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Abstract—High-quality corpora have been very scarce for the text emotion research. Existing corpora with multi-label emotion
annotations have been either too small or too class-biased to properly support a supervised emotion learning. In this paper, we
propose a novel active learning method for efficiently instructing the human annotations for a less-biased and high-quality multi-label
emotion corpus. Specifically, to compensate annotation for the minority-class examples, we propose a complementary sampling
strategy based on unlabeled resources by measuring a probabilistic distance between the expected emotion label distribution in a
temporary corpus and an uniform distribution. Qualitative evaluations are also given to the unlabeled examples, in which we evaluate
the model uncertainties for multi-label emotion predictions, their syntactic representativeness for the other unlabeled examples, and
their diverseness to the labeled examples, for a high-quality sampling. Through active learning, a supervised emotion classifier gets
progressively improved by learning from these new examples. Experiment results suggest that by following these sampling strategies
we can develop a corpus of high-quality examples with significantly relieved bias for emotion classes. Compared to the learning
procedures based on traditional active learning algorithms, our learning procedure indicates the most efficient learning curve and
estimates the best multi-label emotion predictions.

Index Terms—Active Learning, Complementary Sampling, Class-biased Multi-Label Classification, Text Emotion.
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1 INTRODUCTION

A S a joint research of affective computing and natural lan-
guage processing, text emotion classification aims at helping

machines to understand human emotions through natural lan-
guage expressions. The most widely studied emotion classification
problem for natural language was to separate the positive and
negative emotion polarities for a piece of text [1], [2], [3], [4],
[5], while more sophisticated studies tried to distinguish different
emotion categories [1], [2], [3], [5], [6], [7], [8], [9], such as
Anger, Disgust, Fear, Happiness, Sadness, Surprise [10], Love,
and Expectation [11]. More recent studies have taken the fusion
of different emotions in the linguistic expression as a multi-label
classification problem [12], [13], which aimed at a more com-
prehensive understanding of the text emotions. Because emotion
understanding and language comprehension are strongly corre-
lated with each other [14], [15], [16], understanding the emotional
states in natural language promotes the understanding of peo-
ple’s thought as the intelligence of many intention-understanding-
related applications, such as market opinion analysis [17], [18],
[19], public opinion analysis [20], [21], [22], [23], and mental
health diagnosis [24], [25], [26], [27], [28]. We focus on the
multi-label emotion classification problem and hope this work will
benefit the text emotion research for all different granularities.
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Previous research has suggested that learning a text emo-
tion classification model requires large amounts of labeled ex-
amples [29], [30], [31], [32]. However, building a high-quality
emotion corpus entirely by manpower could be very challenging.
The direct reason is that inferring an author’s emotions requires
the annotators to empathetically experience every word in that
message [33], [34], which might cause a heavy mental strain to
these annotators [1], [35], [36]. Many previous works suggest that
annotating an emotion corpus with only a few thousand sentences
would be very labor intensive [37], [38]. In addition, the nature
of imbalance in the emotion distribution has made annotating
a high-quality emotion corpus even more difficult. All existing
moderate-sized corpora with more than 10,0000 examples have
suffered severely from the class-imbalance problem [11], [39],
[40], [41], [42], [43]. For example, in the Tweet-based corpus
CrowdFlower [42], the classes for Joy and Neutral have covered
9,370 and 9,220 examples respectively, which are 51.51 and 52.34
times larger than that of Disgust. This problem is even more severe
for some real-life dialogue-based corpora, such as the DailyDialog
corpus [41], in which the class for Neutral is 491.79 times larger
than that of Fear. These problems have severely restricted the
development of a corpus of considerable size and balanced labels
to advance the text emotion research, especially in the case of
multi-label emotion classification.

In this paper, we propose a novel active learning method to
efficiently instruct the human annotation for a less biased, multi-
label emotion corpus, by which the most informative raw examples
for model update with the most needed labels for class-balance
are preferentially picked from an unlabeled resource for the
human annotators. Active learning [44] is a compound sampling
procedure, which iteratively queries an unlabeled resource for
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the potentially valuable training examples. For active learning in
a binary-class classification problem, estimating the informative
value for an unlabeled example can be very straightforward by
following the uncertainty of model prediction [45], the version
space reduction [46], the expected model change [47] or error re-
duction [48], [49], and can be refined with a weighted density [50].
Favorably selecting an unlabeled example for the binary-minority
class is also straightforward, by drawing samples towards the
opposite side of class distribution in the existing corpus [51], [52],
[53], [54], [55], [56], [57], if a prior estimation could be made
for these examples. For a problem of multi-class classification,
in which each example belongs to one of multiple categories,
active learning methods could be adjusted by integrating the
categorical maximum or mean of the informative values [58],
[59], [60], [61] for an informative sampling and by integrating
the rest categories as one class [62], [63], [64], [65], [66] for a
class-balance sampling. However, to the best of our knowledge,
there has been no research of active learning for a class-biased
multi-label classification problem.

In the proposed method, we first estimate the informative
values of unlabeled examples for human annotation instruction by
integrating the prediction uncertainties in these examples given
a multi-label emotion classifier and two distinct properties of
their syntactic features among the labeled and unlabeled feature
spaces. Specifically, the uncertainty criterion evaluates a batch-
wise maximum integration of the emotion prediction entropies
for unlabeled examples and finds those with the most potential
for unraveling the prediction uncertainties for the current emo-
tion classifier. The representativeness criterion evaluates a mean
integration of the pairwise syntactic similarity among the pool
of unlabeled examples to avoid the outlier-querying problem in
the uncertainty sampling [44], [49], [67], [68]. The diverseness
criterion evaluates a maximum-minimum integration of the pair-
wise syntactic similarity between the pool of unlabeled examples
and the set of labeled examples to avoid the duplicative querying
problem [69] in the uncertainty sampling.

