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Abstract. This paper presents a method for estimating the X-ray energy spectrum

for computed tomography (CT) in the diagnostic energy range from the reconstructed

CT image itself. To this end, a virtual CT system was developed, and datasets,

including CT images for the Gammex phantom labeled by the corresponding energy

spectra, were generated. Using these datasets, an artificial neural network (ANN)

model was trained to reproduce the energy spectrum from the CT values in the

Gammex inserts. In the actual application, an aluminum-based bow-tie filter was

used in the virtual CT system, and an ANN model with a bow-tie filter was also

developed. Both ANN models without/with a bow-tie filter can estimate the X-ray

spectrum within the agreement, which is defined as one minus the absolute error, of

more than 80% on average. The agreement increases as the tube voltage increases.

The estimation was occasionally inaccurate when the amount of noise on the CT

image was considerable. Image quality with a signal-to-noise ratio of more than 10

for the basis material of the Gammex phantom was required to predict the spectrum

accurately. Based on the experimental data acquired from Activion16 (Canon Medical

System, Japan), the ANN model with a bow-tie filter produced a reasonable energy

spectrum by simultaneous optimization of the shape of the bow-tie filter. The present

method requires a CT image for the Gammex phantom only, and no special setup, thus

it is expected to be readily applied in clinical applications, such as beam hardening

reduction, CT dose management, and material decomposition, all of which require

exact information on the X-ray energy spectrum.

1. Introduction

To develop a technique using computed tomography (CT) imaging, such as material

decomposition, physical density/stopping power ratio estimations, and artifact

corrections, it is important to consider an X-ray energy spectrum. Owing to their high

photon flux, methods for indirectly evaluating the incident X-ray spectrum in CT devices

have been investigated. For instance, employing a Compton spectrometer (Matscheko

and Carlsson 1989; Maeda, Matsumoto, and Taniguchi 2005; Duisterwinkel et al. 2015),

where the photon flux is suppressed at the detector owing to the measurement of the

scattered X-rays. However, the preparation of the device is costly, and careful calibration

is required to avoid the influence of absorption in the scatter medium and dependence on
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the detector efficiency. Therefore, it is difficult to apply this method to popular clinical

devices. An alternative approach is Monte Carlo (MC) simulation, which includes all

physical processes at the required accuracy level (Taleei and Shahriari 2009; Bazalova

and Verhaegen 2007; Spezi et al. 2009; Hioki et al. 2014). For the MC simulation of

a CT system, detailed information about the head structure of the scanner, as well

as its material components, is required because it has a large influence on the energy

distribution. However, this information is not available for commercial devices because

of proprietary rights. In particular, a bow-tie filter can be used to make the radiation

signal uniform within the dynamic range of the detector, and to reduce unnecessary

radiation dose to the peripheries of a patient, which remains proprietary to most CT

vendors. Because the X-ray spectrum is altered with its inherent direction depending on

the thickness of the bow-tie filter, knowledge of the exact profiles from different bow-tie

filters is crucial to model the imaging process of modern helical CT scanners.

Spectrum estimation of the incident X-ray has been performed with various

approaches for formulating the X-ray transmission as a linear system on a specific

phantom of known material and thickness (Silberstein 1932; Ruth and Joseph 1997;

Perkhounkov et al. 2016; Zhao, Xing, et al. 2017; Sidky et al. 2005; Duan et al. 2011;

Ha et al. 2019; Francois, Catala, and Scouarnec 1993; Stampanoni et al. 2001; Waggener

et al. 1999; Armbruster, Hamilton, and Kuehl 2004; Leinweber, Maier, and Kachelrieß

2017). Despite these efforts, most studies have either not involved the bow-tie filter or

only considered the influence of the presence of a specific bow-tie filter (Zhao, Vernekohl,

et al. 2018; Lin et al. 2014). The bow-tie filter alters the spectrum shape from that at

the X-ray source, and the transformation should be evaluated by considering the bow-

tie filter thickness in each X-ray direction. However, the composing material, as well

as the shape of the bow-tie filter, is not available in most CT vendors. Therefore,

the bow-tie profile should be estimated simultaneously with the X-ray spectrum, where

the transmission profile has been determined from the measured data while knowing

the X-ray source-to-isocenter distance and chamber-to-isocenter distance (Boone 2010;

Whiting et al. 2014; McKenney et al. 2011). In particular, Yang et al developed an

equivalent aluminum thickness profile of a bow-tie filter, and the incident X-ray energy

spectrum in a CT scanner with simultaneous geometrical calibration (Yang et al. 2017).

