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ABSTRACT
BACKGROUND: We aimed to determine the similarities and differences in the roles of genic and regulatory copy
number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD).
METHODS: Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the
largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD.
RESULTS: In genic CNVs, we found an increased burden of smaller (,100 kb) exonic deletions in BD, which con-
trasted with the highest burden of larger (.500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neuro-
developmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in
terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We
identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed
that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar
pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities
between BD and SCZ or ASD (r = 0.25–0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in
enhancers and promoters in brain tissue.
CONCLUSIONS: BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neuro-
developmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms,
including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
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Although bipolar disorder (BD), schizophrenia (SCZ), and
autism spectrum disorder (ASD) have traditionally been
considered separate disease entities, they share some com-
mon behavioral characteristics and cognitive deficits. Genetic
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epidemiological studies have suggested the presence of
shared genetic factors among these and other psychiatric
disorders (1–3). In line with this, rare copy number variations
(CNVs) at multiple loci have been identified as shared risk
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factors for SCZ and ASD (4–10). Gene set analyses of genes
affected by CNVs have implicated common molecular mech-
anisms in the pathogenesis of SCZ and ASD (e.g., synapse
function, fragile X mental retardation protein [FMRP] targets,
chromatin regulation) (4–6,9,11). On the other hand, BD-
associated CNVs and genes are currently limited, and molec-
ular mechanisms resulting from CNVs to BD are less clear
(12–17).

There are several limitations in published CNV studies. First
is the use of single nucleotide polymorphism arrays that
cannot reliably detect small CNVs (,50 kb), which outnumber
CNVs of a larger size. The detection of such small CNVs may
reveal BD-associated CNVs and genes. Second, although
there is growing evidence of a cross-disorder effect of CNVs
(18–21), there have been few studies of cross-disorder CNV
analysis that simultaneously include all three disorders (BD,
SCZ, and ASD). These analyses could also reveal similarities
and differences in the roles of CNVs among the three disor-
ders. Third, CNVs affecting noncoding regulatory elements
have not been fully explored despite emerging evidence for
their involvement in human diseases (22–24). Large consortia
such as Encyclopedia of DNA Elements (ENCODE) and
Roadmap Epigenomics Projects have identified enhancer or
promoter regions in brain tissue (25,26). Therefore, it is ex-
pected that the role of regulatory CNVs in psychiatric disorders
may be clarified.

In the present study, we conducted the largest known
cross-disorder analysis of genic and regulatory CNVs in BD,
SCZ, and ASD based on high-resolution CNV data from 8708
individuals in a Japanese population. We found an increased
burden of smaller (,100 kb) exonic deletions in BD, which was
in contrast to the highest burden of larger (.500 kb) exonic
CNVs in SCZ and ASD. Pathogenic CNVs linked to neuro-
developmental disorders (NDDs) were associated with the risk
of each disorder, but BD and SCZ/ASD differed in terms of the
characteristics of NDD-CNVs. Whereas gene set analysis
showed that BD-associated pathways were restricted to
chromatin biology, SCZ and ASD involved more extensive and
similar pathways. Nevertheless, a correlation analysis of gene
set results showed weak but significant similarities between
BD and SCZ/ASD. Finally, in SCZ and ASD, CNVs were
significantly enriched in enhancers and promoters in brain
tissue.

METHODS AND MATERIALS

Participants

We studied 8903 Japanese individuals, including 1843 BD
cases (42.2% bipolar I disorder, 53.9% bipolar II disorder, and
4.0% unknown subtype), 1236 ASD cases, 3111 SCZ cases,
and 2713 psychiatrically normal controls (Table S1 in the
Supplement). Whereas all BD cases have not been previously
analyzed in CNV studies, some of the samples (2519 SCZ,
1132 ASD cases, 2110 controls) were included in our previous
study (9). Disorders in cases were diagnosed according to
DSM-5 criteria for BD, SCZ, and ASD. Controls were selected
from the general population and had no history of mental
disorders based on responses to questionnaires or self-
reporting. More of the participants’ characteristics are pro-
vided in Supplemental Methods in the Supplement.
Biological Psych
This study was approved by the ethics committee of
Nagoya University and each participating institute. Written
informed consent was obtained from all participants.