Second, we propose a novel complementary sampling method
to compensate a biased multi-label emotion corpus through active
learning, by which more human efforts could be led to the
annotation of examples of minority categories. The sampling
method is based on a complementariness criterion which mea-
sures a probabilistic distance between the expected distribution of
emotion labels in a temporary corpus and the uniform distribution
of emotion labels. Each temporary corpus corresponds to the
integration of a new example to the currently labeled emotion
corpus, with a probabilistic emotion prediction. The normalized
count of labels in this temporary corpus then corresponds to a
new distribution of emotion labels under the model expectation,
if this unlabeled example were finally selected by active learning.
Because balanced labels in a training set are generally important
to the learning of a supervised classification model [70], [71],
[72], choosing an uniform distribution over all emotion categories
as the optimal distribution also benefits the learning of a multi-
label emotion classification model. By minimizing this comple-
mentariness criterion, the active learning algorithm could find the
most potential example to compensate the current training data
for the minority labels. We employ the Kullback-Leibler (KL)
divergence, the cross entropy (CE) distance, and the earth mover’s
(EM) distance for measuring the probabilistic distances from
separate perspectives, and compare their results for compensating
an emotion corpus through active learning.

The major contributions of this paper are listed as below:

• A complementary sampling method in active learning is
proposed by compensating a class-biased training data for
the minority-class labels.

• Both the leaning efficiency and the ceiling performance for
text emotion classification will be significantly improved
with the proposed method.

• The main reason of failing to retain a label balance in
active learning given an unlabeled but extremely biased
data resource, is clarified.

The rest of this paper is arranged as follows. The related work
of text emotion classification and active learning is reviewed in
Section 2. We illustrate the proposed active learning method for
the class-biased multi-label text emotion classification problem
in Section 3. In Section 4, we describe our experiment of text
emotion classification, compare the different sample selection
strategies in active learning for constructing the training data, and
analyze the reason for the retained class-bias problem in active
learning, based on the social network messages from Sina Weibo.
Finally, Section 5 concludes this paper.

2 RELATED WORK

2.1 Active Learning
Active learning [44] is a procedure for efficiently and progres-
sively improving a supervised machine learning model, in the
cases where the number of labeled examples are limited and
difficult to obtain but unlabeled examples are abundant and easy to
acquire. Although most research of active learning has focused on
the classification task [29], [44], [45], [47], [48], [50], [58], [59],
[60], [61], [67], [68], [73], [74], [75], [76], [77], [78], [79], [80],
[81], [82], there were quite a few that focused on the regression
problem [51], [52], [53], [54], [55], [56], [57], [62], [63], [64],
[65], [66], [83], [84], [85]. In the active learning algorithms for
binary or multi-class classifications, the unlabeled examples were
selected from either a pool [45], [50], [81], a stream [48], [86], or
a synthesis generator [87], [88], based on a potential measurement
for the unlabeled examples. Popular methods for the potential
measurement included the uncertainty of model prediction [45],
[50], [89], [90], the expected reduction of version space for the
model [46], [91], [92], the expected model change [47], [93], [94],
the expected reduction of model variance [48], [95], the expected
reduction of future error [48], [49], [67], and the information den-
sity of the unlabeled example [50], [69], [79], [96]. The selected
examples were incorporated into the training data, together with
the labels annotated by human experts to progressively improve a
supervised learning model through the positive feedback-loop.

The active learning procedure could be extended to a multi-
label classification problem [97], in which each example would
be associated to several class labels. It was argued that developing
the training data for a multi-label classification problem was more
difficult, expensive, and time-consuming than that for a binary or
multi-class classification problem [59], [61], [76], [78], [98]. The
key idea behind the multi-label extensions in active learning was to
integrate the measurement of sample potentials over multiple class
labels. For example, Zhang et al. [58] employed the maximum
of uncertainties over all class labels as an integrated potential
for the unlabeled image examples in a multi-view multi-label
active learning algorithm. Reyes et al. [59] ranked the prediction
uncertainty of all unlabeled examples in a pool for each class label,
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and took the mean of rank ids for all class labels as an integrated
potential measurement for each unlabeled example. Brinker [60]
proposed a best worst-case approach for potential measurement
based on the one-versus-all multi-label support-vector machines
(SVM) classifier, in which the maximum of expected volume
reductions of the version spaces for each single SVM classifier
was taken as the integrated potential for an unlabeled example.
According to the theory of convex set [99], the volume of an
SVM version space would be reduced exponentially in terms
of the number of related chosen examples in an ideal situation
through active learning. Yang et al. [61] estimated the binary SVM
classification errors on each class by the size of version space [82]
and employed the summation of version space reductions for each
binary SVM classifier as the expected error reduction, that is, the
integrated potential for the unlabeled examples. And the rest of
the active learning procedures for a multi-label classification were
exactly the same as that for a binary or multi-class classification.

