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Abstract Using less electric power or speeding up processing is catching the interests of researchers in deep learning. Quanti-
zation has offered distillation mechanisms that substitute floating numbers for integers, but little has been suggested about the
floating numbers themselves. The use of Q-format notation reduces computational overheads that frees resources for the in-
troduction of more operations. Our experiments, conditioned on varying regimes, introduce automatic differentiation on algo-
rithms like the fast Fourier transforms and Winograd minimal filtering to reduce computational complexity (expressed in total
number of MACs) and suggest a path towards the assistive intelligence concept. Empirical results show that, under specific
heuristics, the Q-format number notation can overcome the shortfalls of floating numbers, especially for embedded systems.
Further benchmarks like the FPBench standard give more details by comparing our proposals with common deep learning

operations.
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1. Introduction

In recent years deep learning has emerged considerably
and cemented itself as a part of the daily discourse on
scientific progress and cutting-edge technology. Multiple
advances were registered in many other fields that chose
to use deep learning methods in new or existing computer-
assisted practices. Deep learning as a problem-solving
scheme has therefore gained consideration. Along with the
rapid rise, expensive computer configurations and
intimidating verbiage, the pervasive sentiment claiming
computers to be sentient made it hard to join the field of
deep learning. This report reviews the historic perspective
under the assistive intelligence concept and suggests
solutions and available alternatives.

The true potential of computer systems lies within two
essential capabilities: to automate given tasks and to help
make informed decisions. Historically, computers were
considered advanced calculators that carried human tasks
with better precision and better speed. This notion has
evolved far beyond the initial conditions. Communication
would also be considered, but it falls outside the scope of
this work. From the beginning of the modern computing
era these two capabilities have been harnessed, improved,
and applied to the workplace, transportation, businesses
industries, science, space, personal, home needs and many
other lifestyles.

Most machine learning models use data that has been
prepared in advance by a human. The human-computer
interaction has evolved considerably from the early days
of modern computing. Human-in-the-loop systems, or
HITL systems, allow both sides to interact continuously to
automate tasks or to take decisions. Human supervision is
key in this arrangement as it provides a well-defined
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interface for accountability or other inquiries.

Predictions and estimates generated by a computer are
not always 100% accurate as their “understanding” of the
data used in the process is largely built from primitive
operations such as summation and multiplication of
floating-point numbers, known to be error prone [1].
Human interference is meant to provide feedback for the
computer to adjust its accuracy, which improves the
computer’s representation of the information, resulting in
better predictions. In this context the “understanding” of
the data and the representation of information could be
used interchangeably.

1.1 Justification for the research

The nascent field of deep learning is already regarded
as a powerful problem-solving technique that any
individual should consider. We propose targeting
embedded systems for various social-economic reasons,
but this research focuses on addressing some of the
limitations caused by IEEE 754-2008 floating-points
computations.

The motivation behind targeting low-powered devices
has long been argued even though the most cited
applications of deep learning are utilitarian, and thus
demand to be deployed closer to their intended users, on
their personal computers, cell phones, or cameras, for
instance. Deep learning has hindered the motivation for
low-powered devices by increasing the computation
complexity even further, giving rise to alternative, after-
the-fact options like distillation, model pruning and
quantization [2] [3].

Floating numbers are a good choice to avoid precision
decay over multiple rounds of operations. For this reason,
the deep learning community has given preference to
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expensive computer systems for training with floating
numbers, and the resulting models are converted to
integers format for smaller form factors like embedded
systems. However, research has shown that replacing
floating numbers with integers does not deal a heavy toll
on the accuracy of a model but instead improves its storage
and access speed [4].

Deep learning has shown potential in other areas like
healthcare, home consumer products, and the creative
industry. There is growing interest that is pushed back by
the relatively high barrier of entry caused by expensive
computing requirements and complex verbiage. Transfer
learning has provided some improvement, but more efforts
are required to allow anyone to contribute new ideas from
scratch, free from any prior limitations or cumbersome
requirements.

1.2 Overview of experiments

We formulate and analyze a configuration based on a
mix-and-match of existing solutions in deep learning. We
are interested in testing embedded systems capabilities
when applying these solutions. Our approach applies to the
mathematical operations at the core of computations.

