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Abstract

This paper describes a prediction method for wind speed fluc-
tuation using a deep belief network (DBN) trained with en-
semble learning. In particular, we investigate the usefulness
of the ensemble learning for an prediction accuracy improve-
ment of wind speed fluctuation. Bootstrap aggregating (the
bagging method), which is a typical algorithm of ensemble
learning, has been applied to train the DBN. The prediction
result is decided by a majority vote of each DBN output. In
addition, two bagging methods with different selection meth-
ods of training data have been proposed. These proposed
methods have been evaluated from several prediction results
by comparison with a conventional method.

1. Introduction

In recent years, wind power generators have been intro-
duced to rapidly provide renewable energy to electric power
systems. Since the output of a wind power generator depends
on weather conditions, in order to supply a stable electric
power, it is necessary to control the output of other power
generation equipment according to the output fluctuation of
the wind power generator. If the output of the wind power
generator can be predicted, stable and efficient operation of
the electric power system can be expected.

Our research group has already proposed several predic-
tion systems for wind power generation, such as a hierarchical
neural network using the classification of the observed wind
speed [1]. However, a prediction error between the predicted
wind speed and the observed wind speed (time delay) was
confirmed [2]. Therefore, we focused on the timing of the
wind speed change and predicted, the wind speed fluctuation
to reduce the time delay.

In this paper, we propose a prediction system for wind
speed fluctuation using a deep belief network (DBN), which
is a deep learning. Deep belief network is a type of neural
network and can realize high performances in sound and im-
age recognition fields because of connections between neu-
rons in a number of layers. A DBN has some features: one
is a pre-training function by unsupervised learning in forward
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propagation, the other is the ability to handle many input data
in a multi layered structure. We focus on these features and
demonstrate that a DBN is an effective means of for predict-
ing wind speed fluctuation.

The generalization capability of neural networks can be en-
hanced by a DBN. A DBN is trained by a bagging method to
the avoid over-training of networks. In addition, the predic-
tion accuracy is expected to improve by using multiple DBNs
as weak discriminators. In this method, training data is di-
vided into some data sets, and the prediction result is used
to evaluate multiple DBN outputs. The training data of each
DBN are generated by two methods. One is simple division in
the considered time series. The other is random sampling in
the unconsidered time series. The prediction results for wind
speed fluctuation were verified in the generation methods of
training data by ensemble learning.

2. Prediction System for Wind Speed Fluctuation
2.1 Structure of deep belief network

Figure 1 shows the structure of the DBN that predicts
the wind speed fluctuation dyy(t + n) from time-delayed
fluctuations of the wind speed d;;, (t)—d;,(t — 11) and the
wind direction wp. In order to convert linguistic expres-
sions to numerical expressions, the wind speed fluctuation
(increase/decrease) is expressed as a discrete value (1/0). For
example, if the predicted value d,,; is 0.5 or more, then it is
classified as an increase (1), on the other hand, if dout is less
than 0.5, it is classified as a decrease (0).
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Figure 1: Structure of deep belief network
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The number of layers of the DBN is set to seven by trial
and error. Each hidden layer has 15 neurons. As training
data for wind speed fluctuation, we classified the wind speed
change for two modes: increase and decrease. Tables 1 and
2 show the definitions of the input data d;,, and the training
data d,,, respectively. Here, a is an integer value within the
range of 0 to 11. Wind speed fluctuation is predicted after 10
min. (n = 1) and 60 min. (n = 6).

Table 1: Definition of input data d;,,

Condition din(t — a)
Increase | v(t —a)—v(t —a—1)>0 1
Decrease | v(t —a)—v(t —a —1)<0 0

Table 2: Definition of training data d,;

Condition Aoyt (t +m)
Increase | v(t+n)—v(t)>0 1
Decrease | v(t+ n)—v(t)<0 0

Figure 2 shows the definition of the wind speed direction
wp (t), which is expressed by gray codes (3-bit data) in order
to consider position information.
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Figure 2: Definition of wind speed direction wp ()

2.2 Restricted Boltzmann machine

Figure 3 shows a graphical depiction of a restricted Boltz-
mann machine (RBM). An RBM is a probabilistic neural net-
work that can calculate more effectively by restricting the
connections of the original Boltzmann machine between the
input (visible) layer and hidden layer. The network is con-
structed by stacking multiple RBMs and implementing unsu-
pervised training (pre-training).
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Figure 3: Restricted Boltzmann machine
Feature extraction is carried out by sampling on the basis

of the conditional probability represented by Eqs. (1) and (2).