Although the class-imbalance problem was of crucial impor-
tance in machine learning, there were very few active learning
researches for this problem, not to mention the multi-label active
learning researches. Ertekin et al. [74] first demonstrated that
active learning through a simple uncertainty sampling was able
to provide more balanced data for multi-class classification than
a random sampling. Doyle et al. [73] tailored the sampling proce-
dure in active learning for a binary-class classification problem,
by repeatedly querying annotators for the unlabeled examples until
a specified number of majority-class and minority-class examples
were found. Because the imbalance of class distribution was not
changed in the sampling, many majority-class annotations had to
be discarded in the procedure. Li et al. [77] proposed a co-selecting
approach for automatically annotating majority-class examples for
a binary-class corpus. The majority-class examples were selected
and determined based on the certainty and uncertainty predictions
given by separate classifiers over the unlabeled resource, while
the minority-class examples were similarly selected but manually
determined. Because predictions on the majority-class examples
were not guaranteed to be correct, the result corpus could be
falsely balanced with many incorrect majority-class patterns.
Hospedales et al. [75] employed active learning to discover new
rare classes for the highly imbalanced multi-class classification
problems. However, because the learning target was only rewarded
by the discovery of new classes rather than new examples of the
existing minority-classes, the class-imbalance problem was never
solved. Khanchi et al. [63], [65], [66] and Brust et al. [62] revised
the binary active learning algorithm for the class-biased multi-
class classification problems, in which the inverse proportion of
label counts was employed to prioritize the sampling of minority-
class examples. Zhang et al. [64] further adapted this algorithm
for the streaming data with both class-imbalance and concept drift
problems. A dynamic classifier and a stable classifier were learned
with the previous data block and the entire data stream respec-
tively, for making joint predictions on the unlabeled examples. To
the best of our knowledge, there has been no research of active
learning for a class-biased multi-label classification problem.

2.2 Text Emotion Classification

The social information processing (SIP) theory [100] suggested
that for conveying emotions in non-face-to-face communications,
such as sending social network messages, people tended to more
frequently use their language, tones, and other verbal clues.

And the experimental studies of SIP theory [101], [102] further
demonstrated that text was as effective in conveying emotions as
other face-to-face communication approaches, which proved the
validity of the text emotion classification research on the basis
of psychological principles [1]. Hancock et al. [102] examined
the process of emotion expression in text-based systems and
found that some basic patterns in the texts, such as negations
and exclamation points, were significant strategies for people’s
emotion judgement. These results on the other side proved that
human emotions could be detected by the analysis of emotion-
related linguistic features through natural language processing.

In affective neuroscience, emotion was defined as the discrete
and consistent responses to internal or external events that have
a particular significance for the organism, with a short-term dura-
tion [103]. However, there have been no unified models of emotion
in theoretical studies. Ekman [10] proposed six basic emotions,
that is Anger, Disgust, Fear, Happiness, Sadness, and Surprise as
the universally recognizable set of emotions by humans regardless
of race, culture, and language. The Ekman emotion model was
also the most widely used in computer science research [1].
Plutchik and Kellerman [104] employed four bipolar axes, that
is Joy vs. Sadness, Anger vs. Fear, Trust vs. Disgust, Surprise vs.
Anticipation for modeling emotions in a multi-dimensional space.
Because of the difficulty of precisely arranging human emotions
in the multi-dimensional space, this model was not as widely used
in computer science. Shaver et al. [105] proposed a tree-structured
model in which Anger, Fear, Joy, Love, Sadness, and Surprise
were the emotions on the main branches, each of which had
subordinate categories such as Affection, Lust, and Longing. More
recently, Quan et al. [11] proposed an extended model based on the
Ekman’s six emotions, specifically for the text emotion analysis.
Two basic emotions of Love and Expect were added to the set with
Anxiety taking the original place of Fear. Together with the release
of a large and thoroughly annotated emotion corpus Ren-CECps1,
this model had also attracted many related researches [18], [32],
[80], [106], [107].

Most text emotion classification research considered word as
an important feature in building the classification models [6], [9],
[30], [36], [108], [109], [110]. Besides, many of the manually built
emotion lexicons [8], [111], [112], [113], [114] which encoded
the relationship between words and emotion labels were also
widely employed for text emotion classification. Although the
development of emotion lexicons required a lot of time and
patience, the encoded word-emotion relationship still contained
large amounts of conflicts and had been criticized for the lack
of context sensitiveness in many real world problems [11], [30],
[36], [115]. To generate features in an efficient and effective
manner, Li et al. [115] proposed a regression method to infer the
multi-dimensional affective representation of words based on the
semantic word embeddings. The extended emotion lexicons were
proved effective for improving the sentiment classification results
based on multiple public data sets. Other word emotion recog-
nition models with context sensitivity were also proposed [116],
[117], [118], in which the syntactic modifications with respect to
negations, degree adverbs, and special punctuations in a sentence
were considered as indicative emotional features.

Supervised learning methods were widely adopted for text
emotion classification. For example, Colneriĉ and Demsar [6] em-

1. Ren-CECps is a Chinese emotion corpus (http://a1-www.is.tokushima-
u.ac.jp/member/ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html).

http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html
http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html
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ployed the word and character-based recurrent and convolutional
neural networks for Twitter emotion classification, and proposed
a training heuristic for the unison model to transfer the last
hidden layers of all emotion prediction networks. Yang et al. [24]
proposed a hybrid framework with a paragraph vector and SVM
based model for inferring the emotional conditions of individuals
from their interview transcripts, and for assessing their depression
symptoms with the assistance of an audio-visual multi-model and
a random forest model. Kang et al. [108] proposed a kernel func-
tion based on the SVM classifier to evaluate the emotion similarity
of two sentences with high dimensional emotion features of words,
for the sentence emotion classification.