This method provides an accurate estimation by using the information of the half-value

layer (HVL) at the central X-ray beam, where the thickness of the bow-tie filter is a

minimum. However, a specific measurement utilizing two fiducial markers to determine

the related geometrical parameters in the CT scanner is required.

In the present study, we developed a method to estimate the energy spectrum from

the reconstructed CT image without geometrical calibration, even in the presence of a

bow-tie filter. We proposed a machine-learning approach to estimate the X-ray energy

spectrum of clinical CT systems with and without the bow-tie filter using the Gammex

phantom (Gammex Inc., Middleton, WI) as a commonplace phantom. To this end,

we generated various CT images labeled by the corresponding X-ray spectrum using a

virtual CT system, which first generated various X-ray spectra, and then simulated the



X-ray energy spectrum estimation based on a virtual computed tomography system 3

projections (or sinograms) from the information of elemental composites in the Gammex

phantom for each spectrum. Subsequently, CT reconstruction was performed. By

training a machine learning model with the CT-spectrum dataset, the X-ray spectrum in

an arbitrary CT device can be efficiently estimated by acquiring only the CT image of the

Gammex phantom in that device. An adaptation of a generative model to generate the

training dataset has received considerable attention (Bishop and Nasrabadi 2006; Hastie

et al. 2009). In addition, an artificial neural network (ANN) model combined with a

generative model was recently proposed for spectrum estimation (Hasegawa et al. 2021),

where the percent depth doses with various X-ray spectra were generated by the spektra

toolkit (Punnoose et al. 2016); an ANN model to estimate the spectrum was developed

with the PDD data as an input. This approach is essentially different from the other

approaches proposed from the viewpoint of artificially generated datasets; the training

X-ray spectra and the corresponding PDDs are generated based on the generative model.

However, this method has only been applied in cone-beam CT geometry. To the best of

our knowledge, no study has used the generative helical CT model in energy spectrum

estimation with a bow-tie filter geometry. An advantage in our approach is to use the

reconstructed CT images. Because only the CT image is employed as an input, the

proposed method is simple and does not require information on the CT geometry. Not

all works require a special phantom (Zhao, Niu, et al. 2014) like us, however, it requires

to derive the projection data, which is not always available in clinical CT devices. The

robustness of our approach was validated using the CT images reconstructed from the

system with a different geometry and those with different locations of the Gammex

phantom.

2. Methods and Materials

The workflow of this study is shown in Fig. 1, where we first generate datasets composed

of an X-ray spectrum and the corresponding virtual CT image of Gammex phantom,

with a specific X-ray spectrum generated by a spectral model using spektr v.3.0.

There, sinograms were produced using a material-based forward projection algorithm

(MBFPA), and sequential image reconstruction using filtered back projection (FBP)

was performed with the produced sinograms. The details are given in Section 2.2. The

generated datasets are then used to develop the spectrum estimation models based on

the ANN as seen in Section 2.3. In this study, the spectrum models were differently

developed with and without a bow-tie filter. The modeling process with the bow-tie

filter is provided in Section 2.4. The verification in these models is shown in Section

2.4 as well as Result section. The feasibility of our model in the real CT device is also

provided with the sinogram acquired in Activion16 (Canon Medical System, Japan) as

shown in Section 2.6.
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Figure 1. Workflow for the X-ray spectrum estimation.

2.1. Virtual CT system

In the proposed method, a sinogram was first produced by MBFPA based on the

information of both the materials in an object and the X-ray spectrum. MBFPA

calculates the intensity ratio of X-rays at the ith detector, Ii, to the source, I0, according

to Lambert-Beer’s law with the line attenuation coefficient µ(E),

Ii
I0

=

∑
E α(E)n0(E)e

∑
j −aijµj(E)∑

E α(E)n0(E)
, (1)

where E denotes the photon energy (discretized with a bin width of 1 keV in this study).

