

of the International Conference on Learning Representations, pp. 1-16, 2016.

[67] Y. Zhang, Y. Yin, R. Zimmermann, G. Wang, J. Varadarajan, and S. K. Ng,

“An Enhanced GAN Model for Automatic Satellite-to-Map Image

Conversion,” IEEE Access, vol. 8, pp. 176704-176716, 2020.

[68] H. Emami, M. M. Aliabadi, M. Dong, and R. B. Chinnam, “SPA-GAN:

Spatial Attention GAN for Image-to-Image Translation,” IEEE Transactions

on Multimedia, vol. 23, pp. 391-401, 2020.

[69] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for

Generative Adversarial Networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4401-4410, 2019.

[70] X. Yu, Y. Qu, and M. Hong, “Underwater-GAN: Underwater Image

Restoration via Conditional Generative Adversarial Network,” in Proceedings

of the International Conference on Pattern Recognition, pp. 66-75, 2018.

[71] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,

“GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash

Equilibrium,” in Proceedings of the Conference on Neural Information

Processing Systems, vol. 30, pp. 6629-6640, 2017.

[72] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.

Bharath, “Generative Adversarial Networks: an Overview,” IEEE Signal

Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018.

[73] M. Haidar, M. Rezagholizadeh, A. Do-Omri, and A. Rashid, “Latent Code and

Text-Based Generative Adversarial Networks for Soft-Text Generation,” in

Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

vol. 1, pp. 2248-2258, 2019.

76

[74] C. de Masson d'Autume, S. Mohamed, M. Rosca, and J. Rae, “Training

Language GANs from Scratch,” in Proceedings of the Conference on Neural

Information Processing Systems, vol. 32, pp. 4300-4311, 2019.

[75] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton,

“VEEGAN: Reducing Mode Collapse in GANs Using Implicit Variational

Learning,” in Proceedings of the Conference on Neural Information

Processing Systems, vol. 30, pp. 3010-3020, 2017.

[76] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S.

Bengio, “Generating Sentences from a Continuous Space,” in Proceedings of

the 20th SIGNLL Conference on Computational Natural Language Learning,

pp. 10-21, 2016.

[77] C. J. Maddison, A. Mnih, and Y. W. Teh, “The Concrete Distribution: a

Continuous Relaxation of Discrete Random Variables,” in Proceedings of the

International Conference on Learning Representations, pp. 1-20, 2017.

[78] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Adversarial

Networks,” in Proceedings of the International Conference on Machine

Learning, pp. 214-223, 2017.

[79] X. Chen et al., “Microsoft COCO Captions: Data Collection and Evaluation

Server,” arXiv preprint arXiv:1504.00325, 2015.

[80] X. Zhang and M. Lapata, “Chinese Poetry Generation with Recurrent Neural

Networks,” in Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, pp. 670-680, 2014.

[81] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: a

Survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[82] V. Konda and J. Tsitsiklis, “Actor-Critic Algorithms,” in Proceedings of the

Conference on Neural Information Processing Systems, vol. 12, pp. 1008-

1014, 1999.

[83] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming Auto-

Encoders,” in Proceedings of the International Conference on Artificial

Neural Networks, pp. 44-51, 2011.

77

[84] D. Donahue and A. Rumshisky, “Adversarial Text Generation without

Reinforcement Learning,” arXiv preprint arXiv:1810.06640, 2018.

[85] A. S. Imran, R. Yang, Z. Kastrati, S. M. Daudpota, and S. Shaikh, “The

Impact of Synthetic Text Generation for Sentiment Analysis Using GAN

Based Models,” Egyptian Informatics Journal, pp. 1-11, 2022.

[86] D. Titone, T. Ditman, P. S. Holzman, H. Eichenbaum, and D. L. Levy,

“Transitive Inference in Schizophrenia: Impairments in Relational Memory

Organization,” Schizophrenia Research, vol. 68, no. 3, pp. 235-247, 2004.

[87] Y. Zhang, Y. Miyamori, S. Mikami, and T. Saito, “Vibration-Based Structural

State Identification by a 1-Dimensional Convolutional Neural Network,”

Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 9, pp. 822-

839, 2019.

[88] F. Ren and Y. Zhou, “CGMVQA: a New Classification and Generative Model

for Medical Visual Question Answering,” IEEE Access, vol. 8, pp. 50626-

50636, 2020.

[89] D. P. Kingma and J. Ba, “Adam: a Method for Stochastic Optimization,” in

Proceedings of the International Conference on Learning Representations, pp.

1-15, 2015.

[90] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no.

7553, pp. 436-444, 2015.

[91] O. Levy and Y. Goldberg, “Dependency-Based Word Embeddings,” in

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics, vol. 2, pp. 302-308, 2014.

[92] F. Ren and S. Xue, “Intention Detection Based on Siamese Neural Network

with Triplet Loss,” IEEE Access, vol. 8, pp. 82242-82254, 2020.

[93] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

Word Vectors for Sentiment Analysis,” in Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language

Technologies, pp. 142-150, 2011.

78

[94] L. Theis, A. v. d. Oord, and M. Bethge, “A Note on the Evaluation of

Generative Models,” in Proceedings of the International Conference on

Learning Representations, pp. 1-10, 2015.

[95] Y. Zhu et al., “Texygen: a Benchmarking Platform for Text Generation

Models,” in Proceedings of the 41st International ACM SIGIR Conference on

Research & Development in Information Retrieval, pp. 1097-1100, 2018.

[96] F. Ren and J. Deng, “Background Knowledge Based Multi-Stream Neural

Network for Text Classification,” Applied Sciences, vol. 8, no. 12, pp. 2472,

2018.

[97] Z. Liu, J. Wang, and Z. Liang, “CatGAN: Category-Aware Generative

Adversarial Networks with Hierarchical Evolutionary Learning for Category

Text Generation,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 5, pp. 8425-8432, 2020.

[98] H. Y. Wu and Y. L. Chen, “Graph Sparsification with Generative Adversarial

Network,” in Proceedings of the 2020 IEEE International Conference on Data

Mining, pp. 1328-1333, 2020.

[99] L. Chen et al., “Adversarial Text Generation via Feature-Mover’s Distance,”

in Proceedings of the Conference on Neural Information Processing Systems,

vol. 31, pp. 4666-4677, 2018.

[100] D. Liu and G. Liu, “A Transformer-Based Variational Autoencoder for

Sentence Generation,” in Proceedings of the 2019 International Joint

Conference on Neural Networks, pp. 1-7, 2019.

[101] Z. Wang, Z. Meng, K. Saho, K. Uemura, N. Nojiri, and L. Meng, “Deep

Learning-Based Elderly Gender Classification Using Doppler Radar,”

Personal and Ubiquitous Computing, vol. 26, no. 4, pp. 1067-1079, 2022.

