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In this paper, three types of domain adaptation which are de�ned as image-level domain adaptation, interdomain adaptation, and
intradomain adaptation are e�ciently combined to construct a high e�ciency framework for semantic segmentation. �e
proposed domain adaptation platform can achieve a high reduction of time-consuming to generate exhausted supervised data in
the real world using photorealistic images. �e proposed framework achieved a mean Intersection-over-Union (mIoU) of 45.0%.
Furthermore, by combining the proposed method with intradomain adaptation, the improvement of 1.2% mIoU is achieved
compared to previous work.

1. Introduction

Convolutional neural networks (CNNs) based approaches
brought about recent development in computer vision. Se-
mantic segmentation has attracted attention from CNN-
based models with potential applications for autonomous
driving technology, disease diagnosis, and image editing.
Semantic segmentation is a fundamental technique that as-
signs class labels such as person, car, road, and tree to every
pixel in an image. �e segmented model needs to be trained
by using a per-pixel ground truths image. However, the
training process for semantic segmentation has two key is-
sues. �e �rst one is that accurate per-pixel annotations re-
quire long manual working hours and high costs. It is
reported that the Cityscapes dataset (a dataset of driving
images) needs 90 minutes per image to create per-pixel an-
notation [1]. �e second one is that the accuracy of semantic
segmentation is decreased when a domain gap between the
training datasets and the test datasets is involved. For

instance, the feature distribution of an image may signi�-
cantly di�er from that of the training images when the city,
weather, or shooting conditions change. In such cases, an only
supervised model cannot achieve high accurate semantic
segmentation. �erefore, it is necessary to generate a trained
model using the datasets optimized for various conditions.

Currently, to solve the time-consuming per-pixel an-
notation with all conditions, the pixel-level annotations to
photorealistic images rendered from game engines are
supplemented to datasets and used for the training of se-
mantic segmentation. Consequently, the e�cient domain
transfer between photorealistic images and real world im-
ages is required. �is means tackling problems with sig-
ni�cantly di�erent domain distributions. A process that can
be learnt even when the domain gaps are signi�cantly dif-
ferent has the potential to develop the �eld of learning,
which is a challenge for data-driven arti�cial intelligence.

�e di�erent domain distributions in-game images and
real driving sequences give less accurate segmentation. To
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solve the abovementioned issue, the technique of domain
adaptation has been proposed to adjust the features across
the target data and source data [2–6]. +ese works intro-
duced cross-domain methodology and efficient applications
on edge computing conditions. Luo et al. showed that di-
rectly aligning the high-level semantic features may lead to
negative transfer and reduce the domain adaptation per-
formance in the originally well-aligned regions [7]. To solve
this issue, a local score alignment map to guide the transfer
of semantic information is proposed.

In semantic segmentation, considering the interdomain
gap between the game images and the real world images, the
method of minimizing the entropy loss by adversarial
methods has shown high accuracy [8]. Furthermore, based
on minimizing the entropy loss model, a two-stage self-
supervised domain adaptation approach, which minimizes
large distribution gaps in the target sequence itself (intra-
domain gaps), has shown better performance than the
previous model [9]. However, all of the previous models only
consider adaptive learning in intermediate feature space and
do not perform domain adaptation at the image level.
+erefore, we proposed a domain adaptation framework
including image-level domain adaptation.

+e image-level domain adaptation has two important
elements. +e first is that the pixel alignment of the source
domain image in the feature space is transferred to the target
domain in the feature space, thus enabling the transfer of
visual style. +e second is that the output image is struc-
turally matched to the input image without the need for
prior per-pixel annotation. +e structural match allows the
ground truth to be used as it was before the transformation,
thus reducing annotation time. +e latest image transfor-
mation model for improving photorealism does not require
annotation and is structurally consistent with input and
output [10]. We also focus on the fact that various visual-
style transformations, including appearance, shape, and
context, enable domain adaptation at the image level with
narrower domain gaps.