Array Comparative Genomic Hybridization

We performed CNV analysis using two types of array
comparative genomic hybridization (aCGH): NimbleGen 720K
Whole-Genome Tiling array (Roche NimbleGen) and Agilent
SurePrint G3 Human CGH 400K (Agilent Technologies). CNV
calls were made with Nexus Copy Number 9.0 (BioDiscovery)
using the Fast Adaptive States Segmentation Technique 2 al-
gorithm. The following log2 ratio thresholds were set to detect
CNVs in the NimbleGen and Agilent arrays: 10–500 kb: 20.6
(deletion) and 0.4 (duplication), .500 kb: 20.4 (deletion) and
0.3 (duplication). The significance threshold to adjust the
sensitivity of the segmentation algorithm was set at 1 3 1026,
and at least 3 contiguous probes were required for CNV calls.
A noise-reduction algorithm for aCGH data was used for the
systematic correction of artifacts caused by GC content and
fragment length (27).

In terms of quality control (QC), scores were calculated for
each sample based on the statistical variance of the probe-to-
probe log ratios. Lower QC scores indicated better-quality
results. We excluded samples with QC scores .0.2, gender
mismatch, and excessive autosomal CNV calls (subject QC).
Next, we excluded CNV calls ,10 kb; those with low probe
density (,1 probe/30 kb), .70% overlap with segmental du-
plications, .10% overlap with CpG islands, and call p value
.1 3 10210; and those on the Y chromosome. Finally, we
filtered out common CNVs ($1% of our total samples). Large
CNVs can be split by CNV-calling algorithms. To overcome this
issue, adjacent CNV calls were merged using a custom script.
We merged the adjacent CNVs of the same type (i.e., deletion
or duplication) if they occurred in a single individual and the
gap was ,50% of the entire length of the newly merged CNV.
We performed all statistical analyses based on rare (,1%)
CNVs. All genomic locations are given in hg18 coordinates.
Gene annotation was based on GENCODE Release 35. We
evaluated the accuracy of CNVs identified by aCGH using a
quantitative real-time polymerase chain reaction (TaqMan
copy number assays) (Applied Biosystems), as previously
described (28).

As we used two types of aCGH, it is important to control for
batch effects in statistical analyses. To this end, we included
array type as a covariate in all analyses for SCZ and ASD. The
aCGH for BD cases was performed using Agilent arrays only.
Therefore, statistical analyses for BD cases versus controls
were performed based on the CNV data from Agilent arrays
(1818 BD cases and 1847 controls).

Genome-wide Burden Analysis

We performed burden analyses across a range of CNV sizes
(,100 kb, 100–500 kb, .500 kb) and CNV types (deletion,
duplication, deletion1duplication). The burden of CNVs was
measured as the number of rare exonic CNVs. Exonic CNVs
were defined as overlapping with any exon of a gene. Statis-
tical tests were performed using a logistic regression model to
predict case-control status by the number of rare exonic CNVs
along with array type and sex as a covariate. One-sided
iatry September 1, 2022; 92:362–374 www.sobp.org/journal 363
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empirical p values were calculated based on 100,000 permu-
tations, swapping case-control status. The p values were
adjusted for multiple testing using Bonferroni correction.

CNVs Linked to Neurodevelopmental Disorders

We examined whether NDD-CNVs are significantly associated
with risk for BD, SCZ, and ASD. We preselected 307 NDD-
linked loci (265 risk genes and 42 CNV loci) (Tables S2a and
S2b in the Supplement). The NDD-linked genes were selected
based on the NDD-gene databases (e.g., Developmental Brain
Disorder Gene Database, denovo-db, Gene4Denovo, and
SFARI database) and findings in previous literature (29–32).
Their associations with NDDs are supported by strong genetic
evidence (e.g., identification of de novo loss-of-function vari-
ants in multiple patients and significant association in a large-
scale case-control study). The NDD-linked CNV loci were
selected from our previous study (9). Then, we identified
pathogenic or likely pathogenic CNVs in these loci according
to the American College of Medical Genetics guidelines
(33,34). Further details are provided in Supplemental Methods
in the Supplement.

Next, we performed association analyses in 3 ways. First,
we examined the associations of all NDD-CNVs combined.
Second, we tested the associations of each subtype of NDD-
CNVs with at least 5 observations. Third, we tested the as-
sociations of individual NDD-CNVs with at least 5
observations.