Specifically, we modify arithmetic operations in
existing software algorithms to manipulate a different type
of number notation to assess whether models can be
trained without precision loss on operations like
convolution or automatic differentiation and challenge the
boundaries of power and latency for embedded systems.

In general, ongoing contributions can be split into the
hardware and software distinctions where each proposes
specialized methods. A third distinction that is a hybrid
software-hardware mix tries to challenge the shortfalls in
linking innovations in hardware and the rapidly changing
software. This work is on the latter distinction, using
domain-specific accelerators and software.

For our experimentations, hardware and software
considerations include existing proprietary and open-
source devices and libraries.

1.3 Scope and key assumptions

The paradigm shift introduced with the popularization
of machine learning, especially deep learning, has
reaffirmed the importance of human supervision,
especially in the early stages of experiments.

Because we are interested in the limitations of floating
numbers on small form factors like embedded systems, we
outline key heuristics or conditions. First and foremost, we
are not interested in any type of dataset, nor are we
measuring the accuracy or overall effectiveness of a deep
learning model. Instead, we solely consider computations
which manipulate floating numbers and analyze their
performance against other alternatives.

Posit arithmetic also falls out of scope in this report
simply because the energy requirements do not improve on
IEEE 754-2008 floating-point number arithmetic [5].

Metrics like accuracy or precision are used with
regards to digital arithmetic operations. Performance and
latency are measured on the computational instructions
carried by a host processing unit. Performance represents
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the computational effort of a given task, while latency is
the time to perform.

The fundamental basis on which tensor calculus is
implemented digitally remains open to experimentation.
Automatic differentiation is also applied at the code level
to take advantage of the benefits this approach may have
on small form factors.

This work aims to contribute efforts to the use of low-
powered devices for deep learning research. Lastly,
another scope limiting factor is the use of a digital signal
processing (DSP) accelerator for domain-specific
computations, namely convolutions.

1.4 Outline of the paper

This paper is organized into 4 parts. The introduction
gives an overview of the ecosystem and context necessary
for this research. The research problem, justification,
scope, and key assumptions are also presented in the first
part. The second part presents the literature for the
research problem. Here we review similar works and their
key contributions, paying attention to the best results. The
third part describes the methodology used. The tools
necessary for our experiments are highlighted before the
fourth and last part closes with our results, conclusion, and
recommendations.

2. Literature Review

By nature, computers have limited capacity. There is
only so much they can do. However, the limitations are
less and less of a concern nowadays. In the early days of
modern computing, algorithms were programmed with the
same procedural logic used in manual calculations.
Floating numbers are arranged in large multi-dimensional
matrices called tensors. Tensor operations are
computationally expensive, and more so on embedded
devices.

In digital signal processing, a Multiply-Accumulate
Operation (MAC) is an instruction execution step that
computes the product of two scalars and adds the result to
a summation, or accumulator. A single DSP core can
handle up to 50,000 multiply-accumulate operations per
second (MACS) due to its relatively low wattage.
Typically, this is done fast for integers but not for floating-
point numbers.

The 2008 revision of IEEE-754 that improves digital
floating-point arithmetic, or IEEE 754-2008, specifies a
novel instruction, called Fused Multiply-Add (FMA), that
fixes the inherent properties of digital floating-point
arithmetic of non-associativity and non-distributivity by a
single rounding rather than two as is the case for common
DSPs [6]. Certain operations with higher order
polynomials could lead to errors unless careful
considerations are made about the memory space allotted
to the result of the operations [7]. FMA is also great for the
software implementation of arithmetic division and square
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Sign bit
Fig. 1 In fixed-point arithmetic the position of the point is
“fixed”, i.¢., decided in advance

Integer bits Fractional bits

root, but it is relatively inadequate for low-powered
devices [8].