As our previous work, we introduced a new domain
adaptation approach for semantic segmentation [11]. Based
on the previous work, we focus on the accuracy improve-
ment of the semantic segmentation performance in this
paper. Because it is difficult to define a numeral photorealism
of the photorealistic datasets for domain adaptation, in this
work the typical photorealistic datasets which consist of
urban street scenes are considered proper datasets for the
evaluation of semantic segmentation.

Our approach achieved improved accuracy of semantic
segmentation by using transformed photorealistic images.
Our main contributions to this paper are as follows:

(i) We show the effectiveness of image-level domain
adaptation on the accuracy of semantic segmenta-
tion. Moreover, we proposed a framework com-
bining three-domain adaptation types to achieve
accurate semantic segmentation.

(ii) We improve the accuracy of the semantic segmen-
tation by a method without using real world su-
pervised data.+is suggests that the field may be able

to reduce time-consuming annotation and adapt
segmentation to various real world domains in the
future.

2. Related Work

Domain adaptation is considered an efficient approach to
achieving a fast generation of annotation data. However,
different domain adaptation algorithm makes use of dif-
ferent merits from different viewpoints. It can be concluded
as image-level adaptation, interdomain adaptation, and
intradomain adaptation. In this work, we try to find excellent
adaptation algorithms from a different viewpoint and
combine these algorithms into a framework to improve the
adaptation performance.

In this section, three selected algorithms including im-
age-level domain adaptation, interdomain adaptation, and
intradomain adaptation will be reviewed. Firstly, a photo-
realism enhancement method for image-level domain ad-
aptation, which is designed for game images, will be
introduced [10]. +en, an interdomain adaptation method
based on entropy minimization will be introduced [8, 12].
Finally, an intradomain adaptation method based on the
ranked classification of images will be reviewed [9].

2.1. Image-Level Domain Adaptation. Image-level domain
adaptation is the transfer of visual style by transferring the
pixel alignment of the source domain image to the target
domain in feature space. For example, CycleGAN achieves
the visual transformation of a photograph into a Van Gogh
painting by learning to minimize cycle-consistent loss [13].
Another method for image-level domain adaptation is to
project a high-dimensional feature space onto a segmen-
tation map, but the utilization of CycleGAN is limited
because the transformable images are limited to datasets
with per-pixel annotations. In addition, a method for
improving the photorealism of game images has been
proposed [10]. +is model uses adversarial learning with
strong supervision at multiple perceptual levels, which
provides stability and significant photorealism improve-
ment. +e method for improving the photorealism of game
images avoids the preparation of the pre-annotated labels
by generating identical label maps for synthetic and real
images. Figure 1 shows the results of the photorealistic
enhancement generated by the model [10]. +ere is no
change in appearance between synthetic image fromGTAV
(Figure 1(b)) [14] and photorealistic enhanced image
generated from [10](Figure1(c)), and annotation data of
ground truth can be applied to both images (Figure 1(a)).
+erefore, it is confirmed from the results that it is not
necessary to re-annotate the data.

2.2. InterdomainAdaptation. +emain idea of unsupervised
interdomain adaptation is to adjust the distributional mis-
alignment. Domain adaptation approaches often tackle the
problem by aligning the feature distribution between the
source and target images [15–18]. Approaches include
maximum mean discrepancies, self-learning, providing
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pseudo-labels, or adversarial learning, but here we describe a
method that tackles interdomain adaptation by minimizing
the distribution difference of intermediate features used in
this work. Most of the approaches to minimize the distri-
butional difference of intermediate features do not consider
the feature space at the image level. +is is because that
domain adaptation is often plagued by the complexity of
visual high-dimensional features and considers domain
adaptation in the output space. +e model, which proposed
an efficient domain adaptation algorithm with adversarial
learning in the output space, achieved improved accuracy in
semantic segmentation using adversarial learning in the
output space of the segmentation space [19]. +e inter-
domain adaptation model, which applies unsupervised
domain adaptation in the output space based on entropy,
achieves higher accuracy improvement in semantic seg-
mentation than the previous model. +e proposed domain
adaptation is applied to the entropy-based adversarial
training approach targeting the entropy minimization ob-
jective and the structure adaptation from the source domain
to the target domain [8, 12]. +e entropy minimization
method is one of the successful approaches used for sem-
isupervised learning.