Because the size of available training data for emotion
classification was usually small, many semi-supervised methods
were also considered for inferring emotions through text. Phan
et al. [12] proposed a semi-supervised multi-label model for
emotion classification in the conversation transcripts, based on
the word semantic meanings and the language structures learned
with an auto-encoder neural network. Li et al. [7] incorporated
the learned semantic domain knowledge through unsupervised
models into a novel neural network structure, and improved the
emotion classification for online comments with this model by
an enhanced network interpretability. Ren and Wu [4] proposed a
matrix factorization method to learn the underlying representation
of language features, based on the social network contexts and
the topical contexts. These unsupervised language features were
then utilized for improving the prediction of tweet emotions.
Kang et al. [30] proposed a semi-supervised model for online text
emotion classification, in which the point-wise mutual information
(PMI) of words and emotion labels were propagated through a
dynamic Bayesian network. Ren et al. [13], [32] derived gen-
erative models of documents given latent topics and knowledge
of word-emotion correlations based on a labeled corpus, and
inferred the posterior probabilities of document emotions and
word emotions through the Gibbs sampling algorithm. Rao et
al. [119], [120] investigated the relation between emotions and the
context-dependent topics through a Bayesian network and learned
the posterior probability of document emotions through an EM
algorithm. Summa et al. [121] employed a graph-based semi-
supervised learning method, to encode and propagate the relations
between neighboring tweets with respect to their emotion labels.

3 CLASS-BIASED MULTI-LABEL EMOTION CLAS-
SIFICATION

3.1 Supervised Model for Emotion Classification

Suppose we have an emotion corpus D = {(xi,yi)}M
i=1 of M

labeled examples, in which i indexes a labeled example. xi ∈ RN

denotes the feature vector of the ith instance, and RN is the real-
valued N-dimensional input feature space. Given a large number
of raw messages from social network services, we filter out the
advertisements, remove the none textual contents, regularize the
functional expressions into their functional basics, and take the
segmented words in their basic forms for feature representation.
yi ∈ BK denotes the target vector of the ith instance, that is, the
binary labels for K emotion categories, and BK is a K-dimensional
binary-valued target space. The set of target emotion categories
E includes Anxiety, Anger, Sorrow, Hate, Joy, Love, Expect,
Surprise, and Neutral. For multi-label emotion classification, each
yi consists of one or more positive labels.

A supervised model for predicting the emotion labels y for an
input example x by

f : RN → BK (1)

is decomposed into K separate binary supervised classification
functions

fk : RN → B, (2)

with each fk predicting the existence of the kth emotion label.
In this research, we employ the logistic regression algorithm
for a binary classification. Specifically, each binary classification
function fk is defined by

ŷk = fk(x) (3)

= 1{σ(wk ·x+bk)> 0.5}, (4)

in which wk and bk are the weight and bias parameters of the
classification function fk, and σ is the sigmoid function given by

σ(z) =
1

1+ exp(−z)
. (5)

The sigmoid function σ generates real-valued predictions in the
(0,1) interval, which are usually interpreted as the probability of
positive predictions. Therefore, σ(wk ·x+bk) renders the model’s
probabilistic prediction for the existence of emotion label k in
example x, for which we use pk to represent. And the outputs of
the sigmoid function can be transformed into binary predictions,
by feeding the truth examination σ(z) > 0.5 to an indicator
function 1{·}. We use ŷk to indicate the binary prediction of the
kth emotion label in example x.

The above binary-decomposition method is able to solve our
multi-label classification problem for all emotion categories except
for Neutral, that is, the Kth emotion category in E . Because an
example x can be either Neutral or express one or more other
categorical emotions, the probabilistic prediction for the Neutral
class is inferred through

pK = 1−max{pk|k = 1, · · · ,K−1}, (6)

in which we take the complement of the probability with respect
to the most probable emotion label. And the binary prediction for
Neutral is simply given by

ŷK = 1{pK > 0.5}. (7)

3.2 Active Learning for Class-Biased Multi-Label Clas-
sification
We introduce a novel active learning algorithm, which finds
useful examples from the unlabeled resources and directs human
annotators to these examples to build a less biased and high quality
multi-label emotion corpus. We denote the unlabeled data as U
and the labeled corpus as D . Our algorithm repeatedly evaluates
the potential of annotations from U for compensating the class-
imbalance in D with a complementariness criterion and quanti-
fies the candidate examples in model updating, outlier filtering,
and diversity expanding with the uncertainty, representativeness,
and diverseness criteria respectively. Throughout active learning,
batches of examples are selected from the incoming new resources
U ’s, annotated with multiple emotion labels, and appended to
the labeled corpus D . With these high quality examples, we can
efficiently improve the multi-label emotion classification model,
which in turn helps the evaluation of unlabeled examples for active
learning.
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The proposed active learning procedure is depicted in Algo-
rithm 1. The complementariness criterion evaluates the potential
of an unlabeled example x∈U for compensating class-imbalance
in D by

c(x) = D∗(P(D̃(x)),Q), (8)

in which D∗ measures the distance between two distributions P
and Q, and P is the expected emotion-label distribution for a
temporarily integrated corpus

D̃(x) = D ∪ (x, ŷ), (9)

and Q ∼ unif{1,K} is an uniform emotion-label distribution.
By integrating the model prediction ŷ and unlabeled example
x into the current training data D , the expected emotion-label
distribution P(D̃) can be further expanded as

P(D̃(x)) = E
[

∑
M
k=1 yi + ŷ

∑
M
i=1 ∑

K
k=1 yik +∑

K
k=1 ŷk

]
=

∑
M
k=1 yi +p

∑
M
i=1 ∑

K
k=1 yik +∑

K
k=1 pk

, (10)

in which yi is a label vector for the ith instance in D and yik is the
kth binary label in the vector. We move the outside expectation
to the nominator and denominator respectively and estimate the
emotion labels with probabilistic predictions pk from the model.
The setting of an uniform distribution as the optimal emotion label
distribution ultimately benefits our supervised learning.

