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ABSTRACT. Most serious accidents are caused by the driver’s visual distraction. There-
fore, early detection of a driver’s wvisual distraction is very important. The detection
system mostly used is the dashboard camera because it is cheap and convenient. How-
ever, some studies have focused on various methods using additional equipment such as
vehicle-mounted devices, wearable devices, and specific cameras that are common. How-
ever, these proposals are expensive. Therefore, the main goal of our research is to create
a low-cost, non-intrusive, and lightweight driver’s visual distraction detection (DVDD)
system using only a simple dual dashboard camera. Currently, most research has focused
only on tracking and estimating the driver’s gaze. In our study, additionally, we also aim
to monitor the road environment and then evaluate the driver’s visual distraction detec-
tion based on the two pieces of information. The proposed system has two main modules:
1) gaze mapping and 2) moving object detection. The gaze mapping module receives video
captured through a camera placed in front of the driver, and then predicts a driver’s gaze
direction to one of predefined 16 gaze regions. Concurrently, the moving object detection
module identifies the moving objects from the front view and determines in which part of
the predefined 16 gaze regions it appears. By combining and evaluating the two modules,
the state of the distraction of the driver can be estimated. If the two module outputs
are different gaze regions or non-neighbor gaze regions, the system considers that the
driver is visually distracted and issues a warning. We conducted experiments based on
our self-built real-driving DriverGazeMapping dataset. In the gaze mapping module, we
compared the two methods MobileNet and OpenFace with the SVM classifier. The two
methods outperformed the baseline gaze mapping module. Moreover, in the OpenFace
with SVM classifier method, we investigated which features extracted by OpenFace affect-
ed the performance of the gaze mapping module. Of these, the most effective feature was
the combination of a gaze angle and head position_R features. The OpenFace with SVM
method using gaze angle and head position_R features achieved a 6.25% higher accuracy
than the method using MobileNet. Besides, the moving object detection module using the
Lukas-Kanade dense method was faster and more reliable than in the previous study in
our experiments.
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1. Introduction. According to the World Health Organization (WHO), over 1.3 million
deaths occur worldwide each year due to traffic accidents alone making it one of the
top eight causes of death. Moreover, most traffic accidents were caused by distracted
driving [1]. Thus, recent studies have addressed the issue of the detection of distracted
drivers. Driving is a complex process that depends on many factors and is also difficult to
monitor. Therefore, it is necessary to monitor the driving process, evaluate the state of the
distraction of the driver, and warn or guide the driver. This is particularly important when
the driver fails to notice a pedestrian or other moving object. For example, sometimes,
the driver might not notice the moving object (pedestrian, bicycle, obstacle, animal,
etc.) when the vehicle is moved from a stationary state (standing at a traffic light) to
a moving state shown as in Figure 1. Therefore, developing a driver’s visual distraction
detection (DVDD) system for evaluating a driver’s visual attention is highly necessary
to reduce traffic accidents caused by distracted driving. Consequently, a lot of studies
have been conducted, and some of them have been implemented. These related studies
can be classified according to the method of determining the driver’s distraction, and
three main types of data used to recognize distracted drivers. The first method was based
on physiological data such as an electrocardiogram (ECG), and an electroencephalogram
(EEG). The second method was based on vehicle control data such as pedal positions, and
steering wheel movements. Finally, the third method was based on visual data such as
eye movements, body movements, and images or videos of the driver’s facial expressions
[2]. Of these, the studies based on the visual data of the driver account for the majority
of the work. Our study also proceeds to focus on the detection of distracted drivers using
visual data. Driving is considered a complex activity that requires the driver’s all sensor,
cognitive, and body movement processes to ensure safety. The following are some related
studies that were conducted to determine a driver’s visual attention.
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FIGURE 1. Detection of driver’s visual distraction system