2.1 Low-powered computing accelerators

In recent years, hardware accelerated neural networks
have been proposed in lieu of their traditional CPU
focused alternatives for improved processing speeds [9].
Different types of existing hardware were repurposed, and
new types of hardware were designed specifically to
support acceleration for the most critical computations
found on many neural networks [10]. GPUs are the most
common and consumer-ready, plug-and-play type of
accelerator [11]. Given a supporting architecture, and a
pre-installed special purpose kernel library like the
proprietary CUDA or the open-source OpenCL, a GPU
can significantly improve computational speeds.

This is not exclusive to GPUs, however, as industry
efforts continue to provide drivers for other types of
processors like DSP. A notable innovation in high-
performance computing is the TPU, a type of ASIC
(application-specific  integrated circuit) accelerator
designed purposefully for neural networks on large data
centers. The motivation for TPUs grew out of the need to
address limitations on consumer devices like smartphones
that could not process computations fast enough, therefore
posting requests to a server and returning the results. For
some of these special-purpose hardware, a dedicated
matrix calculator is implemented at the hardware level
instead of the common software level. TPUs, for instance,
have a systolic array configuration to reduce delay.

Matrix multiplication continues to keep researchers
busy to date. It helps a lot with tensor calculus. By defining
a matrix with coordinates corresponding to rows and
columns in a grid-like pattern, each element of the matrix
can be found wherever a row and column intersect. It
would take at least n3 operations to multiply a n*n square
matrix. Over the years researchers have attempted to
optimize this task by rewriting the algorithm to computer
specifications. In 1969 the best algorithm used n?%7
operations. In 2014 Frangois Le Gall achieved n?3728639,
and as of 2020 n?3728% was achieved [12].

2.2 Execution steps in accelerated computing

Once a given deep learning task has been compiled and
scheduled for execution it must be sent to the correct

Table 1 Arrangements of 32-bit Q-format, including ours

Exponent Significand  Sign bit Comments
8 23 1 IEEE-754 like
16 16 - Ours
10 22 - -
14 17 1 -
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hardware accelerator that will carry said execution and
return its results [13]. This is also the time to parallelize.
Specific libraries help in this regard; like CUDA from
NVIDIA, or OpenCL from the Khronos Group, an open-
source consortium of industry and academia leaders, of
which NVIDIA is a part of. The reason NVIDIA is
mentioned is because of its monopoly in the deep learning
space.

Vendors make different hardware accelerators, and
OpenCL is meant to be compatible with as many as
possible. A GPU may require a specific workflow between
its components, which is different from how a CPU
implements a similar workflow. A CPU may require
vectorization to execute vector instructions but doesn't
have components that are specialized for vectorization. A
platform may have one or more of different types of
accelerators, therefore achieving parallelism requires
partitioning the task amongst a heterogeneous ecosystem
to appropriately distribute the execution workload.

2.3 Floating versus fixed point numbers

Generating deep learning models with fixed-precision
parameters as opposed to floating-points has shown
advantages [14] in terms of accuracy [15]. Fig. 1 shows
why digital floating-point arithmetic is non-associative
and non-distributive. Floating-point precision has long
been a standard in computers [16], but the popularization
and consumer adoption of deep learning applications has
pushed scientists and engineers to rethink this standard
because of major concerns on embedded systems [17].
Floating-point scalars consume more energy compared to
fixed point scalars.

Fixed-point arithmetic is a more efficient alternative,
but the programmer must manually control and
accurately determine the range and flexibility of the
variables as shown in Table 1. Digital signal processing
falls between two computationally distinct categories:

° Fixed point

° Floating-point

These categories refer to the format used to persist and
manipulate numeric data. Integers are represented with 16
bits and floats, as they are commonly called, with 32 bits.
This way, floating-point is fit for scientific purposes for its
wider range; from very large numbers to extremely small
ones. For operations that quickly grow in complexity such
as exponentiation, a dynamic format like float is, once
again, preferred over fixed point.

In every DSP execution a quantization step is applied
which yields errors. This error is a gap between the actual
manual computed result and the digital result.
Quantization here is a process of rounding and or
truncating a result to the nearest value that satisfies a given
format [18]. In fixed point format the gap is noticeably
bigger, hence floating-point format is, once again,
preferred.