Statistical analyses were conducted using Firth’s bias-
reduced logistic regression model, in which case versus con-
trol status was regressed on NDD-CNVs along with array type
and sex as a covariate. We calculated one-sided empirical p
values based on 100,000 permutations, swapping case-
control status. The empirical significance values obtained via
permutation are robust to data with sparse cell counts (35). The
p values were adjusted for multiple testing using Bonferroni
correction.

Gene Set Analysis

To identify biological pathways underlying the pathogenesis of
each disorder, we tested for the enrichment of rare exonic
CNVs in gene sets relative to all rare exonic CNVs. Specifically,
we used a logistic regression model, in which case versus
control status was regressed on the number of genes within a
given gene set that were intersected by rare exonic CNVs, with
adjustment for covariates, including array type, sex, total
length of rare CNVs, and number of rare CNVs. This method is
robust against not only batch effects, but also case-control
differences in total length of rare CNVs, number of rare
CNVs, and systematic differences in gene size (35). The
enrichment in cases was reported as one-sided empirical p
values using 100,000 permutations, swapping case-control
status. Multiple-testing correction was performed separately
for each gene set group and CNV type using the Benjamini-
Hochberg false discovery rate (36). Gene sets were consid-
ered significant if the Benjamini-Hochberg false discovery rate
was , .05.

The following gene sets were used in this study (shown in
Table S3): 1) functional gene sets previously associated with
SCZ/ASD, 2) mouse gene sets, 3) synapse gene sets from
364 Biological Psychiatry September 1, 2022; 92:362–374 www.sobp.o
SynGO release 1.1, and 4) Gene Ontology (GO) gene sets. The
functional gene sets contain synaptosome and postsynaptic
density genes from Genes2Cognition, FMRP target genes
(37,38), and chromatin-related genes (39,40). The mouse gene
sets include 11 sets of human orthologs of mouse genes
whose disruption results in neurobehavioral and nervous sys-
tem abnormalities (41). The SynGO gene sets are evidence-
based, expert-curated sets of synapse biology (42). We
analyzed 59 SynGO gene sets with at least 30 genes. The GO
gene sets (size 150–500 genes) were taken from the Molecular
Signatures Database version 7.2 C5 collection (43).
Correlation of Biological Pathways

To quantify the similarity of biological pathways among BD,
SCZ, and ASD, we calculated correlation coefficients based on
GO gene set results in all pairwise combinations of CNV types
and disorders. To reduce the bias owing to the non-
independent nature of the gene sets, we removed gene sets
that had an overlap coefficient {[size of (A intersect B)]/[size of
(minimum (A, B))]} of .0.5 with regard to other gene
sets, resulting in 295 gene sets for the analysis. The z score for
each GO gene set was calculated from two-sided
p values and odds ratios (ORs) using the following equation:
z ¼ signðlnðORÞÞ3 �

�F2 1ðp=2Þ��, where F2 1 is the inverse cu-
mulative distribution function of the normal distribution.
Therefore, the z score was positive for gene sets where the
possession of CNVs increased the risk of disease and negative
for gene sets where the possession of CNVs decreased the risk
of disease. Pearson’s correlation coefficient among the three
disorders was calculated by using the z scores. The p values for
the correlation coefficients were adjusted for multiple testing
using Bonferroni correction. To compare the magnitude of the
two correlations, we used the R package cocor (44), which is
suitable for the comparison of coefficients calculated from two
dependent groups that share a variable in common.
CNVs in Regulatory Elements

We examined whether case CNVs were enriched in promoters,
enhancers, and topologically associating domain (TAD)
boundaries in brain regions. TAD boundaries are regions
bordering TADs that regulate gene expression by restricting
interactions of cis-regulatory sequences to their target genes.
These regulatory elements were taken from 2 sources: 1)
enhancer regions in the prefrontal cortex, H3K27ac (histone H3
acetylation at lysine 27) peaks in the prefrontal, temporal, and
cerebellar cortex, and TAD boundaries in the adult dorsolateral
prefrontal cortex from the PsychENCODE website (http://
resource.psychencode.org/), and 2) enhancer and promoter
regions in 10 types of brain tissues from Reg2Map: Honey-
Badger2 (https://personal.broadinstitute.org/meuleman/reg2
map/HoneyBadger2_release/). H3K27ac peaks are active
enhancer regions.