α(E) is the fraction of the corresponding photon energy bin, n0 is the photon number in

the X-ray source, and aij is the photon pass length in voxel j of the object, representing

an element known as “system matrix”. The attenuation in the jth voxel, µj(E), can

be expressed as the sum of the attenuation coefficients for each element m with atomic

number Zm:

µj(E) =
∑
m

wmµj(E,Zm), (2)

where wm denotes the weight (fraction) of the mth element in that voxel. For the

energy range (80–140 keV) and the elements included in the object (Gammex phantom)

considered in this study, the attenuation coefficient µj(E,Zm) can be described as the

sum of the processes of the photoelectric effect and Compton scattering:

µj(E,Zm) = ρZm
NA

Am

[σPE(E,Zm) + σComp(E)] , (3)
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where ρ, NA, and Am denote physical density, the Avogadro constant, and atomic

weight, respectively. σPE and σComp are the photoelectric and Compton cross sections,

respectively, where we employed an empirical formula fitted with the energy and atomic

number for σPE (Hirschfelder, Adams, et al. 1948; Yao and Leszczynski 2009), and

the theoretical formula for σComp (Klein and Nishina 1928; Yao and Leszczynski 2009).

Consequently, virtual projections can be simulated in a ray-tracing manner to efficiently

generate sinograms.

Figure 2. Geometry of the simulated CT system. IDD: isocenter-to-detector distance;

SDD: source-to-detector distance. In this study, an SDD of 107.2 cm and IDD of 47.2

cm were used. In total, 798 detector elements were used, and the width of each detector

element was 0.103 cm.

The geometry of the simulated CT with relevant factors is shown in Fig. 2, where

Activion16 (Canon Medical Systems, Japan) was modeled. The source and detectors

were rotated by 360° in 0.45° increments (in total 800 projections). A total of 798

detectors were aligned at equal intervals (0.103 cm).

A noise is present in actual CT acquisition. In this study, the noise on X-ray

detectors was modeled with Gaussian distributed random noise to the X-ray intensity
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Figure 3. Axial image in virtual Gammex phantom (Model 467). The number in

each insert corresponds to that in Table I.

as,

I∗i = Ii + σizi, (4)

where I∗i is the X-ray intensity generated in the ith detector of a virtual CT, and zi is a

standard normal random variable. Although the Poisson distribution is usually used in

the noise model, it can be approximated by the Gaussian distribution with the standard

deviation σi ∼ I0
√
Ii in the situation that the intensity is enough high. Especially,

we set 105 ≤ I0 ≤ 106 to have the same order of signal-to-noise (SNR) ratio as that

observed in a real CT system (SNR ∼ 10, see section 2.6).

Using the sinograms generated by a fully simulation-based algorithm, CT images

with a size of 512×512 mm2 and a 1-mm pixel scale were reconstructed by FBP with

the Shepp-Logan filter. Although this geometry was fixed in the virtual CT image

production for the training data, we generated additional CT images with different

geometries mimicking tomotherapy (Ruchala et al. 1999), as described in Section 2.5.

The next subsection presents the details of the X-ray spectra and the digital Gammex

phantom used to generate CT images utilizing the above virtual CT system.

2.2. Data generation

In spectrum generation, we used spektr v.3.0, which is a computational tool for X-

ray spectrum modeling of a specific tube voltage by fitting the MC simulation with

various situations (Punnoose et al. 2016). In this study, 10,000 spectra were generated

by randomly sampling the tube voltage in the range of 80–140 kVp, ripple in the

range of 0%–100%, Al-filtration thickness in the range of 0.5–10 mm, and Cu-filtration

thickness in the range of 0–0.5 mm, with a bin width of 1 keV. Each generated

spectrum was normalized such that the spectrum could be regarded as the probability

distribution of the photon energy. With the aforementioned virtual CT system, 10,000

CT images corresponding to 10,000 energy spectra sampled from the spectrum model
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Table 1. Tissue substitutes in the Gammex phantom (Gomà, Almeida, and Verhaegen

2018), where the physical density was obtained from the data provided by the

manufacturer.

Name Physical density H C N O Mg P Ca

1.LN-300 Lung 0.30 0.025 0.178 0.006 0.054 0.034 0 0

2.LN-450 Lung 0.48 0.041 0.286 0.009 0.087 0.054 0 0

3.AP6 Adipose 0.949 0.086 0.686 0.021 0.154 0 0 0

4.BR-12 Breast 0.984 0.085 0.690 0.023 0.176 0 0 0.009

5.Water Insert 1.000 0.112 0 0 0.888 0 0 0

6.CT Solid Water 1.016 0.081 0.683 0.024 0.202 0 0 0.023

7.BRN-SR2 Brain 1.051 0.114 0.762 0.018 0.156 0 0 0

8.LV1 Liver 1.090 0.088 0.730 0.023 0.218 0 0 0.025

9.IB Inner Bone 1.138 0.076 0.633 0.022 0.268 0 0.037 0.101

10.B200 Bone Mineral 1.146 0.076 0.636 0.023 0.271 0 0.037 0.102

11.CB2-30% CaCO3 1.333 0.089 0.713 0.028 0.341 0 0 0.160

12.CB2-50% CaCO3 1.560 0.074 0.649 0.024 0.499 0 0 0.312

13.SB3 Cortical Bone 1.822 0.062 0.572 0.034 0.665 0 0 0.488

were generated. In particular, 7,000 were used in the training of the spectrum estimation

model, and 1,500 were used in the model validation. The rest were used in the model

test, which evaluated the model accuracy without overestimation owing to overfitting.