Without disregarding the many great benefits of fixed-
point and floating-point DSP alike, generally the latter is
meant for computationally intensive applications where
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Fig. 2 Tllustration of the CPU sharing resources with the accel-

erator in a parallel computing environment
precision is paramount. The former works great for general
purpose, high-volume applications. However, in the next
section we reveal ways to manually manage the gaps
derived from fixed-point operations in DSP, and even
include differential steps in the execution.

2.4 Q-format number notation

The Q format is a proprietary, logical representation, or
notation, of fractional bits and optional integer, non-
fractional bits, that is fixed in advance; in other words,
with Q-format numbers are treated as integers. This
notation is intended for wuse in programming
implementations of routines that manipulate numbers on
hardware that does not support floating precision. Under
strict precautions, Q format numbers can be used in
automatic differentiation, although the memory capacity
of the resulting gradient must be known in advance to
avoid memory overflow errors.

Q-format is an abstraction that allows representing
rational numbers that behave like integers by pre-defining
the space required for the fixed part and the space required
for the fractional part. Using this abstraction, it becomes
easy to bring together the benefits of floating-point format
into the fixed-point format and maintain a reasonably low
rounding gap error. One of the caveats is to consider
saturations or scenarios that may lead to an output of a
higher format range than the inputs.

Consider A=64 and B=64, 2 scalars of Q-format type
with a fixed part of size 8 and a fractional part of size 24,
noted Q8.24. This is a signed format that can hold numbers
up to 127 (one of the eight fixed part bits is used to hold
the sign). The addition of the values yields 128, a number
that this format cannot support. This saturation can be
handled by either forcing the result to 127, therefore
creating a gap of 1, or by choosing a larger Q-format type.
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2.5 Convolution operations in deep learning models

Considering the architecture diagram in Fig. 2 with
hardware acceleration, manipulating tensors is a multi-
step process for computers. 2D convolution is among the
most repeated tasks in deep learning [19]. It is
implemented in 2 major ways: the sliding-window
technique or a large matrix multiplication. The former has
come to be known simply as 2D convolution and is
focused around a smaller 2-dimensional matrix "sliding"
over the larger matrix, such as the pixel values of an image.
Each step is a Hadamard product between the small matrix,
called a kernel filter, and the corresponding portion of the
large matrix. The second method converts the input map
into a matrix and simply multiplies it by the kernel. Either
method presents advantages and setbacks that fall outside
the scope of this work, but we experiment on
differentiation applied to the following algorithms:

1) Fast Fourier Transform (FFT): research showed
that a 2D convolution solution is the same as the
Hadamard product of two FFT transformations followed
by an inverse FFT [20]. This discovery helped reduce the
complexity from O(n%k?) to O(n’logn) +O(n?) when
assuming a square matrix. The approach is not optimal
for small kernel sizes, which most convolutional neural
networks use [21].

2) Winograd Minimal Filtering was proposed to
reduce the complexity of convolutions with 3x3 kernels
by slicing 4x4 tiles out of the input image [22]. Although
this method is limited to a 3x3 size it is in response to a
growing trend in the scientific community.

Models used in deep learning are highly structured with
particularly few control dependencies, sometimes
borrowing from other structured concepts such as graph
theory. FFT consists of multiply-accumulate operations
that are easy to track in partial or complete executions
[23][24]. This, in turn, enables elaborate synergies
between hardware and software in ways that could greatly
benefit embedded systems. FFT is also highly
differentiable.

2.6 Automatic differentiation

Automatic differentiation is increasingly proposed as
the default method of computing derivatives in deep
learning [25]. Differentiation is a mathematical algorithm
used in tensor calculus since most problems in deep
learning are expressed in terms multi-dimensional matrix
multiplications and summations [26]. Software
programming frameworks like TensorFlow [27], and
PyTorch [28] are efficient in part due to their automatic
computation of gradients. Scalar summation and
multiplication are the basis of convolution operations in
deep learning. While digital integer is associative, that is
notoriously not the case with floating-point, causing
problems with parallelization and reproducibility. There
exist solutions that unfortunately are not implemented on
modern computers.