The unlabeled example x ∈U which maximizes the comple-
mentariness criterion should have the most significant potential for
class compensation in D . Three probabilistic distance measure-
ments, that is, the Kullback-Leibler (KL) divergence, the cross
entropy (CE) distance, and the earth mover’s (EM) distance are
considered for D∗ in Eq. 8. Specifically, KL distance evaluates the
log difference between two emotion label distributions P and Q
under the expectation of P

DKL(P,Q) =
K

∑
k=1

Pk log
Pk

Qk
. (11)

CE distance evaluates the distance of P and Q in the sense of
encoding sizes in the information theory

DCE(P,Q) =−
K

∑
k=1

Qi logPi. (12)

And EM distance of P and Q, which is given by

DEM(P,Q) =
∑

K
i=1 ∑

K
j=1 fi jdi j

∑
K
i=1 ∑

K
j=1 fi j

, (13)

evaluates the weighted transportation of probability amounts from
P to Q through an optimized process until P is geometrically
reshaped as Q. fi j indicates the amount of transported probability
from the ith bin of P to the jth bin of Q, and di j indicates the
transportation weight. The transportation detail for EM distance is
out of the scope of this paper, though, it has been considered as
a well-defined metric to evaluate the geometric distance between
two distributions, with important properties such as symmetry and
triangle inequality.

Fig. 1 shows an example of the complementary sampling
procedure. Before complementary sampling, the emotion corpus
consists of biased labels as indicated by the empty bars in the
left-hand side subplots. An unlabeled example x is then selected
based on the complementariness criterion, with the categorical

and probabilistic emotion predictions shown in the middle and
right-hand side subplots. The selected examples are different for
different distance measurements, but all examples share the same
categorical predictions and the highest probabilistic predictions for
emotion Sorrow. Only the KL based sampling selects the example
with a high probability for Expect. The expected label distributions
are shown by the stacked bars in the left-hand side subplots. In this
case, all selected examples have the potential to relieve the class-
bias problem in the corpus.

Furthermore, candidate examples are qualitatively evaluated
based on their potential for unraveling prediction uncertainties
for the emotion classifier, their syntactic representativeness of the
other candidate examples to avoid querying outliers, and their syn-
tactic diverseness to the labeled examples to avoid the duplicative
querying problem. The procedure of active learning based on these
evaluations are shown in Algorithm 1. An uncertainty criterion is
given by

u(x) = max{H(pk) |k = 1, · · · ,K}, (14)

which evaluates an unlabeled example x with the maximum
integration of entropies for its emotion predictions in p. The
entropy is given by

H(pk) =−pk logpk− (1−pk) log(1−pk), (15)

which monotonically increases with the model uncertainty. Eq. 14
indicates that if the multi-label classification model is very uncer-
tain in predicting at least one emotion category for the unlabeled
example x, we would have a very large uncertainty value for u(x).
Because these examples provide informative patterns for learning
a supervised emotion classification model, we first select them
from the unlabeled resource as the candidates for future human
annotation.

Querying an unlabeled resource with the uncertainty criterion
can cause an outlier-querying problem for active learning, in which
abnormally behaved outliers are selected for updating the training
corpus. Because in most cases the abnormally behaved examples
are syntactically different from the other examples, we employ a
representativeness criterion in active learning to filter out those
syntactically different examples. The representativeness criterion
is given by

r(x) =
1

|U |−1 ∑
x′∈U−x

sim(x,x′), (16)

in which x is a candidate example from the unlabeled resource
for evaluation, x′ ∈ U−x indicates any unlabeled example except
x, and sim evaluates a pairwise similarity of two examples. We
employ the opposite of Euclidean distance for sim calculation by

sim(x,x′) =−DEU(x,x′), (17)

DEU(x,x′) =

√√√√ N

∑
j=1

(x j−x′j)2, (18)

in which j ∈ {1, · · · ,N} denotes the index of the syntactic features
in x and x′. Because outliers are syntactically distant from the
normal examples, their sim values and the representativeness
scores should be correspondingly small compared to the normal
examples. In the active learning algorithm, we encourage selecting
examples with large representativeness scores to avoid the outlier-
query problem.

In active learning, finding syntactically diverse examples is
equally important as finding the class-balanced ones, which al-
lows the supervised models to observe different possible feature
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(a) Kullback-Leibler Divergence (b) Cross Entropy Distance (c) Earth Mover’s Distance

Fig. 1. Example of compensating the training data with an unlabeled example under different probabilistic distance measurements.

combinations and therefore avoids over-fitting. The diverseness
criterion measures the potential of an unlabeled example x ∈ U
for compensating the syntactic diversity of the corpus D by

d(x) = min
x′∈D

DEU(x,x′), (19)

that is, the minimum of the Euclidean distance DEU between x
and all labeled examples x′ ∈D . By measuring such distance, we
understand the potential of diversity increments for D given by
each unlabeled example x.