In recent years, driver distraction in human driving [3-8] has been carried out. This type
of studies often uses a driver’s behavioral indicator to determine driver status. Tsubowa
et al. [8] conducted the driver status monitoring system for detecting a decrease in driver
arousal by using wearable devices. The head pose and gaze estimation is the common
way to estimate the driver’s visual attention when driving. Several approaches based on
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the front camera of the vehicle-mounted device or windshield-mounted smartphone [9,10]
monitored the driver’s attention by combining several features (spatio-temporal features
based on the driver’s state) and behavior (head pose, eye gaze, eye closure, yawns, use of
cell phones). Although they provide accurate gaze information, sometimes, gaze informa-
tion can be inaccurate because of the slight movement of the camera due to the use of 3D
geometric reasoning. Moreover, Mizuno et al. [11] conducted a system of visual attention
detection using a gaze tracker and vehicle-mounted device. Although these approaches
are effective and robust, they are intrusive, costly, and unsuitable for real application.
Recently, an open-source eye-tracking-based toolkit is commonly used for related studies
due to the low cost and being non-intrusive because this toolkit does not require addition-
al special equipment. Araluce et al. [12] used an open-source state-of-the-art OpenFace
v2.0 toolkit [13] to monitor the driver’s visual attention using gaze estimation, which is a
typical approach used on the road scene. Besides, Fridman et al. [14] detected the visual
features of a driver using a single camera and then estimated the driver’s gaze in six dif-
ferent regions. Furthermore, several studies have recently been conducted to identify the
visual attention of drivers in real-time conditions [15-17]. However, they used the driver
monitoring camera to estimate whether the driver visual distraction, while disregarding
the road situation. These studies focused on accurately determining where the driver is
looking using the eye gaze direction and the driver’s other features such as head pose,
etc. However, it is not sufficient to detect the driver’s visual distraction because driving
is a complex process and depends not only on the driver but also on other road users.
Determining where the driver is looking is only one module of our study and we also esti-
mate where the moving object appears in the driver’s gaze regions. If the driver does not
look at the gaze region where the moving object is detected, it is considered that driver’s
visual distraction has occurred. In this case, the DVDD system warns the driver. Xiao
and Feng [18] evaluated drivers’ visual distraction based on monitoring the driver’s gaze
direction and the road information. It is the most similar study to our work. Therefore,
we chose this study as a baseline and compared the performance of each module of our
system with the corresponding module of the baseline.

Our paper proposes to evaluate the detection of driver’s visual distraction based on
different methods, such as MobileNet [19] and OpenFace v2.0 with a support vector
machine (SVM) classifier. These methods are used to estimate a driver’s gaze mapping,
while the optical flow dense method is used to detect moving objects. We evaluated the
state of driver distraction based on two inputs. One is a video stream of the driver’s
monitoring camera (for estimating gaze region), and the other input is a video stream of
a front-view camera (detection of a moving object), as shown in Figure 2. We construct
a detection of the driver’s visual distraction system, which is low-cost, non-intrusive, and
not sensitive to the slight movements of a dual camera.

Compared to related works, our contributions and achievements are as follows.

e Most studies focus on only the accuracy of gaze mapping. The main feature of our
study is not only to determine the driver’s visual attention (gaze) but also to monitor
the road environment and then evaluate the driver’s visual distraction based on the
two. In addition, we proposed a low-cost, non-intrusive, and lightweight driver’s
visual distraction detection (DVDD) system using a simple dual dashboard camera
without the need for additional equipment.

e In the first module, the gaze mapping module, we proposed and compared two
methods: MobileNet and OpenFace with SVM classifier. Our methods outperformed
the currently best baseline gaze mapping module. Furthermore, in the OpenFace
with SVM classifier method, we investigated which features extracted by OpenFace



1448 U. SONOM-OCHIR, S. KARUNGARU, K. TERADA AND A. AYUSH

v
/ dr_zone:= Output of gaze mapping module /

One of predefined gaze zone;
Gaze mapping

[ r dul‘ 1
"L , Gl [ ]| movObj_zone:= Output of moving object
ﬁ‘ P 2 detection module
\ Evaluation of the L.Safe One of predefined gaze zone;
i states of the » 2 Ri:vlzy
+SUM 14 d""’;“f”‘ of the 2.Dangerous
river s =~ = o . 2
Classifier 15 List_of neighborf]: Nclghbormg zones corresponding to