One of the main contributions of this work is the use of
differentiation [25] on the Q-format notation. Automatic
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differentiation is the computation of gradients during
execution without explicit request from the user [29].
During model definition, the user typically defines the
forward path of execution, and the automatic
differentiation generates a backward path of execution for
computing gradients, see Algorithm 1.

Algorithm 1 Automatic Differentiation

(q1,¢2 .-, qm) +Input in Q-format
|previous(i)

d«' — (du)j_l € DJ(Q’;JH:(:WM(}))

i+—p+1l...q

e + Epsilon (host approximate)

procedure (FORWARD MODE)

Initialize %'f;k =ek=1,..., P
fork=p+1,..., m do_
%r% ZJEP"“""U“SV"U %dk‘f
where ¢ = (q1,...,q,)
end for
return —2im

Squ,..,
end procedure
procedure (BACKWARD MODE)

fort=gq,..., p+1do
for j € previous(t) do
olj] = olj] + vitlds
end for
end for
return (v[1],v[2],..., v[p])
end procedure

3. Proposed Method

To increase computing resources savings and reduce
latency, we propose to use the Q-format notation. The Fast
Fourier Transform and Winograd minimal filtering
algorithms are evaluated on this notation. Human-in-the-
loop systems built on the assistive intelligence concept are
conditioned on fast processing and portability, the former
being the missing feature for embedded systems. Our
contribution provides a proof of concept for deep learning
tasks on embedded systems by applying automatic
differentiation on the Q-format notation.

3.1 Assistive intelligence

There are multiple ways to observe intelligent abilities,
whether shown by a human or not. The imitation game, for
instance, used language to design observable tasks that,
once executed, could lead to a measure of intelligence by
using a human as benchmark. Understandably, using
natural language ability alone was a limiting proposal.

Over the years more tests have been designed and
implemented by including other abilities, such as speech
understanding, speech, object recognition and more.
Subject-specific benchmarks were also devised to monitor
advances in technology from multiple fronts.

Embedded systems offer the least requirements to host
assistive intelligence, but heavy reliance on floating-point
precision makes it difficult. Human-computer interaction
scenarios should flow quickly and seamlessly. Therefore,
embedded systems should be able to support the
requirements of assistive intelligence.
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The experiments we conducted provide results towards
the realization of assistive intelligence.

3.2 Accelerated computing in embedded systems

Using a kernel library such as OpenCL means critical
computation that has been marked for acceleration is
compiled to a lower machine instruction code. Memory
management may decide which resources to use, either the
ones closest to the processor unit or even larger ones
availed by the platform itself, such as RAM or hard disks.
Luckily this complex undertaking is easy to recognize as a
pattern of control and data flow. Memory management can
be done manually by the programmer or automated by a
caching mechanism that prioritizes reusability and handles
overflows. It becomes a matter of balancing, even when
units perform in a heterogeneous way. Kernel libraries are
responsible for tiling or splitting tensors into smaller
tensors and passing them to different caching orders at the
same time while auto-evaluating the tiling process itself.

To make optimal use of caching, it is better to
concentrate the bulk of operations on one or a few tiles to
avoid bottlenecks on the I/O routes. Execution may
include repetitions such as loops that cascade into other
loops. In this case multiple inner-loop executions for
multiple tiles can be serialized to their corresponding outer
loops in a process called fusion. Generally, caching is
implemented by a technique referred to as SIMD, or single
instruction multiple data, and is part of the instruction set
architecture (ISA) of a computing device.

Parallel computing addresses some processing
bottlenecks by spreading the instructions over multiple
simultaneous processors, or accelerators, to both speed up
computation and freeing the core processor, or CPU, to
focus on orchestration.

Neural networks rely on parallel computing [30],
constituting a major setback for embedded systems whose
resources and energy consumption discourage parallelism.
However, as we will demonstrate in this report, there are
domain-specific accelerators that are tuned for
convolution operations and consume little energy.

There is a strong correlation between progress
registered in machine learning, deep learning, and progress
in parallel computation [31]. Deep learning applications,
particularly tasks like computer vision, machine
translation, speech recognition, etc. have shown that more
computation leads to more energy consumption. Operating
costs have forced deployments to a client-server approach
because low-powered devices cannot bear the energy
consumption demands of deep learning applications.
There are increasingly more energy-limiting options
because industry trends lean towards privacy-preserving
options.