For the statistical analysis, we used a logistic regression
model, in which case versus control status was regressed on
overlap length (one unit: 1 kb) with regulatory elements, with
adjustments for array type, sex, and total length of rare CNVs.
One-sided empirical p values were calculated based on
100,000 permutations, swapping case-control status. The p
rg/journal
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Figure 1. CNV analysis workflow. aCGH, array comparative genomic
hybridization; ASD, autism spectrum disorder; BD, bipolar disorder; CNV,
copy number variation; NDD, neurodevelopmental disorder; PCR, poly-
merase chain reaction; QC, quality control; SCZ, schizophrenia.
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values were adjusted for multiple testing using Bonferroni
correction.

RESULTS

Identification of CNVs

Of 8903 samples, 8708 (1818 BD cases, 3014 SCZ cases,
1205 ASD cases, and 2671 controls) passed QC (Figure 1;
Table S1 in the Supplement). We obtained 25,654 rare
(,1%) CNVs from all participants. The CNV characteristics
are summarized in Table S4 in the Supplement. The median
CNV size was 53.1 kb, and 69% and 48% were ,100 kb
and ,50 kb, respectively. We validated 97.6% (661 of 677)
of tested CNVs (Table S5 in the Supplement). For the
smallest class of CNVs (10–50 kb), the validation rate was
97.0%.

Genome-wide Burden Analysis

The results of genome-wide burden analysis are shown in
Figure 2 and Table S6 in the Supplement. In BD, we found
an increased burden of smaller (,100 kb) exonic deletions
(OR = 1.14, pcorrected = .034). By contrast, SCZ and ASD
showed the highest burden of larger (.500 kb) exonic CNVs
(deletion1duplication, SCZ: OR = 1.27, ASD: OR = 1.49,
pcorrected , .01).

CNVs Linked to Neurodevelopmental Disorders

In our sample, we identified 432 NDD-CNVs according to the
American College of Medical Genetics guidelines (Figure 3A;
Table S7). A significant association was found between NDD-
CNVs and each disorder (BD: OR = 2.9, SCZ: OR = 3.7, ASD:
OR = 4.2, pcorrected , 1 3 1024) (Figure 3B; Table S8 in the
Supplement). Figure 3C shows the percentage of individuals
with each subtype of NDD-CNVs: 1) risk gene–disrupting
CNVs, 2) large recurrent CNVs, 3) large nonrecurrent CNVs,
and 4) sex chromosome aneuploidies. In the association
analysis for BD, only the risk gene–disrupting CNVs were
significant (OR = 3.6, Pcorrected = 1.0 3 1024), whereas three
subtypes were significant in SCZ and ASD (Figure 3C;
Table S9 in the Supplement).

For individual NDD-CNVs, 12 showed at least nominally
significant associations (Table 1; Table S10 in the
Supplement). They included CNVs at three synaptic genes
(DLG2, PCDH15, and ASTN2) associated with BD (Figure S1 in
the Supplement). Five of 12 NDD-CNVs survived Bonferroni
correction for multiple comparisons (pcorrected , .05): DLG2
CNV in BD and DLG2 CNV, 22q11.2 deletion, 1q21.1 deletion,
and 47,XXX/47,XXY in SCZ.

Gene Set Analysis

In 6 functional gene sets previously associated with SCZ and
ASD, we found a significant enrichment of CNVs in chromatin
organization and chromatin modification in BD (Figure 4A;
Table S11a). In SCZ and ASD, we confirmed a significant
enrichment in all 6 gene sets, except for synaptosome in ASD.
In mouse gene sets and synapse gene sets, no significant
enrichment was observed in BD, whereas many sets were
significant in SCZ and ASD. In mouse gene sets, we found 4
significant sets common to SCZ and ASD: abnormal brain
Biological Psych
development, abnormal nervous system development,
abnormal central nervous system synaptic transmission, and
abnormal learning/memory/conditioning (Figure 4B;
Table S11b).