Algorithm 1: Active learning for class-biased multi-
label emotion classification.

input : D - original training data
U - unlabeled incoming resource
λu - selection ratio for uncertainty criterion
λr - selection ratio for representativeness criterion
λd - selection ratio for diverseness criterion
λc - selection ratio for complementariness criteria

output: D - updated training data

repeat m times
learn a multi-label emotion classifier f from D ;
pick Ui as a batch of unlabeled data;
predict Ŷi and Pi for Ui with f ;
repeat n times

Uu←maxpartition(Ui,u(Ui),λu|Ui|);
Ur←maxpartition(Uu, r(Uu),λr|Uu|);
Ud←maxpartition(Ur,d(Ur),λd|Ur|);
Uc←maxpartition(Ud,c(Ud),λc|Ud|);
acquire ground truth labels Yc for Uc;
D = D +(Uc,Yc);
Ui = Ui−Uc;

end
end

Algorithm 1 depicts the proposed active learning algorithm
for a class-biased multi-label text emotion classification problem,
which takes the original training data D , an unlabeled incoming
resource U , and a set of selection ratio parameters in λ{u|r|d|c}
as input, progressively selects the most informative, high-quality,
and the most class-compensative examples into Uc, querying them
for the true emotion labels Yc, and updates the training data D
with these new pairs (Uc,Yc) as output. The sample selection
procedure consists of two loops. The outer loop repeatedly selects
batch-wise samples for m times, by learning a supervised classifier
f from the current training data D , picking an incoming batch
Ui from the unlabeled resource U , and predicting the emotion
labels Ŷi for the incoming batch by f . The inner loop repeatedly
selects a specified number N of examples for n times from

the input resource U which have the correspondingly maximum
scores in C . The selection is taken by a maximum-partition
function maxpartition(U ,C ,N ), in which data Uu can be first
selected from the incoming data batch Ui based on the uncertainty
evaluation u and the selection ratio λu. Then data Ur, Ud, and Uc
can be consecutively selected based on the corresponding criterion
and selection ratio, with all the desired properties. At the end of
the inner loop, the selected examples of Uc are appended to the
training data D with the acquired ground truth labels Yc and are
removed from the incoming batch Ui.

4 EXPERIMENT

Based on a large number of timeline messages retrieved from of
Sina Weibo2 for six months in 2013, we report our findings on the
active learning for the class-biased multi-label emotion classifica-
tion. An average number of 24,705 messages were retrieved for
every hour. The data was divided into four sets, that is, a training
set, a validation set, a test set, and an unlabeled set, as shown in
Fig. 2.

Fig. 2. Data segmentation of the timeline Weibo messages.

The training and validation sets consist of around 100 labels
for each emotion category, while the test set consists of around 200
labels for each emotion category. The numbers of emotion labels
are kept in this way because we want to learn a balanced multi-
label emotion classifier f at the beginning of active learning and
to evaluate multi-label emotion classification results evenly for all
emotion categories. The unlabeled set consists of large amounts
of messages and potentially highly biased emotion labels. We
divide it into smaller batches, each of which corresponds to around
2.5×104 timeline messages retrieved per hour, and feed them as
the incoming batches Ui in the outer loop of active learning. All
text messages are segmented into lists of words with a Chinese
word segment package3. For some functional expressions in the
social network messages, such as @name, urls, and numbers, we
regularize them into their functional basics. Because the quality of
timeline messages varies drastically, we also trained a spam filter

2. Sina Weibo (http://weibo.com/) is a Chinese microblogging weibsite.
3. THULAC(https://github.com/thunlp/THULAC-Python)

http://weibo.com/
https://github.com/thunlp/THULAC-Python
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to remove the advertisements and none textual contents from the
unlabeled set.

The values of hyper-parameters λ{u|r|d|c} in Algorithm 1 are
selected according to the performance of active learning on the
validation set, with a total of m = 6 incoming batches from the
unlabeled set. Because the unlabeled data is easy to retrieve, we
keep the number of inner loops to n = 1, that is, the algorithm
selects only one set of unlabeled examples Uc for each incoming
batch Ui. And we further put a constraint on the number of output
examples λc|Ud| so that each loop updates the training data D with
exactly the same number of new examples, although the results
should nearly be the same since the incoming batch sizes are very
similar. The selected values for λu, λr, λd, and λc|Ud| are 0.2, 0.5,
0.5, and 40, respectively.

For the evaluation of active learning on test set, we take
m= 40 incoming batches from the unlabeled set and keep the same
number of inner loops, that is, n = 1 as the above model selection
procedure. For each incoming batch, the algorithm first selects
the top 20% uncertain examples, then the top 50% representative
examples from the selected data before. Next the top 50% diverse
examples from the selected data before, and finally the top 40
complementary examples from the selected data before are se-
lected. We compare the effectiveness of complementary sampling
with respect to three probabilistic distance measurements, that is,
KL for the Kullback-Leibler divergence, CE for the cross entropy
distance, and EM for the earth mover’s distance.

Two baseline active learning algorithms are also employed in
which the first algorithm considers all criteria except comple-
mentariness for example sampling while the second algorithm
considers a simple class complementation method for corpus
construction by following the algorithm for a Japanese Twitter
emotion classification problem [29]. Because the baseline two
method only considered a KL divergence from the probabilistic
model prediction to the label proportion in the training set, direct
estimation of the class balancing effect by integrating a candidate
sample to the existing corpus was impossible. Besides, zero and
extremely small probability values from model prediction could
cause computation errors for KL divergence, and minimizing this
KL divergence for sample selection does not directly lead to the
goal of class balance.