P(h; =1|v) = sigmoid Z Wijv; + ¢
j=1
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P(v; = 1]h) = sigmoid (Z Wijhi + bj) @

i=1

Where W;; stands for the weight between the input layer
and hidden layer, v; is a neuron of the input layer and h; is
a neuron of the hidden layer. b; is the bias of the input layer
and c; is the bias of the hidden layer. Then, each weight and
bias are updated using the following equations:
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where ¢ is the learning rate of pre-training, k is the number
of times of Gibbs sampling, which is performed on the basis
of Egs. (1) and (2). Empirically, it is assumed that omit k£ is
setto 1.

2.3 Ensemble learning

Ensemble learning is a machine learning method that en-
hances the accuracy by combining multiple weak discrimina-
tors (DBNs). Simple training models are constructed from
different samples and combined by some method. Therefore,
the training model can achieve to both versatility and accu-
racy.

In this paper, a bagging method is applied to create multi-
ple data sets and multiple weak learning machines are trained
by these data sets.

The multiple weak DBNs are combined by a majority de-
cision of each DBN output, then the prediction result of wind
speed fluctuation is decided. The prediction of wind speed
fluctuation using ensemble learning is evaluated by two meth-
ods: a simple majority decision and an average evaluation de-
cision. The average evaluation decision is defined by

Z 4 (4 n) ©)
m=1
PredictionResult = L (y=05) @)
N 0 (y<0.5)

where M is the number of weak learning machines
(DBNs), d\™) (¢ + n) is the output of each DBN and y is the
average outputs of each DBN. In this paper, we propose two

methods of creating data sets as shown in Figs.4(a) and 4(b).

2.3.1 Simple division model

In the simple division model, IV training data which are
decided randomly are divided into M/ DBNSs. The seasonality
and time dependence of wind speed fluctuation are confirmed
from each of the divided training data holding the time series
information.
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2.3.2 Random sampling model

In the random sampling model, each DBN extracts data
at random from the training database. In this case, the time
series information of the data is ignored. Therefore, the infor-
mation of training data is distributed uniformly to each DBN.
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Figure 4: Method of generating training data using bagging

3. Prediction Result

Each DBN is trained using data from 2012 to 2014 and pre-
dicts the wind speed fluctuation for 2015. In ensemble learn-
ing, five DBNs are used as weak learning machines (M = 5).
The five training data are generated by extracting data from
the training database from 2012 to 2014. Table 3 shows the
training parameters of the DBNs. Backpropagation is applied
to fine-tuning as supervised learning.

Table 3: Training parameter of DBNs
Pre-Training | Fine-Tuning
0.01 0.002
5000 10000

Learning rate
Epoch

3.1 Evaluation method for fluctuation prediction

The prediction result for wind speed fluctuation is evalu-
ated from the concordance rate of the fluctuation, which is
defined as the concordance rate of the predicted wind speed
fluctuation d(t + n) and the fluctuation of the observed wind
speed d(t + n) (as a percentage).

3.2 Comparison of prediction accuracy of wind speed
fluctuation

Table 4 shows the fluctuation prediction accuracy of an
hierarchical neural network (HNN) and DBN. The seven-
layered HNN is not able to learn because the root mean
squared error (RMSE) did not decrease during training and
all the prediction results increased. In contrast, the seven-
layered DBN can learn and the prediction accuracy was im-
proved. It was found that the three-layered HNN is better
than the seven-layered DBN for 10-min-later prediction. On
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the other hand, the seven-layered DBN is better than three
layered HNN for 60-min-later prediction. At this stage, the
search for some parameters of the DBN is not satisfactory.
Therefore, it is necessary to confirm the maximum perfor-
mance of the DBN for suitable parameters.