16 dr_zone;

\lnput images of driver

Moving object detection module: Predicted
( : regions 5 v
1
2
N

if same zone as
movObj_zone was found in
List_of neighborf]

Tnput images of road situation v

& State:=Risky State:=Dangerous State:=Safe

(a) Proposed Driver's Visual Distraction Detection system structure (b) Flowchart of evaluation of the distraction of the driver

FI1GURE 2. Proposed driver’s visual distraction detection system structure

affected the performance of the gaze mapping module. Of these, the most effective
feature was the combination of a gaze angle and head position_R features.

e In the second module, moving object detection, we compared two methods: Lucas-
Kanade dense and sparse to explore which method would be effective for the moving
object detection module. Experimental results demonstrated that the Lucas-Kanade
dense method detected moving objects faster than the sparse method.

The rest of this paper is organized as follows. First, a description of the DVDD system,
the datasets used for training, and the methods we used are provided in Section 2. Then,
in Section 3, we describe our experiments and the inference result of combining the best
version of the above methods for gaze mapping and the moving object detection method.
Our conclusions are then presented in Section 4.

2. System Structure and Dataset. Our system has two modules, gaze mapping and
moving object detection. The gaze mapping module receives the video captured through
the driver monitoring camera, and then defines the gaze region the driver is looking at.
We investigated different methods, such as using the MobileNet model and OpenFace
with SVM classifier, for Gaze mapping. The moving object detection module gets a video
stream of the front-view camera (outside road situations) and identifies the gaze region
where the moving object is detected. We combine the two modules and evaluate the state
of the distraction of the driver. We considered three states of the distraction of the driver.
An algorithm for evaluating these states is shown in Figure 2(b).

a) Safe State: If the driver’s gaze region is THE SAME as the one the moving object is
detected in, it is considered a “safe” state.

b) Risky State: If the driver’s gaze region is NOT THE SAME as the one the moving
object is detected in, BUT it is a neighboring gaze region, it is considered a “risky”
state.

c) Dangerous State: If the driver’s gaze region is THE SAME as the one the mov-
ing object is detected in, and NOT a neighbor region EITHER, it is considered a
“dangerous” state.

In this paper, we defined 16 gaze regions and collected data from 4 volunteer drivers.
The data includes the driver’s gaze and the driving environment information. The 16
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FIGURE 3. Pre-defined 16 gaze regions

TABLE 1. Gaze regions and neighbor regions of each gaze region

Gaze regions Neighbors
1 Windshield 2,4,5 11, 14, 16
2 Windshield 1,3,4,5,6, 14, 16
3 Windshield 2,5,6, 10, 16
4 Windshield 1,2,5,7,8, 11, 12
5 Windshield 1,2,3,4,6,7,8,9, 10
6 Windshield , 3, 9,8,9,10
7 Windshield 4,5,8,13, 15
8 Windshield 4,5,6,7,9,13, 15
9 Windshield 5, 6,8, 10, 15
10 Rearview mirror 3,5,6,9
11 Dashboard 1, 4,12, 14
12 Music/radio 4,7, 11,13
13 Left side mirror 7,8, 15
14 Right side mirror 1,2, 11, 16
15 Left side window 7,8,9, 13
16 Right side window 1,2,3, 14

predefined gaze regions, as shown in Figure 3, are 1-9 gaze regions on the windshield,
rearview mirror, left and right-side mirrors, left and right-side windows, dashboard, and
music/radio gaze regions. We also considered the corresponding neighboring regions of
each gaze region as shown in Table 1.

The dataset was built using images of drivers who gazed at predefined 16 regions in the
vehicle. We captured the data as the vehicle went to different locations such as university
campus roads and parking lots in the morning, afternoon, and night to get images at
different times of the day using a simple COOAU-D30-1080P dual dash camera. As the
drivers gazed at the 16 predefined regions, they naturally acted, with no restrictions on
changes in the head pose or other movements. The dataset consists of 12,425 images with
16 labels, and some example samples are shown in Figure 4. We denoted this dataset as
DriverGazeMapping (DGM).