2.3. Intradomain Adaptation. In interdomain adaptation,
some previous works focus on bridging the gap between
domains. In contrast, model [9], which considers entropy-
based intradomain adaptation, tackles intradomain adap-
tation by ranking the images in the target dataset and
classifying them into easy or hard splits. Easy split means
images with small domain gaps and easy to detect, while
hard split means images with significant domain gaps and
lower detection accuracy.

Intradomain adaptation is an adversarial learning based
on entropy.+e generatorGinter used for adversarial learning
of intradomain adaptation takes the target image Xt as input
and generates an entropy map It. +e equation for ranking is
defined as follows:

R Xt( 􏼁 �
1

HW
􏽘
h,w

I
h,w
t , (1)

where the average value of the entropy map It is calculated.
After that, the target images are classified into easy or hard
splits using the average value R(|Xt|) and a simple image
ratio λ as follows:

λ �
Xte

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (2)

where |Xt| represents the entire image and R(|Xte|) is the set
of images in the easy split. After calculating the average value
of the entropymap R(|Xt|), we can extract a group of images
with a small domain gap from the target data by giving an
arbitrary ratio λ. After the classification is done, the result of
the entropy output for the images with few domain gaps is
used as the supervised data, and the images with many
domain gaps are used as unsupervised data to perform
adversarial learning based on entropy to improve the ac-
curacy of semantic segmentation.

3. Approach

In this paper, we focused on the domain adaptation of three
types: image-level domain, interdomain, and intradomain to
improve the accuracy of semantic segmentation. +e
implementation of each level of domain adaptation allows
the utilization of transformed photorealistic images from
GTAV and improves the accuracy of semantic segmentation
in the real world, such as Cityscapes. Figure 2 shows an
overview of the proposed framework. +e proposed se-
mantic segmentation algorithm uses image-level domain
adaptation (Figure 2(a)), interdomain adaptation
(Figure 2(b)), and intradomain adaptation (Figure 2(c)).
Moreover, the proposed domain adaptation allows seg-
mentation well on images without supervised data from the
proposed architecture. +ereby, the proposed method re-
duces the time-consuming creation time of semantic labels.
+e details are described in the following subsections.

3.1. Image-Level Domain Adaptation. Image-level domain
adaptation method for semantic segmentation is not pro-
posed in previous work. Image-level domain adaptation
suffers from diverse visual complexities, including illumi-
nation reflection, glossiness, and transparency. Our ap-
proach uses domain adaptation at the image level to improve
semantic segmentation based on the method that greatly
improves the realism of rendered game images [10]. +is
approach uses intermediate buffers produced by game im-
ages during the rendering process. +ese buffers provide
detailed information on geometry, materials, and lighting in
the scene. +e previous work proposed the integration of
these buffers into the photorealism enhancement flow.

(a) Annotation data (b) Input image (c) Photorealistic enhanced image

Figure 1: Ground truth and photorealistic enhanced images. (a) Annotation data. (b) Input image. (c) photorealistic enhanced image.
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+ereby, the model trained by real world datasets (City-
scapes, KITTI, and so on) can output the corresponding
visual style. Moreover, since the output image is structurally
consistent with the input image, this approach can be used
for unsupervised domain adaptation. +e following sections
use images transformed into the visual style corresponding
to Cityscapes by photorealism improvement. Figure 3 shows
a sample frame for photorealistic enhancement. +e GTAV
dataset consists of temporally diverse frames that are well
transformed.

3.2. Interdomain Adaptation. Interdomain adaptation aims
to adjust the distributional misalignment between labeled
source data and unlabeled target data. We use 19,252 images
converted to photorealism and the corresponding ground
truths as source images. In addition, 2,975 images from the
Cityscapes dataset acquired from the real-world are used as
target images.