The evaluation metrics for multi-label emotion classification
are briefly explained as follows. The Macro and Micro F1 metrics
evaluate the harmonic means of the precision and recall of emotion
classification by

F{macro|micro}
1 =

2×P{macro|micro}×R{macro|micro}

P{macro|micro}+R{macro|micro} , (20)

in which the Macro precision and recall evaluate the class-wise
averaged ratio of true positive predictions to positive predictions
and the ratio of true positive predictions to positive ground truth
labels by

Pmacro =
1
K

K

∑
k=1

TPk

TPk +FPk
, (21)

Rmacro =
1
K

K

∑
k=1

TPk

TPk +FNk
. (22)

The Micro precision and recall evaluate the same ratios except
that the predictions and ground truth labels are aggregated for all

classes before calculation by

Pmicro =
∑

K
k=1 TPk

∑
K
k=1 TPk +FPk

, (23)

Rmicro =
∑

K
k=1 TPk

∑
K
k=1 TPk +FNk

. (24)

The Accuracy metric evaluates the ratio of an exact match of the
predictions to the ground truth labels for all emotion classes by

Acc(y, ŷ) =
1
M

M

∑
i

1{yi = ŷi}, (25)

in which M denotes the test set size, and the indicator function
1{yi = ŷi} renders 1 if and only if yik = ŷik is true for all k ∈ [1,K].
The Jaccard Similarity metric evaluates the ratio of the correct
positive predictions to the union of the positive predictions and
the ground truth labels, regardless of their emotion classes by

JSim(y, ŷ) = ∑
M
i=1 ∑

K
k=1 1{yik = 1∧ ŷik = 1}

∑
M
i=1 ∑

K
k=1 1{yik = 1∨ ŷik = 1}

. (26)

The Hamming Loss metric evaluates the ratio of incorrect predic-
tions, despite the reality of prediction values, to the total number
of test set labels by

HLoss(y, ŷ) =
1

M×K

M

∑
i=1

K

∑
k=1

1{yik 6= ŷik}. (27)

And the Log Loss metric evaluates the mean of cross-entropy
loss for the probabilistic predictions p, across all test samples and
emotion classes by

LLoss(y,p) =

− 1
M×K

M

∑
i=1

K

∑
k=1

yik logpik +(1−yik) log(1−pik). (28)

Fig. 3 shows the batch-wise improvement of emotion clas-
sification results, in which we compare the active learning al-
gorithms of B1, B2, KL, CE, and EM, according to the above
six evaluation metrics. The proposed complementary sampling
with a KL probabilistic distance measurement has shown the
most efficient learning curve for emotion classification in the
experiment. For all active learning algorithms, the selected new
samples have helped to train the emotion classification model
with an overall increment in Macro F1, Micro F1, Accuracy, and
Jaccard Similarity, and an overall decrement in Hamming Loss and
Log Loss. Both the increment and the decrement for the KL-based
active learning algorithm are more significant than the others,
while the increments and decrements for the B1 and B2 algorithms
indicate obvious fluctuations. These observations suggest that the
proposed complementary sampling is effective and steady for
improving the training data for emotion classification. In addition,
the increments and decrements for the CE- and EM-based active
learning algorithms are much slower than those of KL, which
suggests that the KL probabilistic distance measurement is more
appropriate for complementary sampling.

Fig. 4 shows the metric scores for the last five active learning
loops in the box plots, which reveals the ceiling performance of
active learning algorithms for improving emotion classification
given a limited number of incoming batches. Specifically, each
box indicates the minimum, the first quarter, the median, the third
quarter, and the maximum of the scores for a metric. In this
experiment we take m = 40 incoming batches from the unlabeled
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(a) Macro F1 (b) Micro F1 (c) Accuracy

(d) Jaccard Similarity (e) Hamming Loss (f) Log Loss

Fig. 3. Batch-wise evaluation of text emotion classification results.

(a) Macro F1 (b) Micro F1

(c) Accuracy (d) Jaccard Similarity

(e) Hamming Loss (f) Log Loss

Fig. 4. Classification result evaluations for the last five active learning
loops.

set, from which the 35th to 40th intermediately updated models
are evaluated. The proposed KL-based active learning achieves
the highest maximum scores for Macro F1, Micro F1, Jaccard
Similarity, and the lowest minimum score for Hamming Loss. It is
only slightly outperformed by the CE-based algorithm in Accuracy
and by the B2 algorithm in Log Loss. In the meantime, the KL-
based scores at the minimum, the first quarter, the median, and the
third quarter of the boxes also indicate a generally better classi-
fication performance than the others. These observations suggest
that the proposed complementary sampling with a KL probabilistic

distance measurement could improve emotion classification to the
best extent through active learning. In addition, the KL-, CE-,
and EM-based algorithms render generally better scores in the
boxes than B1 and B2, which again proves the effectiveness of the
proposed method.

Next, we report a case study of the class compensation effect
endowed by the active learning algorithm. Fig. 5 shows the
results of compensating labels of a class-biased training data
through active learning. The counts of which are indicated by the
empty bars in the upper-left and upper-right subplots. Specifically,
emotion labels of Sorrow (97), Hate (99), Expect (99), Neutral
(99) are fewer than the other emotion labels (100). With different
sampling strategies and separate probabilistic distance measure-
ments, each active learning algorithm selects 40 examples from
the same incoming batch of 25,000 unlabeled timeline messages.
The predicted labels and the ground-truth labels for these selected
examples are shown in the lower subplots, in which the predicted
and the ground-truth labels are represented by pairs for each
example. We use the slashed bars for the positive ground-truth
labels, the backslashed bars for the positive predicted labels, and
the empty bars for the negative labels for either ground truth or
model prediction. The updated counts of the ground-truth labels
are represented as the stacks of slashed and empty bars in the
upper-left subplots, while the updated label counts under the
model expectation are represented as the stacks of backslashed
and empty bars in the upper-right subplots.