We chose the Gammex phantom (Gammex Inc., Middleton, WI) for the object to

be used in spectrum estimation. The Gammex phantom is most frequently used for

CT-to-density calibration in the treatment planning of radiotherapy because its tissue

substitutes can be a good representative of biological tissues within the energy range

relevant to CT. The widespread use of phantoms, such as the Gammex phantom, is

advantageous in the clinical application of spectrum estimation. We developed a digital

Gammex phantom as shown in Fig. 3, where the size was set to 512×512 mm2, with a

pixel scale of 1 mm. Table 1 indicates the material weights in each insert, in which m ∈
H, C, N, O, Mg, P, and Ca were considered in Eq. (1) (Gomà, Almeida, and Verhaegen

2018).

2.3. Spectrum estimation based on ANN

As shown in Fig.4, the ANN was designed to estimate the X-ray spectrum from the CT-

to-density data of Gammex phantom. The input is a 13-dimensional vector, of which

the components are derived from the CT values of the 12 inserts (Fig. 3), except for the

water rod (because the CT value for water was set to vanish) and the air outside the

phantom. An averaged value over 80 pixels, C̄T , was standardized as

Zk =
C̄T k − µk

σk

, (5)

in each insert k. Here, µk and σk are the mean and standard deviation of the

training CT data (7,000 Gammex phantom images) for the kth insert. Note that



X-ray energy spectrum estimation based on a virtual computed tomography system 8

Figure 4. Artificial neural network model to estimate X-ray spectrum from CT-to-

density lookup table.

the same µk and σk are also adapted for application to the validation and test data.

The ANN model we developed consists of seven fully connected layers, including

6000,4000,2000,1500,1000,750, and 500 nodes, 7 activation layers, and 7 dropout layers.

The activation function used in all activation layers was the rectified linear unit (ReLU),

except for the last activation, where the softmax function was employed to output

the probability of the photon in each energy bin in the range [1 keV, 150 keV]. The

parameters of the ANN model were optimized by employing a cross-entropy error

function as a loss function. The convergence of the parameter optimization was verified

by monitoring the behavior of the loss function for both the training and validation

data. The number of epochs was set to 1,000 whereas the batch size was set to 32, with

a learning rate of 0.00001 in the Adam optimizer. Google’s deep learning framework

TensorFlow (Abadi et al. 2016) (version 1.12.0), and the Keras library (version 2.1.6)

were used in this optimization.

2.4. Bow-tie filter model

A bow-tie filter can be used to make the radiation signal uniform within the dynamic

range of the detector and to reduce unnecessary radiation dose to the peripheries of a

patient. Because the X-ray spectrum varies with its inherent direction depending on

the thickness of the bow-tie filter, a simulation, including a bow-tie filter, is essential

to model modern CT devices. In this study, we prepared CT spectrum datasets for the

system, including a bow-tie filter.

The modeled bow-tie filter was developed as follows. First, the air profile was

acquired by setting a 120 kVp without objects (i.e., air scanning) using Activion16.

Second, the line attenuation coefficient was evaluated in each source-to-detector

direction by assuming a representative of 120 kVp spectrum sampled from spektr (10-

mm Al filter, no Cu filter, and 10% ripple). Third, the relative thickness of each
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Figure 5. Bow-tie filter thickness (vertical axis) assumed in each detector (horizontal

axis), where Al is assumed to be a single composite in the bow-tie filter.

direction in the vertical (0-degree’s) direction was evaluated by assuming an appropriate

material composed of the bow-tie filter (in this study, we assumed a single component

of aluminum), thus the shape can be reconstructed. The bow-tie profile of the virtual

CT system reconstructed using this approach is shown in Fig. 5. For data generation,

the virtual CT system, spectra, and object models were the same as those described

in previous sections. In particular, 10,000 CT images of the Gammex phantom (1,500

for validation and 1,500 for test) were generated with virtual projection using MBFPA,

where the bow-tie filtered X-ray spectrum was assumed. The ANN model with the

bow-tie filter was trained using the generated CT images labeled by the X-ray spectra

before passing through the bow-tie filter.