2.1. Gaze mapping module. In the first module, we selected two methods, MobileNet
and OpenFace with an SVM classifier. The main proposal of this work is to contribute
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FIGURE 4. Samples of the collected data

to the distracted driver detection system based on a dash camera. We aim for a non-
intrusive, cheap and lightweight system that is not difficult to use or fatigues the driver.
Therefore, vehicle-mounted eye trackers and head-mounted eye trackers do not meet the
requirements of our system. Consequently, face feature detection using visual data is a
key task for this type of systems. OpenFace is one of the most popular open-source facial
analysis tools in this research field because of its robustness and performance. It provides
face detection and 68 facial features. Therefore, we use some of these features to estimate
the driver’s gaze in our predefined 16 gaze regions using the classifier in the gaze mapping
module. As our proposed system is a real-time system, the performance speed is crucial.
In terms of performance speed, the SVM classifier was much faster than other classifiers
[20]. Therefore, we chose the OpenFace with an SVM classifier for the gaze mapping
module.

Also, as for MobileNet, we chose it to keep our system light, because MobileNet uses
less computation power to run. This makes it a perfect fit for mobile devices, light
systems, and computers that run without GPUs. Also, MobileNet significantly has a
lower number of parameters making it a lightweight deep neural network. It is therefore
fast and well suited for our system. Then, we experimented with these methods on
the gaze mapping module to compare the training data and the real-time environments.
Although MobileNet did not outperform the OpenFace with the SVM classifier, it was
better than the baseline gaze mapping module.

2.1.1. Gaze mapping using the MobileNet model. The first method for gaze mapping used
the MobileNet deep learning method. We used a pre-trained MobileNetV2 model without
the last dense layer. We then added a dense layer with 16 predefined gaze regions as
shown in Figure 5. On the DGM dataset, the MobileNet model was trained using four
different fine-tuning and transfer learning strategies. The first strategy is to train only the
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FIGURE 5. Gaze mapping module using MobileNet model

last classifier layer of the MobileNet model, while the second strategy is to train the last
30 layers of the model including the classifier layer. We trained the last 50 and 70 layers
of the model including the classifier layer for the third and fourth strategies, respectively.

We noted that by increasing the number of trainable layers from 30 to 50, the accuracy
of the training was improved. However, setting trainable layers to 70, the accuracy was
lower. In addition, we also tested the model with 80 trainable layers, but the result was
lower than others. Therefore, we do not show the result of the model with 80 trainable
layers in our results. The model with 50 trainable layers achieved the best result of the
experimented models.

2.1.2. Gaze mapping using OpenFace with SVM classifier. Determining face and head
features from images is one of the challenges of gaze mapping. OpenFace is one of the
robust toolkits used to extract face and head features. Therefore, we used the OpenFace
toolkit, which provides gaze angles and head position features, for the gaze mapping task.
The gaze angle and head position features are recognized by analyzing the driver’s face
from the driver monitoring camera using the OpenFace toolkit.

We also used the multi-class SVM, which is more appropriate for our task, with the
OpenFace toolkit, as shown in Figure 6. We chose the SVM classifier based on the
following.

e Performance speed: Our proposed system is a real-time system, so the perfor-
mance speed must be high. In terms of performance speed, the SVM classifier is
much faster than other classifiers [20]. Therefore, we chose the SVM classifier.

e The accuracy of classifying gaze mapping: The accuracy of classifying gaze
mapping has high mean overall accuracies. This is shown in [20] and other studies

m’enFace: \
- _.{ Gaze_angle_x }_.

Eye gaze gaze_angle_ y

Input images
of driver Output vector

(16)

s Head Pose Rx (pre-trained) Predicted
ey | Head Pose Ry (e gaze regions
Head_Pose_Rz
& Head pose /

FIGURE 6. Gaze mapping module using OpenFace (using gaze angle and
head position features)
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[21,22]. In these studies, the SVM classifier exhibited superior results to the neural
network and random forest methods in terms of overall accuracy and robustness.
Therefore, we used the SVM algorithm to implement the classification of gaze map-
ping. In addition, SVM is better at classifying extraction data of the OpenFace, as
can be seen from the study by Rill-Garcia et al. [22].

e Amount of our data: The OpenFace was used to extract gaze direction and head
direction features from the DGM dataset. We then trained the SVM classifier on this
dataset. Our dataset is relatively small, with few samples, making SVM classifiers
more suitable.