Table 4: Prediction accuracy of HNN and DBN [%]

Prediction time 10min. | 60min.
Three layered HNN | 59.50 56.28
Seven layered HNN | 51.15 51.15
Seven layered DBN | 55.72 | 57.30

Figure 5 shows the distribution of the DBN outputs of the
seven-layered DBN for 60-min-later prediction. The DBN
outputs are concentrated in around 0.5. In addition, the pre-
diction accuracy of wind speed fluctuation is poor around
0.5, and high near O or 1. Taking these results into account,
the combined method of ensemble learning using the average
value of all DBN outputs is employed (see sect. 2.3). Here-
with, an output value of near 0 or 1 is more strongly reflected
in the prediction result.
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Figure 5: Distribution of DBN outputs (seven-layered DBN,
prediction after 60 min)

3.3 Comparison of ensemble learning between the simple
division mode and the random sampling mode

Table 5 shows the prediction accuracy with the bagging
methods of two data extraction methods (simple division and
random sampling). It is confirmed that the prediction accu-
racy of the wind speed fluctuation is improved using multiple
weak DBNs. For 10-min-later fluctuation prediction, the pre-
diction accuracy is superior to that of the seven-layered DBN
without ensemble learning. However, the prediction accu-
racy of wind speed fluctuation is inferior to the three-layered
HNN.

For 60-min-later fluctuation prediction, the prediction ac-
curacy is improved from 57.30% (see table 4) to 58.12% us-
ing the random sampling model, which is better than the re-
sult for the simple division model (57.34%). Consequently,
the prediction accuracy is improved by using part of the train-
ing database without training the whole training database.
Furthermore, it is thought that extracting data uniformly from
the training database is effective for the prediction of the wind
speed fluctuation in order to learn various input data pat-
terns. Accordingly, the proposed fluctuation prediction sys-
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tem, which uses DBNs with ensemble learning, is effective
for 60-min-later fluctuation prediction.

Table 5: Prediction accuracy of HNN and DBN [%]

Simple division | Random sampling
10min [ 60min | 10min | 60min
DBN.1 55.30 | 5492 | 53.14 57.24
DBN.2 54.64 | 55.75 | 56.08 57.68
DBN.3 5424 | 56.23 | 55.16 55.60
DBN.4 54.32 | 55.05 | 55.87 56.32
DBN.5 55.66 | 57.31 | 54.94 56.45
Simple majority 56.00 | 57.34 | 55.98 58.12
Average evaluation | 55.80 | 57.42 | 56.10 57.82

3.4 Analysis of the prediction with ensemble learning

The transitions of the RMSE during the training process
are shown in Figs.6(a) and 6(b). From Figs.6(a) and 6(b),
the training efficiency of each DBN is improved by applying
ensemble learning. The RMSE that of each weak DBN is
smaller than the DBN without ensemble learning. Thus, we
can confirm that ensemble learning is effective for training
big data.
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Figure 6: Transition of RMSE of each DBN in the training
process

Finally, Figs.7(a) and 7(b) show the fluctuation prediction
accuracy of each weak DBN per epoch. The tendency of over-
learning is confirmed for the simple division model. Hence,
random sampling is a suitable way of generating training
data. Moreover, the fluctuation prediction result of the DBN
(epoch: 7500) without ensemble learning is the most accurate
(59.32%). The prediction result of ensemble learning is infe-
rior to that of the DBN is without ensemble learning. How-
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ever, the DBN with ensemble learnings expected to have sat-
isfactory accuracy in the circumstances in spite of the train-
ing epoch. However, it is necessary to thoroughly investigate
some network parameters because the training of the network
depends on whether or nor ensemble learning is incorporated.
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Figure 7: Prediction accuracy of each weak DBN per training
epoch (prediction after 60 min)

4. Conclusions

In this paper, we predicted wind speed fluctuation using
a DBN with ensemble learning. The 60-min-later fluctuation
prediction was improved by using the DBN. Also, for the bag-
ging method used in the ensemble learning, we confirmed that
a random sampling model was better than a simple division
model.

In the future, it will be necessary to search for DBN param-
eters that are suitable for fluctuation prediction. In addition,
the method combining an ensemble of outputs and a number
of weak DBNs should be optimized.
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