The above bow-tie filter model is just that in a virtual CT system. In the X-ray

spectrum estimation for a real CT system, the training data should be generated with

a real bow-tie material/shape. However, it is difficult to model a bow-tie filter in an

actual CT system, because the details are usually not opened by vendors. Therefore, in

addition to the above bow-tie filter model, which is reconstructed with a certain X-ray

spectrum and its air profile at the detector, we performed a simultaneous estimation

of both the bow-tie profile and the X-ray spectrum for the real Activion16 machine;

the shape of the bow-tie filter was iteratively optimized through the X-ray spectrum

estimation, as shown in Fig. 6. In the actual optimization, we assumed aluminum as

a composite material of the bow-tie filter, and the X-rays in each source-to-detector

direction were attenuated depending on the Al thickness. The convergence was judged

with the difference between the estimated spectrum and that in the previous step.

2.5. Verification

To evaluate the estimation accuracy of the developed ANN model, 1,500 CT images,

which were not included in the model development, were used as inputs. Subsequently,

the output spectra were generated by the models with and without a bow-tie filter.
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Figure 6. Flowchart to determine an incident X-ray spectrum in real CT device

involving bow-tie filter, where we determined that the spectrum assumed in the bow-

tie profile estimation agrees with that estimated by the ANN model with a real CT

image for the Gammex phantom. The agreement defined in Eq. (6) more than 95%

was judged to be converged in this study.

The model accuracy was measured by the root mean squared error (RMSE) and the

difference in mean X-ray energy. In addition we employed the agreement defined as

“one minus the absolute error”, which provides 1 in the complete overlapping and −1

in the no overlapping with the ground truth,

Agreement ≡ 1−
Nbin∑
i

|αpred(Ei)− αtrue(Ei)|, (6)

where Nbin = 150 and i ∈ 1, 2, · · · , 150. αpred(Ei) is the predicted spectrum fraction

in the ith bin, and αtrue(Ei) is the spectrum fraction in the ground truth. To verify

the robustness of the model, test images prepared using different CT geometries were

employed. Consequently, we used the geometry in tomotherapy with SDD = 142.6 cm

and IDD = 57.6 cm, which is considerably different from the conventional CT device.

In addition, the influence of the phantom location was evaluated by a 1-cm offset for

the phantom of the test data in the upper direction. In both tests, 1,500 (CT) images

were obtained.
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Figure 7. Sinogram acquired in Activion16 ((a) 100 kVp and (c) 120 kVp) and the

corresponding CT image ((b) 100 kVp and (d) 120 kVp).

2.6. Experimental data

The developed model considering a bow-tie filter was applied in a real CT system,

Activion16. The real Gammex phantom Model467 with the physical density shown

in Table 1 was scanned with nominal tube voltages of 100 kVp and 120 kVp at tube

current of 100 mA, with an acquisition time of 1.5 s. With these conditions, the SNR

of the basis material in the Gammex phantom (solid water) was 11.2 and 20.9, for 100

kVp and 120 kVp, respectively. As described in Section 2.4, an initial bow-tie profile

was created using the assumed X-ray spectrum and air scanning. Thereafter, the X-ray

spectrum was estimated by an ANN trained with this bow-tie profile. The estimated

X-ray spectrum was again used to create the bow-tie profile, and the simulation was

performed until convergence was achieved. Although the real CT system is equipped

with the reconstruction software itself, we used the same CT reconstruction code as used

in the virtual CT system to avoid additional differences other than the system geometry,

such as pre-processing (e.g., angle interval in the sinogram), reconstruction filter, and

post-processing (e.g., beam-hardening correction) between the CT images used in the

training and testing. Figure 7 shows the sinogram and the corresponding CT image for

the Gammex phantom in 100 kVp and 120 kVp operations.

2.7. Estimation using virtual step wedge and maximum likelihood expectation

maximum method

In this study, the X-ray spectrum estimation using the maximum likelihood expectation

maximum (MLEM) method was also developed by using the ”virtual step wedge”. This
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Figure 8. Virtual step wedge.

method has already been applied with the real step wedge and the clinical CT machine

(Sidky et al. 2005; Duan et al. 2011). This study applies it to see the feasibility of the

proposed virtual system for the different estimation model.