We tuned the hyper-parameters to train the SVM classifier using GridSearchCV [23]
from the Scikit Learn library. GridSearchCV helps combine an estimator with a grid
search preamble to tune hyper-parameters such as kernel, C, and gamma. To determine
the value of parameters C and gamma for searching for the best value, we experimented
with C from 0.1 to 100 and the gamma from 0.0001 to 10. According to GridSearchCV,
the most appropriate parameters for the dataset extracted from the OpenFace toolkit
were defined as {C = 10, gamma: 0.1, kernel: ' rbf' }. We conducted the training of the
SVM classifier in four different strategies using the features extracted by OpenFace. The
features we used are as follows.

e gaze angle (gaze_angle x, gaze_angle_y),
e head position T (Head Pose_Tx, Head Pose_Ty, Head Pose_Tz),

e head position R (Head Pose_Rx, Head Pose_Ry, Head Pose_Rz), and
e a combination of the gaze angle and head position_R.

Thereafter, we trained the SVM classifier on the four different datasets consisting of the
feature and corresponding gaze region labels. A portion of the DGM dataset mentioned in
Section 2 was used to generate these four datasets for the training. During the execution
of the gaze mapping module, as shown in Figure 6, the gaze angle and head position
features extracted by OpenFace are fed into the pre-trained SVM classifier, which then
predicts one of the pre-defined 16 gaze regions corresponding to these features.

2.2. Moving object detection. The moving object detection is the second module
of the DVDD system. In addition to the driving situations, our system also monitors
outside road conditions using a front-view camera. The moving object detection module
detects a moving object and then determines in which gaze region of the windshield the
object appears. Sometimes, a visually distracted driver might fail to notice a pedestrian
or other moving object. Moving object detection is different from object detection and
tracking. Recognizing an object from video captured using a stationary camera and a
moving object from a non-stationary camera environment are two different tasks. We
used the optical flow method, which is more appropriate for our moving object detection
task. The optical flow method can be any of two types: sparse and dense. We tested
different implementations of the Optic flow method, to find out which method would be
effective and meet our system’s requirements as shown in Figure 7. However, methods
except the Lucas-Kanade dense and sparse required too many resources that could not
be used in a real-time system.

In the moving object detection module, early detection of moving objects is very im-
portant. In other words, the speed of moving object detection should be fast. The faster
it is, the safer and more reliable it is. For the sparse method, the number of points re-
quired to detect a moving object is too small. In other words, the sparse method has
the disadvantage of assuming that no motion is detected if the moving object does not
pass through the control point. This risks the late detection of moving objects because,
in traffic, unexpected events can occur suddenly. Therefore, although the sparse method
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2. Optic flow dense (Lucas-Kanade) 3. Optic flow dense using deep learning (RAFT)

1. Movable road scene

4. Optic flow dense (Gunnar-Farneback) 5. Optic flow sparse (Pyramid-Lucas-Kanade) 6. Optic flow sparse (RLOF)

FiGURE 7. Comparative results of the optical flow methods’ implementations

requires fewer resources, it does not meet the requirement of accurate and fast object de-
tection. We chose Lucas-Kanade dense method from many implementations of Optic flow
because the speed of moving object detection was faster in our experiment. We experi-
mented with both the Lucas-Kanade dense method and sparse method (the last one was
used for the moving object detection module of the baseline study) in the moving object
detection module. The Lucas-Kanade dense method detected moving objects faster than
the sparse method in this experiment, as shown in Figure 9 and Figure 10. The sparse
method correctly detected a moving object in gaze region 2, but it was detected after
passing two-thirds of the gaze region 2 (the two images in the first column of Figure 10).