We perform interdomain adaptation based on adver-
sarial learning to minimize entropy loss by adversarial
methods [8]. A sample Xs is defined as a source domain with
its ground truth annotation Ys. [Y(h,w,c)

s ]c of Ys provides a
label of a pixel (h, w) as a one-hot vector. Each C-dimen-
sional vector [P(h,w,c)

s ]c at a pixel (h, w) serves as a discrete
distribution over C classes which Ps � Ginter(Xs) is defined
as a segmentation map. +e segmentation map is the output
Xs and the interdomain generator Ginter. Ginter is optimized
by minimizing the cross-entropy loss:

L
seg

inter Xs, Ys( 􏼁 � − 􏽘
h,w

􏽘
c

Y
(h,w,c)
s log P

(h,w,c)
s􏼐 􏼑. (3)

Additionally, the generatorGinter takes a target imageXt as
an input and generates the segmentationmap Pt � Ginter(Xt).
+en, the entropy map It is defined as follows:

I
(h,w)
t � 􏽘

c

−P
(h,w,c)
t log P

(h,w,c)
s􏼐 􏼑. (4)

To align the interdomain gap, Dinter is trained to predict
the domain labels for the entropy maps, while Ginter is
trained to fool Dinter. +e optimization of Ginter and Dinter

achieved the following adversarial loss function:

L
a dv
inter Xs, Xt( 􏼁 � − 􏽘

h,w

log 1 − Dinter I
(h,w)
t􏼐 􏼑􏼐 􏼑

+ log Dinter I
(h,w)
s􏼐 􏼑􏼐 􏼑,

(5)

where Is is the entropy map of Xs. +e loss functions La dv
inter

and L
seg
inter are optimized to align the distribution shift between

the source and target data.+en, target domain and predicted
entropy maps of target data are generated such that the target
data can be clustered into an easy and hard split.

3.3. Intradomain Adaptation. Intradomain adaptation aims
to reduce the large domain gaps in the target data. Compared
to a clear image captured in a stationary state, some images
in a sequence are degraded by noise. Such a situation is called
the intradomain gap. Intradomain adaptation solves the
problem of degraded semantic segmentation accuracy in
intradomain gap sequences. To find images with intra-
domain gaps, we use an entropy-based ranking system
(equation (1)) that classifies the target data into easy or hard

Images from GTA5 Dataset

Enhancing
Photorealism
Enhancement

ADVENT

Adversarial
Leaning

Photorealistic Enhanced Images Labels from GTA5 Dataset Training Images from Cityscapes
Source images Target images

Test Images from Cityscapes
(Input)

Segmentation Results
(Output)

Intra-DA

Adversarial
Leaning

Easy split Hard split

Classify into Easy or Hard splits according to λ

Easy Training Images Target Prediction from ADVENT Hard Training Images

+

(A) Image-level
Domain Adaptation

(B) Inter-
Domain Adaptation

(C) Intra-Domain
Adaptation

Figure 2: Overview of the proposed framework for domain adaptation.+e photorealistic enhanced images are generated by (a) image-level
domain adaptation. In (b) interdomain adaptation, the adversarial learning represents that Ginter and are optimized by minimizing the
segmentation loss L

seg
inter and the adversarial loss Ladv

inter. In (c) intradomain adaptation, the adversarial learning represents that Gintra and are
optimized by using the intradomain segmentation loss L

seg

intra and the adversarial loss Ladv
intra.
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splits. +e threshold for separating easy or hard images is set
to 0.67, showing the best results in previous work [9].

When an image of the easy split is defined as Xte, the
predicted segmentation map Pte � Ginter(Xte). Gintra is op-
timized by minimizing the cross-entropy loss as follows:

L
seg

intra Xte( 􏼁 � − 􏽘
h,w

􏽘
c

P
(h,w,c)
te log Gintra Xte( 􏼁

h,w,c
􏼐 􏼑. (6)

+e alignment on the entropy map for both splits to
bridge the intradomain gap between the easy and hard split
is adopted. An image Xth from hard split is input to the
generator G. +en, the segmentation map Pth � G(Xth) and
the entropy map Ith are generated, where Ite is from the easy
split and Ith is from the hard split. To close the intradomain
gap, the intradomain discriminator Dintra is trained to
predict the split labels of Ite and Ith. G is trained to fool
Dintra. +e adversarial learning loss to optimize Gintra and
Dintra is calculated as follows:

L
a dv
intra Xte, Xth( 􏼁 � − 􏽘

h,w

log 1 − Dintra I
(h,w)
th􏼐 􏼑􏼐 􏼑

+ log Dintra I
(h,w)
te􏼐 􏼑􏼐 􏼑.