Figure 8 shows the virtual step wedge phantoms developed here, where (a) has

16 steps with aluminium (Al, 2.7 g/cm3) composition, and (b) has 12 steps with

polycarbonate (C16H14O3, 1.21 g/cm3) composition, and the projection data of these

objects were generated by virtual CT system of Fig. 2. Based on the MLEM approach,

the spectrum fraction of k-th energy bin in t+1-th iteration, α
(t+1)
k can be renewal with

the spectrum fraction α
(t)
k in t-th iteration as,

α
(t+1)
k =

α
(t)
k∑
l Xlk

∑
l

Xlknl∑
k′ Xlk′α

(t)
k′

, (7)

where Xlk = n0,l exp (−
∑

j aijµj(Ek)) and n0,l and nl are the photon count at source

and at l-th detector, respectively.

Using spektr, 20 projections (for aluminium and polycarbonate phantoms)

corresponding to 10 energy spectra sampled from the spectrum model, where the energy

spectra from 120 kVp was employed, were generated by the way described in 2.1. Also,

same intensity of the noise as described in 2.2 was added. In addition, a specific energy

spectrum of 120 kVp with the Al filter of 1-mm thickness was derived and was used as the

initial input α
(0)
i . Then the spectrum was estimated from both projections of aluminium

and polycarbonate phantoms. The MLEM result of these 10 data was evaluated by the

agreement as well as RMSE to the ground truth (generated by spektr). To see the

dependency of the initial input, the result which an energy spectrum of 80 kVp was

used as the initial input was also evaluated.
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Figure 9. Averaged agreement defined in Eq. (6) in a tube voltage range of 10-kVp

bin; (dark gray bar) without the bow-tie filter model, and (white bar) with the bow-tie

filter model. Dotted bars indicate the result, including all test data, whereas normal

bars indicate the result only, including the test data presenting the CT image with

an SNR of ≥ 10 in Gammex basis material (solid water). The error bar indicates the

standard deviation.

3. Results

3.1. Estimated X-ray spectrum without/with bow-tie filter

Figure 9 shows the result of the agreement measure defined in Eq. (6) for test data,

where the average with a standard deviation in each tube voltage range with 10-kVp

interval are compared. The dotted bars indicate the results, including all test data,

whereas the normal bars indicate the result only, including the test data presenting the

CT image with an SNR of ≥ 10 in Gammex basis material (solid water). This result

indicates that most of the test data can be estimated with an agreement of ≥ 80%. The

estimation accuracy was better in CT images acquired at high tube voltages. Owing to

this tendency, the ANN model with bow-tie filter (dotted white bars) slightly improves

the agreement without a bow-tie filter (dotted dark-gray bars), because the presence of

the bow-tie filter makes the X-ray hard. This figure also shows the impact of noise on

CT images, and the evaluated agreements with less noise on CT images (normal bars)

are high compared to those with all test data (dotted bars), implying that the spectrum

estimation is expected to be successfully performed if the CT image is acquired with

the condition considering SNR ≥ 10 on a Gammex basis.

Figure 10 shows spectra estimated in the test data for SNR ≥ 10 without a bow-

tie filter for different ranges of tube voltages: 80–100 kVp, 100–120 kVp, and 120–140

kVp in the top row, middle row, and bottom row, respectively. The first, second, and

third columns show the spectra for the best estimation, median estimation, and worst

estimation in agreement measure, respectively. The figure shows that the estimation is
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Figure 10. Estimated X-ray spectra without bow-tie filter ; (top row) 80–100 kVp,

(middle row) 100–120 kVp, and (bottom row) 120–140 kVp. The first, second, and

third columns show the spectra for the best estimation, median estimation, and worst

estimation in agreement measure defined in Eq.(6).

still well for median in the rank of estimated accuracy (second row). Some deviation

can be observed for the worst result (third row), although the agreement is more than

80% for almost all data. This tendency is similar to that of the bow-tie filter model, as

depicted in Fig. 11, where the median result is good, whereas the worst results exhibit

some differences. The result showing an agreement of less than 80% was only one case

for both the without/with bow-tie filter models. Although there are some failures in

the estimation, the overall estimation accuracy would be sufficiently high without CT

image degradation.