In synapse gene sets, we identified 4 significant sets com-
mon to SCZ and ASD: process in the synapse, synaptic vesicle
exocytosis, postsynaptic membrane, and integral component
of postsynaptic membrane (Figure 5; Table S11c). In terms of
cellular components, both presynapse and postsynapse were
significant in SCZ and ASD. The gene sets with the largest
effect sizes were regulation of synaptic vesicle exocytosis in
SCZ and postsynaptic membrane in ASD.

In the GO gene sets, we found 1, 352, and 100 significant
gene sets in BD, SCZ, and ASD, respectively (Table S11d).
Among them, 81 sets were common to SCZ and ASD, and one
set (covalent chromatin modification) was common to all three
disorders. As shown in Figure 6A, significant gene sets were
iatry September 1, 2022; 92:362–374 www.sobp.org/journal 365
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Figure 2. Genome-wide CNV burden. Forest plots
show OR estimates and 95% confidence intervals for
exonic CNV burden (CNV number) in the three dis-
orders. Asterisks denote a significant enrichment of
CNVs (pcorrected , .05). ASD, autism spectrum dis-
order; BD, bipolar disorder; CNV, copy number
variation; OR, odds ratio; SCZ, schizophrenia.

CNVs in Three Psychiatric Disorders
Biological
Psychiatry
broadly classified into 14 biological pathways, 11 of which
were common to SCZ and ASD.
Correlation of Biological Pathways

We calculated correlations of the GO gene set results in all
pairwise combinations of CNV types and disorders. In dele-
tion1duplication, we found significant correlations among the
three disorders. SCZ and ASD showed the highest degree of
correlation (r = 0.48, pcorrected = 3.0 3 10217), followed by BD
and ASD (r = 0.31, pcorrected = 1.2 3 1026), and then BD and
SCZ (r = 0.25, Pcorrected = 3.7 3 1024) (Figure 6B; Table S12 in
the Supplement). The correlation coefficient between SCZ and
ASD was significantly higher than that between BD and ASD
(p = .0072) or between BD and SCZ (p = .0002). In deletion or
duplication, we observed significant correlations among the
three disorders except for the nonsignificant correlation be-
tween SCZ and BD in deletion.
CNVs in Noncoding Regulatory Elements

In SCZ and ASD, but not BD, CNVs were significantly (pcorrected
, .05) enriched in enhancers and promoters in brain regions
from HoneyBadger2 and PsychENCODE (Tables S13a and
S13b in the Supplement). In most cases, deletions were sig-
nificant in SCZ, whereas duplications were significant in ASD.
366 Biological Psychiatry September 1, 2022; 92:362–374 www.sobp.o
DISCUSSION

We conducted the largest known (N = 8708) cross-disorder
analysis of CNVs in BD, SCZ, and ASD. The strengths of
our study are as follows: 1) the use of a high-quality and high-
resolution CNV dataset (validation rate .97%, approximately
50% of CNVs ,50 kb), 2) analyses of a highly homogeneous
Japanese population, and 3) systematic evaluation of both
genic and regulatory CNVs. Although two types of aCGH
were used, we considered the batch effect to be limited for 2
reasons. First, we included array type as a covariate in all
analyses for SCZ and ASD. Second, all analyses of BD cases
versus controls were performed based on data from Agilent
arrays.

We found an increased burden of smaller (,100 kb) exonic
deletions in BD, in contrast to the highest burden of larger
(.500 kb) exonic CNVs in SCZ/ASD. Whereas an increased
burden of large CNVs has been reported in SCZ/ASD
(6,45,46), the finding in BD is a novel observation and sug-
gests that CNVs ,100 kb may play an important role in BD.
Interestingly, a study showed an increased burden of small
(,100 kb) deletions in major depressive disorder, which was
primarily in enhancer regions (47). Therefore, BD is similar to
major depressive disorder in terms of the increased burden of
small deletions, but different from major depressive disorder
in terms of the direct effect on genes rather than regulatory
elements.
rg/journal
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Table 1. NDD-CNVs With at Least Nominally Significant Associations With Each Disorder