(7)

Finally, all of loss function L is defined as follows:

L � L
seg

inter + L
a dv
inter + L

seg

intra + L
a dv
intra, (8)

and the objective is to learn a target modelG according to the
following:

G � arg min
Gintra

min
G∗

max
D∗

L, (9)

where the asterisk denotes intra and inter. +e domain
adaptation model is two-step self-supervised approach.
Firstly, Ginter and Dinter of the interdomain adaptation model
are optimized. Secondly, by using a target image assigned to
the easy and hard split with entropy-based ranking system,
the intradomain adaptation is optimized.

4. Dataset and Evaluation Metrics

+is work uses images and semantic labeling rendered from
the popular game “Grand +eft Auto V,” which is based on

the urban landscape of Los Angeles [14]. +e photorealistic
datasets are commonly used for the evaluation of domain
adaptation. When performing interdomain adaptation,
19,252 photorealistic enhanced GTAV images are used as
training images (source images). In addition, 2,975 images
from the Cityscapes dataset acquired from the real-world are
used as training images (target images). We used the 500
images of the Cityscapes validation dataset to evaluate the
semantic segmentation.

Semantic segmentation uses IoU as an evaluation
metrics, which is commonly used in object detection
challenges such as the PASCAL VOC challenge. IoU is
calculated as Area of Overlap classified divided by Area of
Union. +e Area of Overlap is the area of overlap between
the predicted area and the ground truth area, and the Area of
Union is the area contained in both the predicted area and
the ground truth area. By dividing the Area of Overlap by the
Area of Union, we can obtain the mean Intersection-over-
Union (mIoU (%)).

5. Simulation Results and Discussion

All the simulation results in this paper are implemented with
Pytorch in a single NVIDIA TITAN RTX GPU. Building
upon a good baseline model is essential to achieve high-
quality segmentation results [20–22]. A typical evaluation
method for semantic segmentation accuracy is used in this
work which enables the comparison with various previous
works. We adopt the DeepLab-v2 framework with ResNet-
101 model pretrained on ImageNet as our segmentation
baseline network [23, 24]. Interdomain adaptation and
intradomain adaptation using the loss function of the en-
tropy minimization is trained 120,000 times.

To evaluate the domain adaptation, we compared the
results of training with GTAV and testing with Cityscapes.
+e adaptation results compared to various baselines are
shown in Table 1. In Table 1, ours represents the result using
image-level domain adaptation and interdomain adaptation,
while Ours + Intra represents Ours plus intradomain ad-
aptation. +e proposed method achieved 45.0% mIoU using
image-level domain adaptation and interdomain adaptation.
Moreover, the proposed methods implemented with three

(a) Input images (b) Photorealistic enhanced
images

(a) Input images (b) Photorealistic enhanced
images

Figure 3: Sample results of photorealistic enhanced images.
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types of domain adaptation have the best of 47.5% mIoU.
Our results show that the addition of image-level domain
adaptation can lead to better performance.

Compared with some previous works, such as AdvEnt,
AdaSegNet, and CLAN, our proposed method improves the
mIoU of 3.8%, 5.2%, and 4.4%. Additionally, compared with
IntraDA, our method improves the mIoU by 1.2%. Inter-
estingly, from Table 1, we can see that there is a significant
improvement in accuracy for sidewalk and sign. +is can be
attributed to the fact that the enhanced images were able to

bridge the layout gap for sidewalk and sign, where the domain
distribution between game and real world images is very
different. Figure 4 also shows the segmentation results. From
Figure 4, we can see that the results for sidewalk and sign are
close to the ground truth, which confirms that the qualitative
evaluation and subjective observation are in agreement. +e
improved accuracy is due to the successful application of
image-level domain adaptation to narrow the domain gap.