3.2. Influence of the different geometry in test data

In Fig. 12, the results of the test CT data acquired in different geometries from those

used in the training data are indicated, where (a) different source-to-isocenter as well

as different source-to-detector distances are employed and (b) the displacement of the
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Figure 11. Estimated X-ray spectra with bow-tie filter; same as in Fig. 10.

phantom location (1-cm shift) is applied. Here, the blue bars indicate the RMSE

using the identical geometry model between the training and test data, whereas the

red bars indicate the RMSE using the different geometry models between them. A

model without a bow-tie filter was employed in both cases. As we can observe, the

difference between the blue and red is significantly small even in the existing apparent

discrepancy in the geometry of CT scanning, although the paired t test indicated that the

geometrical variation between the training and testing datasets significantly affects the

estimation accuracy, except for the low tube voltage . Because the statistical difference

was evaluated with a large amount of test data (nearly 500 test data in each comparison),

then the pygmy difference could be detected owing to this data size. The present test for

the robustness of CT geometry was performed with the worst case in CT scanning, and

the CT geometry in ordinal CT devices is not different from Activion16 in comparison

with that in tomotherapy, which requires a large bore size for radiation therapy. The

registration of phantom location can be easily performed within 1 cm even in a manual

setting. Thus, the present results suggest that our approach can estimate the X-ray

spectrum without accurate knowledge of the system geometry.
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Figure 12. Comparison between identical geometry (blue) and different geometry

(red) used in the preparation of test data; (a) different source-to-isocenter as well

as the different source-to-detector distances is employed, and (b) displacement of the

phantom location (1-cm shift) is applied. The pvalue was calculated using the paired

t test.

3.3. Estimated X-ray spectrum in real CT device

Figures 13(a) and (b) show the estimated X-ray spectrum in real Activion16 CT device

by following the process of Fig. 6. The estimated spectra in 3rd-step (solid curves)

are indicated as well as the initial ones (dotted curves). The agreements between the

reconstructed spectra in the 2nd-step and those in the 3rd-step were 96.0% for 100

kVp and 98.7% for 120 kVp, respectively, and therefore the spectra were judged to be

converged in the 3rd-step. Because there is no ground truth for the energy spectra in a

real CT device, we cannot provide the actual accuracy of this estimation; however, we

can only conclude that the predicted X-ray spectrum has a reasonable form; a similar

spectrum may be reproducible by the spectrum model. In the real CT images used

here, the SNRs for the basis of the Gammex phantom were 11.2 and 20.9, for 100 kVp

and 120 kVp, respectively, thus the prediction is expected to be successful, as shown

in Fig. 11. The simultaneously determined profile of the bow-tie filter, assuming the

Al material, is depicted in Fig. 13(c), which shows that convergence is rapidly achieved

with a reasonable initial 120 kVp spectrum sampled from spektr (10-mm Al filter, no

Cu filter, and 10% ripple).

3.4. Estimated X-ray spectrum using virtual step wedge and MLEM method

Figure 14(a) shows the representative estimated spectrum using virtual step wedge and

MLEM method with an initial energy spectrum derived from spektra in 120 kVp and

1-mm thickness Al filter, as described in 2.7. The results of 10-averaged agreement

and RMSE are inserted in the figure, where the agreement (95.1%) and the RMSE

(5.2×10−4) are comparable with those using the Gammex phantom and the ANN model.

This result implies that our proposed method, without the specific phantom such as the

step wedge, can be estimated equivalently to the previously proposed method.
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Figure 13. Estimated X-ray spectrum in real Activion16 CT device; (a) 100 kVp and

(b) 120 kVp. The corresponding Al-equivalent bow-tie profile is shown in (c). ”Initial”

indicates the initial spectra and the bow-tie profile reproduced with an air sinogram

by assuming 120 kVp spectrum sampled from spektr (10-mm Al filter, no Cu filter,

and 10% ripple (see 2.4), whereas ”Converged” indicates the converged those, where

the agreement more than 95% with the previous step (the current case: 3rd-step) was

judged to be converged.

Figure 14. Estimated X-ray spectrum with virtual step wedge and maximum

likelihood expectation maximum (MLEM) method; (a) initial energy spectrum with

120 kVp and 1-mm thickness Al filter (b) initial energy spectrum with 80 kVp and

1-mm thickness Al filter. The proper initial input is important to estimate the energy

spectrum in this method.

Figure 14(b) shows the estimated result with the energy spectrum from the spektra

for 80 kVp and 1-mm thickness Al filter as the initial input. In the estimation using the

MLEM approach, the initial value can influence the accuracy, and therefore, one should

select the reasonable spectrum from the prior knowledge such as the tube voltage to be

estimated.

4. Discussion

In the present study, we newly proposed a simulation-based method for model creation,

in which CT datasets labeled with the corresponding X-ray spectrum were generated

by the virtual CT system, and the estimation model was trained with these datasets.