3.3 Representing and manipulating numbers

High-performance computing (HPC) remains the de
facto environment for many deep learning projects.
Ongoing efforts are required to contextualize machine
learning to edge devices. In the early days of modern
computing, the energy requirements far exceeded what is
experienced today. Part of the efforts is therefore to
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Algorithm 2 Q-format Conversion

{ +Bit scheme (short, single, or double)
e +—Lower bit scheme
p +Higher bit scheme
m +Mantissa bit size
x +Exponent bit size
a +—Exponent value
b < Mantissa value
s +Sign value
o +QOutput
procedure (ALTER)
while | < p do
l=1<<2
m+ +
end while
while [ > e do
l=1>>2
r++
end while
a=1+(1<<m)
b=1-(1<<ux)

if b < 0 then
a=a+ (b << 'i)
b=b+ (a <<i)
else b > 0
a=a—b(b<<i)
b=b—ala <<i)
end if
end for
o=bxs
o<< (x—m—1)
return o
end procedure

continue achieving high results with minimal consumption.

This trend is gaining more traction in machine learning and
deep learning.

The IEEE-754 along with its 2008 revision are
engineering standards that specify how digital floating
numbers arithmetic is implemented on software and
hardware. Although they continue to be challenging
engineering problems, little consideration was given to the
importance of energy consumption and latency, especially
for embedded systems. With the high availability of data
and the rise of deep learning [32], power and speed are
exacerbated with every new development in the field.

Tensor representations on computer systems have
evolved with the remarkable achievements in computer
vision tasks [31]. Tensors are represented as large multi-
dimensional arrays of floating numbers. Although the
manipulations do not go beyond mere summations and
multiplications, the tensor itself as a data structure takes
millions of steps to be fully traversed, often using multiple
levels of control loops, and other repetitive instructions.
Floating numbers are suited for this type of computation at
the expenses high energy and latency costs, which
embedded systems cannot overcome easily.

As shown in Algorithm 2, we propose a 32-bit width
with user defined rounding mechanisms. The algorithm
shows how a single precision floating number can be
converted to the proposed Q-format notation in Section 4.

Efficiency in deep learning, especially for embedded
systems, is measured according to:
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The energy consumption of the architecture for
any evaluated algorithm, model, or computation [33]. Here
we detail the specifications of the process that we subject
to computational analysis, although we return to the
convolution since it is the most used. The number of trips
from processor to memory should also be accounted for.

° The latency corresponds mostly to memory
bandwidth [34]. This metric should be found in the actual
run time for various executions by comparing timestamps
at different stages of execution.

°  The area cost of the physical processor or chip. It
is the core execution area spent by the instructions.

3.4 Hardware equipment used in experiments

We compare our configuration with different other
modes available, including accelerators like the Intel
Movidius2 Neural Stick. Popular frameworks like
PyTorch and TensorFlow already provide most of the
proposed features like automatic differentiation.

Our implementations focus on embedded systems (see
Fig.3) by applying automatic differentiation to a
proprietary number format that is more adapted to low-
powered, low-latency environments.

DSP can only support a limited range of MACs [35]
but we feature this type of accelerator in our experiments
because it requires little power. Floating-point format is
supported in most DSP accelerators at the cost of increased
power consumption. Integers are known to consume less
energy compared to floating numbers.

Consumer devices have features that address some of
the challenges raised in this report, and therefore provide
a benchmark on which to assess our implementations.
Expressions are evaluated on these pre-packaged devices
using Numpy and Python with hardware acceleration
handled by the open-source OpenCL kernel library that is
supported in all 3 devices shown in Fig. 3.

We compared automatic differentiation for first-order
derivatives on our implementations against open-source
alternatives mentioned in Section 2.5. We also focused on
scalar-valued functions that allowed the use of fixed-
precision format.