From the top line in Figure 5, our approach improves the
error detection of semantic segmentation maps in the road.

Table 1: Semantic segmentation results of adapting GTAV to Cityscapes.

Methods Road Sidewalk Building Wall Fence Pole Light Sign Veg Terrain
Baseline (ResNet) 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6
AdvEnt [8] 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0
AdaSegNet [19] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3
CLAN [7] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4
Ours 89.4 46.0 83.1 27.6 22.7 33.6 33.6 27.3 83.6 34.5
IntraDA [9] 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3
Ours + Intra 91.9 49.0 84.2 29.2 24.7 33.0 34.0 34.9 84.6 39.4
Methods Sky Person Rider Car Truck Bus Train Mbike Bike mIoU
Baseline (ResNet) 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdvEnt [8] 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
AdaSegNet [19] 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CLAN [7] 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
Ours 78.1 59.4 29.8 79.6 36.5 41.6 0.1 23.6 25.3 45.0
IntraDA [9] 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 46.3
Ours + intra 81.4 59.8 29.8 84.2 35.3 44.9 0.0 28.8 33.7 47.5

road building
person

wall
rider car truck bus train motorcycle bike

pole traffic light traffic sign vegetation n/a.fence
sky

sidewalk
terrain

(a) Input images (b) Ground truth (c) ADVENT (d) Ours (e) Ours + Intra

Figure 4:+e example results of adapted segmentation. (a, b)+e images from Cityscapes validation dataset and the corresponding ground
truth annotation. (c) +e predicted segmentation maps of the ADVENT. (d, e) are the predicted segmentation maps from our proposed
methods.
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+is is because adversarial learning using the method of
minimizing entropy loss is more effective. However, as
shown in the bottom line of Figure 5, our approach worsens
semantic segmentation for objects with a detailed structure,
such as bike. +e method of minimizing entropy loss also
involves the disappearance of semantic segment maps when
there is a small number of pixels on an object. +erefore, our
future work will improve the method of minimizing entropy
loss to prevent the disappearance of segment information.

Regarding the semantic segmentation map of train and
bus, Figure 6 shows the example of train error detection. In
this case, the error of semantic segmentation maps is caused
by some reasons. +e training dataset and validation dataset
have a disproportionate number of train and bus. +e
validation dataset has a small number of trains. In contrast,
the training dataset has a large number of buses. +erefore,
in almost cases, the train is segmented as a bus. Additionally,
the appearance and area of existence of bus and trains are
similar. +erefore, the reinforcement learning algorithms of
the segmentation map, including train, will be required.

6. Conclusions

In this work, we propose a domain adaptation framework,
including three types. +e semantic segmentation using the
proposed framework achieved the best of 47.5% mIoU, and
compared with IntraDA, our method improves the mIoU by
1.2%. +ereby, the effectiveness of image-level domain ad-
aptation for improving the accuracy of semantic segmen-
tation is confirmed. In particular, the semantic segmentation
map of sidewalk and sign is significantly improved by the
proposed method. However, by minimizing entropy loss,
our approach worsens the semantic segmentation map for
objects with a detailed structure, such as bike. Moreover,
from the result in Figure 6, it is not easy to detect the se-
mantic segmentation map of the train without reinforce-
ment learning. Additionally, discussions concerning the
numeral evaluations about the photorealism of the datasets
are required as the future work. We believe that the per-
formance can be improved by using a more robust detection
architecture for semantic segmentation in future work.

road building
person

wall
rider car truck bus train motorcycle bike

pole traffic light traffic sign vegetation n/a.fence
sky

sidewalk
terrain

(a) Input images (b) Baseline (c) Ours + Intra

Figure 5: Comparison of the Baseline and our proposed method.

(a) Input images (a) Input images(b) Ours + Intra (b) Ours + Intra

Figure 6: +e semantic segmentation results of bus and train. +e white dot lines represent that the ground truth label is bus and the
semantic label is bus. +e red dot lines represent that the ground truth label is train and the semantic label is bus.
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