In addition to the Lucas-Kanade dense and sparse methods, we tested different imple-
mentations of the Optic low method, to find out which method would be effective and
meet our system’s requirements as shown in Figure 7. However, other methods required
too many resources and cannot be implemented in a real-time system.

3. Experiment and Results. In this section, we present the evaluation of the two
modules, gaze mapping and moving object detection, separately and their combination.
In other words, we show the evaluation of the state of the driver’s distraction based on
two inputs. As we explained in Section 2, we implemented different strategies for each
method of the gaze mapping module in the DVDD system. The following sections provide
a more detailed comparison of the results for each method of the gaze mapping module.

3.1. Experiment of gaze mapping and result. First, we fine-tuned the pretrained
MobileNet trained on the ImageNet dataset [24] with our DGM dataset. Table 2 shows the
results of the MobileNet models using different strategies. We evaluated the performance
of each model using 180 drivers’ face images for each gaze region. The model with 50
trainable layers in Table 2 achieved the best result at 97.45% accuracy.

TABLE 2. Results of the MobileNet models using different strategies

Strategies Accuracy | Precisions | Recall | F1 score

Only classification layer | 92.64% 92.97% | 92.64% | 92.60%
Last 30 layers 93.56% 94.16% | 93.56% | 93.56%
Last 50 layers 97.45% | 97.46% |97.45% | 97.45%
Last 70 layers 96.86% 96.91% | 96.89% | 96.90%
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Secondly, we used the OpenFace toolkit to estimate gaze angle and head position fea-
tures, and then classified the driving gaze direction into 16 pre-defined gaze regions using
the SVM classifier. The results of the SVM classifier using different features mentioned in
Section 2.1.2 are shown in Table 3. We evaluated the performance of each strategy using
the same data used in the evaluation of the MobileNet model.

TABLE 3. Results of the SVM classifier using different features

Strategies | OpenFace | OpenFace | OpenFace OpenFace
+ SVM + SVM + SVM + SVM
using gaze | using head | using head | using gaze angle
angle pose T pose_.R | and head pose_ R
Gaze regions Accuracy
1 1% 22% 76% 78%
2 24% 53% 69% 68%
3 83% 37% 80% 80%
4 55% 25% 45% 61%
5 36% 2% 55% 47%
6 74% 46% 67% 85%
7 80% 25% 1% 80%
8 63% 0% 63% 68%
9 74% 40% 1% 74%
10 38% 91% 7% 81%
11 22% 0% 10% 20%
12 32% 62% 74% 1%
13 86% 30% 91% 91%
14 12% 57% 86% 88%
15 91% 9% 91% 91%
16 25% 0% 99% 99%
Overall 54.12% 31.18% 70.31% 73.87%

When using the gaze angle feature (OpenFace + SVM using gaze angle), the accuracy
of the SVM classifier for gaze regions 2, 11, 14, and 16 was lower than others, and
the average accuracy was 54.12%. The OpenFace extracts two different head positions,
head position_T, and head position_R. In the case of using the head position_T feature
(OpenFace + SVM using head pose_T), the accuracy of the SVM classifier for gaze regions
8, 11, and 16 was not recognized, and the average accuracy was 31.18%. The performance
of the SVM classifier using the head position R (OpenFace + SVM using head pose_R)
was higher than the previous two strategies. When using a combination of gaze angle and
head position_R features (OpenFace + SVM using gaze angle and head pose_R), the SVM
classifiers outperformed the other strategies. The average accuracy of this strategy was
3.56% higher than the previous best-performing SVM classifier using the head position-R
feature.

In the OpenFace with SVM classifier experiments, we tested different features, such
as gaze angle, head position_T, and head position_R. Experimental results showed that
the gaze angle and head position_R features were more effective than the head position T
feature. In addition, the combination of gaze angle and head position_R features was
more effective than when using each feature separately.