Diagnosis NDD-CNVs

Frequency Number of CNVs

OR (95% CI) p Value pcorrectedCases Controls Cases Controls

SCZ DLG2 CNV 0.0033 0 10 0 19.1 (2.4, 2460) .00002 .0005

SCZ 22q11.21 (VCFS region) del 0.0046 0 14 0 21.8 (2.9, 2792) .00017 .0043

SCZ 1q21.1 del 0.0027 0 8 0 15.6 (1.9, 2021) .00017 .0043

SCZ 47,XXX/47,XXY 0.0043 0 13 0 20.9 (2.7, 2681) .00026 .0065

BD DLG2 CNV 0.0033 0 6 0 13.7 (1.6, 1789) .00062 .016

ASD CNTN6 CNV 0.0033 0.00037 4 1 8.1 (1.2, 90.7) .0031 .078

ASD 16p11.2 dup 0.0033 0.00037 4 1 7.5 (1.3, 77.6) .0034 .085

ASD 22q11.21 (VCFS region) dup 0.0041 0.00075 5 2 5.8 (1.3, 34.5) .0049 .12

BD PCDH15 CNV 0.0028 0.00054 5 1 3.8 (0.76, 37) .019 .48

BD ASTN2 CNV 0.0028 0.00054 5 1 3.8 (0.76, 37) .02 .5

SCZ NRXN1 CNV 0.0013 0.00037 4 1 3.5 (0.63, 35.2) .041 1

SCZ MACROD2 CNV 0.0013 0.00037 4 1 3.4 (0.61, 33.8) .041 1

Of NDD-CNVs, 12 showed at least nominally significant associations; 5 of them were significant after Bonferroni correction for multiple
comparisons (pcorrected , .05).

ASD, autism spectrum disorder; BD, bipolar disorder; CNV, copy number variation; del, deletion; dup, duplication; NDD, neurodevelopmental
disorder; OR, odds ratio; SCZ, schizophrenia; VCFS, velocardiofacial syndrome.
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We found that NDD-CNVs increased the risk for BD as well
as SCZ/ASD. The effect size in BD (OR = 2.9) was lower than
that in SCZ/ASD (OR = 3.7–4.2), which is consistent with the
notion that the contribution of CNVs to BD is smaller than that
to SCZ/ASD (16). To our knowledge, this is the first evidence
for an association between NDD-CNVs and BD. There are two
reasons for this. First, the use of high-resolution aCGH enabled
us to identify small CNVs, which are difficult to detect reliably
with single nucleotide polymorphism arrays. Second, we
carefully evaluated the pathogenicity of CNVs, including
intragenic duplications according to the American College of
Medical Genetics guidelines (33,34).

The subtype distribution of NDD-CNVs differed between BD
and SCZ/ASD. Both risk gene–disrupting CNVs and large
recurrent CNVs were significant in SCZ/ASD, but only the
former was significant in BD. This is consistent with the results
of CNV burden analysis, as the majority of risk gene–disrupting
CNVs were smaller (,100 kb) exonic deletions. This also im-
plies that risk gene–disrupting CNVs point to strong risk genes
for BD as well as SCZ/ASD, as described below.

We found a nominally significant association of 12 NDD-
CNVs, 5 of which survived correction for multiple testing:
CNVs at DLG2 in SCZ and BD and 22q11.21 deletion, 1q21.1
deletion, and 47,XXX/47,XXY in SCZ. Deletions at DLG2 were
previously associated with SCZ and BD (11,48). DLG2 plays a
critical role in the molecular organization of multiprotein com-
plexes in the postsynaptic density at excitatory synapses.
Moreover, 47,XXX/47,XXY has been associated with SCZ,
ASD, and BD (49), but we found a specific and strong asso-
ciation with SCZ (OR = 20.9, pcorrected = .0065). We also found
=