It is interesting to see that although each algorithm selects a
different set of 40 examples, we get similar counts of expected
emotion labels but very different counts of ground-truth emotion
labels in the updated data. For instance, the B1 and B2 algorithms
update the training data by stacking many Neutral labels. This in
fact has pushed the class-imbalance problem even further. Because
the unlabeled resource is extremely biased, keeping the count of
different emotion labels the same for the training data has been
difficult or even impossible through active learning. A better or
more suitable target for complementary sampling would be to
relieve the otherwise extremely biased class labels through active
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(a) Label Compensation with B1 (b) Label Compensation with B2 (c) Label Compensation with KL

(d) Label Compensation with CE (e) Label Compensation with EM

Fig. 5. Label compensation for a class-biased training data through active learning.

learning. By comparing the upper-left subplots of Fig. 5b and 5c,
we can observe a significant drop in the number of Neutral labels
and sufficient increments in the numbers of the minority-class
labels, such as Anxiety and Hate. This suggests that the KL-
based active learning has effectively relieved the class-imbalance
problem in the updated training data. Besides, we observe that
the EM-based algorithm slightly outperforms the CE-based one
for relieving the class-imbalance problem. However, none of them
outperform the KL-based active learning algorithm.

We find that prediction mistakes in the selected examples
could greatly affect the final label balance. To demonstrate this
effect, we plotted the counts of false positive predictions and false
negative predictions for the 40 selected examples in the (FP,FN)
columns of the lower subplots in Fig. 5, for each active learning
algorithm. These mistakes have pushed the true label distribution
to deviate from the expected balanced distribution for the training
data update. For example, a false positive Anxiety will reduce the
count of true Anxiety labels by one in the training data, while a
false negative Neutral will increase the count of true Neutral labels
by one on the opposite side. To look further into this problem, we
evaluated the false positive rates and false negative rates of the
intermediately learned emotion classifiers for all active learning
algorithms, with the results shown in Fig. 6.

In Fig. 6, each box aggregates the minimum, the first quarter,
the median, the third quarter, and the maximum of the false
positive or false negative rates for a binary emotion prediction
over the m = 40 loops of active learning. We can observe that the
false positive rates in Fig. 6c are much lower than those in Fig. 6a,
6b, 6d, and 6e, which indicates that the KL-based active learning
has more accurate positive predictions than the baselines or the

CE- and EM-based active learning algorithms. More importantly,
the false positive rates in Fig. 6c for different emotion categories
are closer to each other than those in the other subplots. This
ensures that although the real emotion labels are reduced for these
false positive mistakes, the number of reduced labels is around
the same for these emotion categories, which helps relieving the
class-bias problem once again.

In sub-figures of Fig. 6, the false negative rates for the Neutral
prediction are significantly higher than those for the other emotion
predictions. This implies that the active learning algorithms tend
to select the examples with unrecognized Neutral labels, which
causes the most significant increment of Neutral in all emotion
categories. An emotion classifier which has been trained on such
corpus would favor Neural in its predictions for the incoming
unlabeled examples. Since the proportion of Neutral is extremely
high for the Weibo timeline messages, and probably the same
for the other Internet text resources, the false negative mistakes
for Neutral are inevitable. This turns to be the major reason for
all active learning algorithms to inevitably break the balance of
emotion labels in our results.

Finally, we report the increment of emotion labels in result
corpora for all active learning algorithms in Fig. 7. The KL-based
active learning in Fig. 7c and the B2 algorithm in Fig. 7b have
shown more balanced increments in the minority-class labels,
through m = 40 loops, than those of the other active learning
algorithms. Concurrently, both the KL-based algorithm and the
B2 algorithm have shown better controls in the increment of the
majority-class label, that is, Neutral than the other algorithms.
We also find that the KL-based active learning has steadily outper-
formed the B2 algorithm, with a more restrained label increment in
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(a) FPR of B1 (b) FPR of B2

(c) FPR of KL (d) FPR of CE

(e) FPR of EM (f) FNR of B1

(g) FNR of B2 (h) FNR of KL

(i) FNR of CE (j) FNR of EM

Fig. 6. False positive rates (FPR) and false negative rates (FNR) of the
intermediately learned emotion classifiers.

Neutral. All these results suggest that through active learning, the
KL-based complementary sampling strategy could retrieve new
text examples from an unlabeled resource with the potentially best
label balancing property.

5 CONCLUSION

Class bias in a multi-label emotion corpus has been a severe
problem for the supervised emotion classification, in which a
vast majority of the emotion labels are Neutral. In this paper, we
propose a novel complementary sampling method for selecting
training examples from a large unlabeled text resource for multi-
label emotion classification with active learning. The proposed
sampling method can find qualified examples to compensate a

multi-label corpus of biased classes, by minimizing the probabilis-
tic distance between the expected label distribution in a temporary
corpus and a uniform label distribution. Through active learning,
we also evaluate the candidate examples for model updating,
outlier filtering, and diversity expanding with the uncertainty,
representativeness, and diverseness criteria, respectively. Experi-
ment results suggest that a multi-label emotion classifier could be
improved along a more efficient curve and with a higher ceiling
performance than those learned through the traditional active
learning procedures. The minority-class counts of the training
data significantly increased while the majority-class counts remain
steadily controlled through all loops of active learning. With a
thorough analysis of the intermediate classification results, we
find that compared to false positive mistakes the false negative
mistakes could contribute more to the failure of retaining label
balance in training data. However, for the unlabeled resources
with an extremely biased label distribution, it is still difficult or
even impossible for the current active learning method to balance
the class labels. Complementary sampling is a general sampling
strategy for compensating corpus annotations, in which the label
distribution can be extended to any reasonable dimensions. We
hope to explore semantic features, label connections, and powerful
neural networks, based on larger and more general data sets, to
improve active learning for the class compensation problem in the
future.
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