With our method, spectrum estimation can be easily performed by scanning Gammex



X-ray energy spectrum estimation based on a virtual computed tomography system 18

phantom in a real CT system without a special setup. By comparing with the

previously proposed approach using virtual step wedge and MLEM method in projection

domain, we can say that our approach, using Gammex phantom and ANN method in

reconstructed domain, is comparable in the accuracy of energy spectrum. The present

method allows the use of other phantoms, and more sophisticated phantoms might be

expected to increase the estimation accuracy. However, for application purposes, the

present approach, including the use of the Gammex phantom, is simpler compared to

other proposed methods.

The present results also show that our method can estimate the spectrum

satisfactorily even when equipped with a bow-tie filter. In addition, it was confirmed

that the estimation result obtained using the real Gammex phantom CT can produce

a realistic spectrum. This implies that our method may be reliable for estimating the

X-ray spectrum, as well as the bow-tie filter shape. Furthermore, we emphasized that

our method only requires the CT image of the Gammex phantom, and does not require

special geometrical calibration, except for the normal calibration executed in the CT

device setting. On the other hand, the model with bow-tie filter could involve the model

without bow-tie filter by including both dataset with/without bow-tie filter. However,

the present model did not. This is one of the limitations in our model regarding the

generalization, and it remains as the future development.

Our model is expected to be robust in the geometrical variation of CT systems

because of the use of CT images as an input, in which the system geometry can be

wasted after obtaining the geometry of the CT object. The present study investigated

the robustness of the estimated model regarding the discrepancy in the CT geometry

acquired between the training data obtained with the Activion16 model and the testing

data obtained with the tomotherapy model. The statistical result showed the significant

difference between them; however, the amount of the difference was quite small. Because

the CT geometry in tomotherapy is considerably different from that in normal CT

devices, it can be considered that the present analysis indicates the worst scenario, and

the difference in the CT geometry does not affect the X-ray spectrum estimation so

much. In addition to the CT geometry, we investigated the influence of the phantom

location in the CT acquisition, and the situation was similar to that in the CT geometry;

the statistical difference was found in a certain range of the tube voltage; however, the

amount was small. Thus, the difference won’t affect the result. Consequently, the

proposed method is sufficiently robust, and can be generalized in any CT geometry

and acquisition. In such cases, phantoms other than the Gammex phantom should be

examined.

5. Conclusion

In this study, we developed a new method for estimating the incident X-ray spectrum

for diagnostic CT systems based on a virtual CT generation system. The present

approach used the information obtained from the reconstructed CT images of the
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Gammex phantom to avoid the estimation accuracy not to be affected significantly

by the geometry in CT scanning. Our approach allows the inclusion of a model with a

bow-tie filter, and a reasonable X-ray spectrum can be reconstructed from experimental

data with a simultaneous estimation of the shape of the bow-tie profile. The present

work is expected to be applied to the development of a CT reconstruction algorithm,

such as material decomposition.

Acknowledgments

This study was supported by JSPS KAKENHI (grant no. 19K08201).

References

Abadi, Martın et al. (2016). “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems”. In: arXiv preprint arXiv:1603.04467.

Armbruster, Benjamin, Russell J Hamilton, and Arthur K Kuehl (2004). “Spectrum

reconstruction from dose measurements as a linear inverse problem”. In: Phys.

Med. Biol. 49.22, p. 5087.

Bazalova, Magdalena and Frank Verhaegen (2007). “Monte Carlo simulation of a

computed tomography x-ray tube”. In: Phys. Med. Biol. 52.19, p. 5945.

Bishop, Christopher M and Nasser M Nasrabadi (2006). Pattern recognition and machine

learning. Vol. 4. 4. Springer.

Boone, John M (2010). “Method for evaluating bow tie filter angle-dependent

attenuation in CT: theory and simulation results”. In: Med. Phys. 37.1, pp. 40–

48.

Duan, Xinhui et al. (2011). “CT scanner x-ray spectrum estimation from transmission

measurements”. In: Med. Phys. 38.2, pp. 993–997.

Duisterwinkel, HA et al. (2015). “Spectra of clinical CT scanners using a portable

Compton spectrometer”. In: Med. Phys. 42.4, pp. 1884–1894.

Francois, P, A Catala, and Ch Scouarnec (1993). “Simulation of x-ray spectral

reconstruction from transmission data by direct resolution of the numeric system

AF= T”. In: Med. Phys. 20.6, pp. 1695–1703.
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