Figure 3. NDD-CNVs. (A) Number of NDD-CNVs identified in this study. Stars
, .05; **pcorrected , .05). DLG2 CNVs were significantly associated with both SCZ
Frequencies of NDD-CNVs were significantly higher in each disorder compared
arrays only, statistical analyses for BD cases vs. controls were performed based
subtype of NDD-CNVs: risk gene–disrupting CNVs, large recurrent CNVs, large
**pcorrected , .001. ASD, autism spectrum disorder; BD, bipolar disorder; CNV, c
neurodevelopmental disorder; PW/AS, Prader-Willi/Angelman syndrome; RCAD
thrombocytopenia–absent radius syndrome; VCFS, velocardiofacial syndrome; W
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a nominally significant association between BD and two syn-
aptic genes, PCDH15 (OR = 3.8, p = .019) and ASTN2 (OR =
3.8, p = .020). PCDH15 is responsible for Usher syndrome,
characterized by retinitis pigmentosa and congenital deafness.
About 20% of patients with Usher syndrome also receive a
diagnosis of a psychiatric disorder (50). Neurons derived from
induced pluripotent stem cells of patients with BD with
PCDH15 deletion exhibit abnormalities in dendrite and syn-
apse formation (51). Rare CNVs at ASTN2 were identified in
patients with BD, ASD, and attention-deficit hyperactivity dis-
order (17,52). All of the deletions identified in patients with BD
in our study affected multiple isoforms of ASTN2. ASTN2 plays
an important role in the modulation of synaptic strength by the
trafficking and degradation of synaptic proteins (53). Taken
together, these findings suggest that synaptic dysfunction is of
pathogenic relevance to BD.

The results of gene set analysis implicated chromatin modi-
fication and organization in BD pathogenesis. Consistent with
this, changes in histonemodification and DNAmethylation were
detected in postmortem brain tissue from patients with BD
(54,55). The involvement of chromatinmodification is suggested
based on the clinical efficacy of the mood stabilizer valproic
acid. Valproic acid, a histone deacetylation inhibitor, causes
chromatin remodeling and gene expression change (56).

In synapse gene sets, both presynapse and postsynapse
were associated with the pathogenesis of SCZ and ASD. In
terms of presynapse, synaptic vesicle exocytosis was impli-
cated in both disorders. This process is essential for the
maintenance of neurotransmission, and its dysregulation in
SCZ/ASD has been suggested in studies of human brain tissue
indicate a significant association between the CNV and disorder (*puncorrected
and ASD at pcorrected , .05. (B) Percentage of patients carrying NDD-CNVs.
with controls (***pcorrected , .0001). As BD cases were analyzed by Agilent
on the data from Agilent arrays. (C) Percentage of patients carrying each
nonrecurrent CNVs, and sex chromosome aneuploidies. *pcorrected , .01;

opy number variation; CONT, controls; del, deletion; dup, duplication; NDD,
synd, renal cysts and diabetes syndrome; SCZ, schizophrenia; TAR synd,
BS, Williams-Beuren syndrome; XLI, X-linked ichthyosis.
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Figure 4. Results of gene set analysis (functional gene sets and mouse gene sets). (A) Functional gene sets previously associated with ASD and SCZ:
synaptosome and postsynaptic density genes from Genes2Cognition; FMRP target genes from two independent datasets (37,38); chromatin organization and
modification genes from previous literature (39,40). Signed log10p on the horizontal axis represents the 2log10 of the p value multiplied by the sign (ln(OR)).
Asterisks denote a significant enrichment of CNVs in the gene set (Benjamini-Hochberg false discovery rate, .05). (B)Mouse gene sets of human orthologs of
mouse genes whose disruption causes neurobehavioral and nervous system abnormalities. Asterisks denote a significant enrichment of CNVs (Benjamini-
Hochberg false discovery rate , .05). ASD, autism spectrum disorder; BD, bipolar disorder; CNV, copy number variation; SCZ, schizophrenia.
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Figure 5. Results of gene set analysis (synapse gene sets: SynGO). In SCZ and ASD, significant gene sets (Benjamini-Hochberg false discovery rate , .05)
are visualized in sunburst plots. Plots of bipolar disorder are omitted from the figure because no gene sets were significant. Sunburst plots are a representation
of tree structures for biological processes and cellular components. Inner rings of the plot are parent terms of more specific child terms in the outer rings. Color
is coded according to p values. §Significant in the analysis of deletion1duplication; †significant in the analysis of deletion; ‡significant in the analysis of
duplication. ASD, autism spectrum disorder; SCZ, schizophrenia.
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and animal models (57,58). In terms of postsynapse, post-
synaptic membrane was significant in SCZ/ASD. Alterations of
postsynaptic membrane proteins are supported by genetic
findings of SCZ/ASD–associated genes (e.g., NLGN, GPHN)
and proteome analysis of brain tissue from patients (59,60).