4. Experiments and Results

For our experiments we designed a 32-bit
implementation of the Q-format notation using a modified
open-source code base, and we also used the OpenBLAS

NVIDIA Jetson Nano BO1

TI AM572x C66x

Intel NCS2

Fig. 3 Three embedded systems used for our experiments:
Most use proprietary software and hardware. Vendors continue
to show interest for deep learning on small form factors.
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Fig. 4 Energy gains (pico-Joules per multiply-accumulate oper-
ation) in comparison to IEEE 754-2008 with similar operations
on three embedded devices

scientific calculations library as a benchmark for latency
measurements.

The structure of a neural network in deep learning is
comprised of layers in a graph-like execution process.
Each layer has nodes where certain mathematical
operations take place, the result of which are passed on to
the nodes in the following layer. A loss function is used to
supervise this entire mechanism by applying
differentiation to generate parameters, or weights, that best
estimate a solution for the problem being solved.

Layers, nodes, and parameters are essentially matrices,
and the operations taking place are summations and
multiplications. There are so many matrices multiply
operations that it serves to measure the complexity of a
neural network by simply counting the number of matrix
multiplications. Technically the result of the multiplication
is added to an accumulator, therefore a MAC, or multiply-
accumulate, constitutes a unit of operation.

MAC is used to measure the efficiency, expressed in
pico-Joules per MAC (pJ/MAC), and throughput,
expressed in Giga-MAC per second (GMAC/sec), of our
modified algorithms. We also measure the same for IEEE
754-2008, see Fig. 4 and Fig. 5.

In our experiments we design tensors and implement
the tensor manipulation algorithms discussed in Section
2.5. These algorithms are used to write functions common
in deep learning. Since many libraries have different
implementations of the same functions, we benchmarked
our results against the open-source OpenBLAS commonly
associated with tensor manipulations. The functions are:
(i) 2D Convolution, (ii) Element-wise addition, (iii)

Table 2 Multiply accumulate count, area and delay savings for some
algorithms evaluated with a digital signal accelerator on AMS572x

board: Energy savings (picojoules per MAC), Latency savings (MAC
per second), % Gains (comparison to I[EEE754-2008)
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Fig. 5 Q-32 notation (dark purple) shows performance gains

over its IEEE 754-2008 alternative on Jetson Nano
absolute, and (iv) product, (v) Softmax, (vi) Batch
normalization, (vii) ReLU and (viii) the fast-Fourier
transform (FFT).

We are interested to find out how efficient and
performant our algorithms are when subjected to hardware
acceleration on 3 different architecture types. DSP
acceleration requires the least energy at the expense of
limited applications.

4.1 CUDA acceleration

Writing kernels or low-level instructions is a
recommended method for targeting hardware acceleration
on NVIDIA graphic accelerators. Using the proprietary
CUDA language with its custom compiler, we applied the
Q-32 notation on several algorithms.

The results show how the same algorithms perform
using conventional 32-bit floating numbers. Auto-
differentiation has no further effects as expected.

4.2 MKL acceleration

Intel hardware acceleration takes place in the central
processing unit, giving it a notable difference over the
other options we observe in our experiments. Given this
particularity, we used proprietary libraries to better take
advantage of this architecture.

4.3 OpenCL acceleration

DSP acceleration is limited to signal processing and
other related functions. Incidentally, convolutions are
particularly suited for this type of acceleration, refer Table
2 and 3. Using the open-source OpenCL kernel library we
can target computations that best utilize this architecture.
Of all the devices used for experimentation, DSP is the

Table 3 FPBench aggregate precision error comparative results on
AMS572x with C66x DSP (with arbitrary rounding modes)

Energy sav-  Latency sav- Energy Latency
Algorithm ings ings Gains gains
(pJ/MAC) (GMAC/sec) (%) (%)

Absolute 1.33 3 11 14
FFT 1.9 1.8 24 28
BatchNorm  1.67 2 27 25
2D Conv 1.9 2 21 17
Softmax 1.2 2 16 16

Abbreviations: ABS (Absolute), FFT (fast Fourier transform),
BatchNorm (batch normalization), 2D Conv (2-dimensional
convolution, Softmax (Softmax)
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Float-32
Operation Q-32round-up  Q-32truncate .. q to-nearest
(e-23) (e-23)