Finally, we chose the best strategy for each method and evaluated the performance of
each strategy using a real driving video. Table 4 shows the results of these evaluations.
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The strategy of the gaze mapping using the MobileNet model in Table 4 predicted all of
the gaze regions except 11 and 12 with high accuracy. The strategy of the gaze mapping
using the OpenFace with SVM classifier (using gaze angle and head position_R features)
predicted all gaze regions. The MobileNet model performed better than the OpenFace
with SVM classifier when using test data (180 drivers’ face images for each gaze region).
However, when using the real driving video, the average accuracy of the strategy using
the OpenFace with SVM classifier was 6.25% higher than the strategy using MobileNet.
Therefore, we chose the OpenFace with SVM classifier to compare with the existing
system, which is our baseline.

TABLE 4. Results of the best strategy for each method

Methods MobileNet OpenFace + SVM
Gaze regions /Last 50 layers/ | /gaze angle + head pose_ R/
1 3/3 2/3
2 3/3 2/3
3 3/3 3/3
1 2/3 3/3
5 2/3 3/3
6 3/3 3/3
7 2/3 3/3
8 2/3 3/3
9 3/3 1/3
10 3/3 3/3
11 0/3 3/3
12 0/3 3/3
13 3/3 3/3
14 3/3 3/3
15 3/3 1/3
16 3/3 2/3
Overall (%) 79.16 85.41

3.2. Results of the comparison of the gaze mapping module with the existing
system. In this section, we compared our best strategies for the gaze mapping module
with the front camera module of the baseline study [18]. Note that the camera position is
above the driver’s control panel in [18], while it is behind the middle mirror in our study.
The camera position is very essential for the system to work, as it allows monitoring of a
wider range of driving environments. Araluce et al. [12] considered that the best accuracy
was obtained when the camera was just in front of the user at 48 cm above the table level.
It is closest to the middle mirror position. The camera position we chose based on [12]
has the advantage of not non-interference with the driving.

Table 5 shows the results of comparing our best strategy with the front camera module
of the baseline trained on the DGM dataset. Our method correctly identified most of the
gaze regions seen by the driver, although some gaze regions were confused with neighboring
states.
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TABLE 5. Results of comparison of the gaze mapping module (OpenFace
with SVM using gaze angle + head pose_R features) of our system with the
front camera module (baseline) trained on the DGM dataset

Systems Gaze mapping module The front
(OpenFace with SVM using gaze | camera module
angle + head pose_R features) (baseline)
Gaze regions Accuracy
1 78% 43%
2 68% 30%
3 80% 66%
4 61% 53%
5 47% 37%
6 85% 66%
7 80% 91%
8 68% 74%
9 74% 80%
10 81% 38%
11 20% 0%
12 1% 34%
13 91% 5%
14 88% 5%
15 91% 89%
16 99% 4%
Overall 73.87% 49.06%

On the contrary, experimental results show that the front camera module based on the
eye’s pupil could not identify some gaze regions. In other words, it is less effective in
situations where no face is detected. Notably, in gaze regions 11, 14, and 16, the results
are lower than in the others because the driver’s face is almost invisible to the camera
when the driver looks at these gaze regions. The confusion matrix in Figure 8 shows
details. Therefore, it indicates that our method, the OpenFace with SVM classifier, using
gaze angle and head position_R features is more effective.

3.3. Combination of gaze mapping and moving object detection modules. In
this section, we evaluated the combination of the best version of each gaze mapping
method and the Lucas-Kanade dense method, which was used for moving object detection.
In addition, the baseline system was also evaluated to compare the performance with our
system. We evaluated the state of the distraction of the driver based on the combination of
two modules, such as gaze mapping and moving object detection, on the inference video.
In this inference video, the moving object moves along gaze regions 2, 5 and 8, while the
driver looks at the object. Figure 9 shows the evaluation scene of the combination of gaze
mapping and moving object detection modules. Besides, the detection of each module in
each system is shown in Table 6.