GO gene set analysis replicated previous findings that SCZ
and ASD involve more extensive and similar biological path-
ways (9,61) (Figure 6A). Among others, substantial overlap was
seen in the DNA/chromatin integrity pathway, which includes
DNA replication, repair, recombination, and chromatin biology.
Experimental evidence supports that dysregulation of these
pathways can causally contribute to the pathogenesis (62–64).
The defects of the DNA/chromatin integrity pathway may also
underlie an increased genome-wide burden of rare or de novo
variants in these disorders.
370 Biological Psychiatry September 1, 2022; 92:362–374 www.sobp.o
Correlation analysis of gene set results showed not only
strong pathway similarities (r = 0.48) between SCZ and ASD,
but also weak but significant similarities (r = 0.25–0.31) be-
tween BD and SCZ/ASD (Figure 6B). This provides evidence
for a shared genetic basis among these disorders, which is
consistent with findings from epidemiological studies (1–3).
Analyses of genome-wide association study data have re-
ported a high genetic correlation (r = 0.7) between SCZ and
BD, but a small correlation between ASD and SCZ (r = 0.21)
or between ASD and BD (r = 0.18) (65,66). While the calcu-
lation method for correlation differs from that in the present
study, it is possible that the cross-disorder effects of com-
mon variants (single nucleotide polymorphisms) and rare
variants (rare CNVs) may be different. Common variants may
have strong cross-disorder effects on SCZ and BD, whereas
rg/journal
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Figure 6. Results of GO gene set analysis and
correlation analysis. (A) Nodes represent significant
gene sets (Benjamini-Hochberg false discovery rate
, .05) and are color-coded by diagnosis. These
nodes can be broadly classified into 14 biological
pathways: DNA/chromatin integrity, transcriptional
regulation, cell cycle regulation, synapse/neuronal
cell adhesion, transporter/channel, MAPK/ERK
signaling, small GTPase signaling, Wnt signaling, cell
growth/organ development, actin cytoskeleton,
oxidative stress response, ubiquitin-proteasome
system/autophagy, immune response, and lipid
metabolism. SCZ and ASD share 11 biological
pathways, particularly the DNA/chromatin integrity
pathway. The purple node is GO:0016569 covalent
chromatin modification, which was significant in all 3
disorders. Node size and edge thickness are pro-
portional to the gene set size and the number of
genes overlapping between gene sets, respectively.
(B) Correlation of GO gene set results among the
three disorders. Pairwise correlations of the z score
for each GO gene set were calculated for each copy
number variation type and diagnosis. The color of
each box indicates the magnitude of the correlation.
Correlations significantly different from zero after
Bonferroni correction for all pairs of tests are marked
with asterisks. *pcorrected , .05; **pcorrected , .0001;
***pcorrected , .00000001. ASD, autism spectrum
disorder; BD, bipolar disorder; del, deletion; deldup,
deletion1duplication; dup, duplication; GO, Gene
Ontology; GTPase, guanosine triphosphatase;
MAPK/ERK, mitogen-activated protein kinase/
extracellular signal-regulated kinase; SCZ,
schizophrenia.
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rare variants may have strong cross-disorder effects on SCZ
and ASD.

In SCZ and ASD, CNVs were significantly enriched in en-
hancers and promoters in brain tissue. As CNVs in these
noncoding regulatory elements affect gene expression (67),
they may be implicated in risk through the dysregulation of
brain-expressed genes. Previous studies have reported that
variants in these regulatory elements play a role in the risk for
psychiatric disorders (47,68,69). With some exceptions, de-
letions in SCZ and duplications in ASD were enriched in
Biological Psych
regulatory elements (Tables S13a and S13b in the
Supplement), which suggests that the effect of these CNVs on
gene expression may be reversed in both disorders. While
there is strong evidence that SCZ and ASD share genetic
commonality, there is also evidence that they have opposite
genetic bases (e.g., SCZ is associated with 22q11.2 deletion,
whereas ASD is associated with 22q11.2 duplication) (70).

In conclusion, BD and SCZ/ASD differ in terms of CNV
burden, characteristics of NDD-CNVs, and regulatory CNVs.
On the other hand, they have shared molecular mechanisms,
iatry September 1, 2022; 92:362–374 www.sobp.org/journal 371
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including chromatin biology. The BD risk genes identified in the
present study could provide insight into the pathogenesis of
BD.
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