(e-23)
Sum 6.9 7.1 7.2
Logexp 6 6.3 6.2
matrixDet1 11.7 13.7 13.9
matrixDet2 11.8 14.1 14.4
Sqrt_add 9.9 103 1

Abbreviations: Logexp (exponential logarithm), matrixDet1, 2
(determinant matrix 1, 2), Sqrt_add (addition of square roots)
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Fig. 6 CPU acceleration for the same custom notation still
shows better performance for Q-32 (dark purple) over IEEE
754-2008 (light purple) on Intel NCS2
least power-consuming platform and therefore presents an
obvious advantage.
Refer to Fig. 6 and 7 for more. The percentage gains
compared our method to their floating-point alternative.

4.4 Advantages of using DSP hardware accelerator

As explained in section 3 OpenBLAS is an open-source
library for scientific computations and it contains several
algorithms for linear algebra like matrix multiplications.
The right-most column in Table 2 shows how algorithms
adapted to our proposed method compare to their
OpenBLAS counterpart in terms of energy gains. This
library makes extensive use of multiply-accumulate
operations, giving us an ideal environment for evaluation.

We apply our evaluations on 3 devices with the use of
Q-format notation for auto-differentiation. For similar
tasks, we notice that domain-specific tasks that target DSP
acceleration have a clear opportunity to spend less
resources without sacrificing performance. Q-format
introduces the missing feature for low-powered intelligent
assistants unless IEEE 754-2008 addresses the design gaps
highlighted in previous sections. But as Table 3 shows, Q-
format aggregate precision error (or adjustment error) is
slightly reduced from IEEE754-2008 regardless of host
architecture. Rounding-up or truncating is a common
operation in digital arithmetic. FPBench is a benchmark
used to evaluate precision errors in floating-point digital
arithmetic.

We also show the quality gains on replacing floating
numbers with Q-format notations. To check for errors, we
manually re-write some arbitrary algorithms to handle our
proposed notation, which means we define the operands
logic for add and multiply.

We divided our experiments into multiple phases for as
many devices as we have. Each phase measures area and
delay for several algorithms and the energy gains
compared to floating numbers.

Our sample implementation uses a 32-bit Q-format
equivalent to IEEE 754-2008 single floating number.
Other bit schemes can be used. Conventionally switching
from a single floating number to a double floating number
is used to further increase the precision of operations at the
expense of computing resources. When representing
images as 2D matrix with Q-format notation, convolution
operations benefit from the reduced errors caused by
rounding and a few other known limitations in the IEEE
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Energy (pJ/MAC)

Fig. 7 DSP accelerated algorithms show best overall results be-
cause of domain-specific environment for convolutions: In dark
purple: Q-format with auto-differentiation. In light purple: the
IEEE 754-2008 results under similar conditions.

754-2008 standard.
5. Conclusion

In this work we propose an alternative notation that
mimics integer format. We are interested in analyzing the
gains this replacement has on embedded devices in terms
of power consumption and latency.

Our evaluation shows gains in throughput and latency
on a few common algorithms used in deep learning. We
show up to 21% gain in energy savings and up to 22%
reduced latency while maintaining optimal output error
(2.1% average relative error). Our measurements are based
on multiply-accumulate (MAC) with throughput, or
performance expressed in the number of MACs per second,
and energy in pico-Joules per MAC. Processor
manufacturers publish theoretical numbers for speed,
usually expressed in FLOPS (floating operations per
second) which our estimated latency reduction is based on.

Assistive intelligence is a growing field provides
interfaces where continuous input is expected throughout
execution. The foundations of computing architecture can
be revisited without stalling the progress achieved. Hybrid
hardware-software tinkering is open to improvement and
better numerical approximations.

Q-format notation demands a manual overhaul in the
number notation design, which require advanced skills in
several fields in computer science and artificial
intelligence. Researchers are encouraged to spend more of
their skills in lowering the barrier of entry for all people to
join this field. That is a much better endeavor to making
deep learning an affordable problem-solving toolkit.
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