The MobileNet model determined the direction of a driver’s gaze, gaze regions 2 and 5
were correctly, but gaze region 8 was incorrectly predicted as gaze region 10. On the other
hand, when the gaze mapping method using the OpenFace with SVM classifier determined
the direction of a driver’s gaze, gaze regions 8 and 5 were correctly predicted, but gaze
region 2 was incorrectly predicted as gaze region 14. We observed that the incorrectly
predicted gaze region was a non-neighboring of the target gaze region in the first method.
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F1GURE 8. Confusion matrixes of (a) the gaze mapping module (OpenFace

with SVM using gaze angle + head pose_R features) and (b) the front
camera module (baseline)

OpenFace (Gaze + Head-R) with SVM + LucasKanadeDense

FIGURE 9. Evaluation scene of a combination of gaze mapping and moving
object detection modules

In contrast, the incorrectly predicted gaze region was a neighbor of the target gaze
region in the second method. In general, the performance of the gaze mapping method
using OpenFace with SVM classifier (using gaze angle and head position_R features)
achieved the best performance in all experiments we conducted. Besides, the Lucas-
Kanade dense method for the moving object detects the module correctly and predicted
all of the gaze regions where the moving object appeared.

We also evaluated a combination of the front camera module (gaze mapping) and the
rear camera module (moving object detection) of the baseline using the same inference
video. The gaze mapping module of the baseline determined the direction of a driver’s
gaze, gaze regions 2 and 5 incorrectly, and gaze region 8 was incorrectly predicted as
neighboring gaze region 15, as shown in Figure 10.

Meanwhile, the moving object detection modules of the baseline correctly recognized
gaze regions 5 and 8 where the moving object appeared. Even if a moving object was
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TABLE 6. Comparative results of a combination of gaze mapping and mov-
ing object detection (MOD) modules of our systems and baseline

Evaluated gaze regions
2 | 5 | 8 2 [ 5]8 2 \ 5 \ 8
Systems : .
Gaze mapping Moving object States
detection
Baseline No No |Neighbor|YesNo|Yes| Yes|Dangerous|Dangerous| Risky
Our Yes |Yes| No Yes |Yes|Yes Safe Safe  |Dangerous
System 1
g Our Neighbor|Yes| Yes Yes |Yes|Yes| Risky Safe Safe
ystem 2

Baseline = Front camera module + rear camera module (Lucas Kanade sparse)

Our System 1 = MobileNet (with last 50 layers trainable) + MOD (Lucas Kanade dense)
Our System 2 = OpenFace with SVM (gaze + head_R) + MOD (Lucas Kanade dense)
Yes = correctly recognized/predicted gaze region

No = incorrectly recognized/predicted gaze region

Neighbor = incorrectly recognized /predicted gaze region, but neighboring gaze region

FI1GURE 10. A baseline study’s evaluation scene of a combination of gaze
mapping and moving object detection modules

correctly detected in gaze region 2, it was detected after passing two-thirds of the gaze
region 2 (the two images in the first column of Figure 10). Therefore, we marked the
result of the moving object detection module for gaze region 2 as YesNo. In addition,
we chose Lucas-Kanade dense method for the moving object detection module, while
the baseline used the Lucas-Kanade sparse method. The Lucas-Kanade dense method
detected moving objects faster than the sparse method in this experiment, as shown in
Figures 9 and 10.

4. Conclusions. The main proposal of this work is to contribute to the distracted driver
detection system based on a dash camera. It is a non-intrusive, cheap, and lightweight
system that is easy to use and does not cause weariness in the driver. Our system consists
of two modules, gaze mapping and moving object detection module. We proposed different
methods for the gaze mapping module. The method using OpenFace with SVM classifier
(using gaze angle and head position R features) outperformed all other methods. The
result was also 6.25% higher than the other method using MobileNet when using a real
driving video. This is because the MobileNet model was sensitive to small changes in the
camera position. Moreover, our best performing strategies of both methods (OpenFace
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with SVM classifier and MobileNet) for gaze mapping outperformed the gaze mapping
module of the baseline. The gaze mapping module of the baseline is less effective in
situations where no face is detected. On the contrary, the gaze mapping module of our
system can determine the gaze direction of the driver using a head feature, even when
the face is not detected. Besides, in the moving object detection module, experimental
results demonstrate that the Lucas-Kanade dense method detected moving objects faster
than the sparse method. Experiments proved that our methods are effective.

In future work, we will prepare more driver’s monitoring and driving situation paired
data and investigate other approaches for gaze mapping and moving object detection to
improve the performance of our current system.
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