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This study investigates a structurally unstable synchronization phenomenon observed in the
two-coupled Izhikevich neuron model. As the result of varying the system parameter in the
region of parameter space close to where the unstable synchronization is observed, we find sig-
nificant changes in the stability of its periodic motion. We derive a discrete-time dynamical
system that is equivalent to the original model and reveal that the unstable synchronization
in the continuous-time dynamical system is equivalent to border-collision bifurcations in the
corresponding discrete-time system. Furthermore, we propose an objective function that can be
used to obtain the parameter set at which the border-collision bifurcation occurs. The proposed
objective function is numerically differentiable and can be solved using Newton’s method. We
numerically generate a bifurcation diagram in the parameter plane, including the border-collision
bifurcation sets. In the diagram, the border-collision bifurcation sets show a novel bifurcation
structure that resembles the ‘strike-slip fault’ observed in geology. This structure implies that,
before and after the border-collision bifurcation occurs, the stability of the periodic point discon-
tinuously changes in some cases but maintains in other cases. In addition, we demonstrate that
a border-collision bifurcation sets successively branch at distinct points. This behavior results
in a tree-like structure being observed in the border-collision bifurcation diagram; we refer to
this structure as a border-collision bifurcation tree. We observe that a periodic point disappears
at the border-collision bifurcation in the discrete-time dynamical system and is simultaneously
replaced by another periodic point; this phenomenon corresponds to a change in the firing order
in the continuous-time dynamical system.

Keywords: two-coupled Izhikevich neuron model, structurally unstable synchronization, border-
collision bifurcation

1. Introduction

Neural networks have been widely used in fields including artificial intelligence, machine learning, and
pattern recognition [Sapounaki & Kakarountas, 2019; Heidarpur et al., 2019; Vazquez, 2010]. The math-
ematical model refferred to as the neuron model has been widely used to construct neural networks. In
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1907, Lapicque designed the first neuron model [Lapicque, 1907]. The integrate-and-fire model is so named
because it includes integration and voltage resetting; the model is still used in researche today [Kang et al.,
2021; Rozenberg et al., 2019]. Hodgkin and Huxley proposed a model to describe how action potentials in
neurons occur and propagate; this model is called the Hodgkin-Huxley model [Hodgkin & Huxley, 1952].
This model exhibits a variety of nonlinear phenomena as a result of the nonlinearity in the model; these
phenomena include oscillations, bifurcations, and chaos [Feudel et al., 2000]. Izhikevich proposed another
model, which included a set of nonlinear differential equations and one discontinuous jumping [Izhike-
vich, 2003]. The Izhikevich model is now more widely used [Wang et al., 2022; Tolba et al., 2019] as it
is numerically efficient and expresses almost all firing patterns. In the coupled Izhikevich neuron model,
one can observe the synchronous firing of the neurons [Vivekanandhan et al., 2022; Shafiei et al., 2019].
This represents a well-known phenomenon that also occurs in the human brain; this phenomenon plays an
important role in neuron communication.

From the standpoint of nonlinear dynamics, the discontinuous jumping that is present in the model is
an attractive feature. When we evaluate the qualitative property of the model, it is essential to take into
account the effect of the jump. Tamura et al. focused on this jump and proposed results based on local
stability and local bifurcation analyses of an Izhikevich neuron model [Tamura et al., 2009]. They used a
hybrid system approach, as proposed in Ref. [Kousaka et al., 1999], to analyze the model and to classify
the solutions according to their topological properties. Later, Ito et al. broadened the applicability of the
method proposed by Tamura et al. to include the two-coupled Izhikevich neuron model [Ito et al., 2010].
The work of Ito et al. is significant as it can be used to analyze large coupled systems, such as neural
networks. We note here that in Ref. [Ito et al., 2010] there is no consideration of the synchronous firing of
neurons.

Many studies on border-collision bifurcation are present in the literature; these studies are primarily
related to mechanics and electronics [Nusse et al., 1994; Simpson, 2016; Banerjee & Grebogi, 1999]. This
variety of a bifurcation occurs for a periodic point in discrete-time hybrid dynamical systems that include
a threshold or a border in the state space. The typical scenario for the bifurcation is that a periodic point
moves as a result of the manipulation of the parameters describing the system, arrives at a threshold or
border, and suddenly alternates its stability or disappears. A similar phenomenon may occur in discretized
systems, such as the Poincaré map, and even in continuous-time hybrid dynamical systems. The appropriate
analysis method of border-collision bifurcations is dependent on the threshould definition. If the target
system is comprised of linear systems and switches via an external periodic clock input, one can analytically
solve the bifurcation problem, as suggested by Kousaka et al. [Kousaka et al., 2002]. If the threshold
periodically moves, the method proposed by Ma et al. [Ma et al., 2004] works well. Yamashita and Torikai
observed border-collision bifurcations in a qualitatively similar system to the Izhikevich neuron model
[Yamashita & Torikai, 2012]. However, studies investigating the bifurcations in the original Izhikevich
model have not yet been undertaken.

Our previous study [Miino & Ueta, 2016] observed the synchronous firing phenomenon in the two-
coupled Izhikevich neuron model but did not establish that the phenomenon was equivalent to a bifur-
cation in the context of nonlinear dynamics. It is notable that the observed firing pattern is structurally
unstable, whereas commonly observed patterns, like spike synchronization or complete synchronization,
are typically structurally stable (against pertubations in the system parameters). However, the study did
not investigate the structural stability and presented only preliminary discussions related to the bifurca-
tion. This study names the observed firing pattern “structurally unstable synchronization” and extends the
previous discussions related to the bifurcations within the same model using the Poincaré map approach.
The Poincaré map is by definition qualitatively equivalent to the original model and is a powerful tool
in the analysis of the periodic motions within the model. This study reveals that the phenomenon is es-
sentially equivalent to the border-collision bifurcation. Furthermore, we develop a novel method to obtain
the parameter set for which the border-collision bifurcation occurs, i.e., the parameter set that induces
an unstable synchronization. We measure the local stability of the periodic motion by considering the
Jacobian matrix of the Poincaré map. Consequently, we reveal the effect of the bifurcations on the local
stability. We observe that the bifurcation diagram includes local and border-collision bifurcations, and we
summarize the characteristics of structurally unstable synchronizations.
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This paper has the following structure. In Sec. 2, we describe the systems that are analyzed here. We
introduce the Izhikevich neuron model, its counterpart two-coupled model, and the structurally unstable
synchronization phenomenon; we also describe the equations that underpin the model, firing boundaries,
and the firing phenomenon of a single neuron. We define the three-dimensional Poincaré map obtained from
the four-dimensional original model by discretizing its trajectory at the time at which a neuron fires. The
periodic point observed in the Poincaré map is topologically equivalent to the periodic motion in the coupled
Izhikevich model. We quantify the local stability using the Jacobian matrix for the discretized system. We
outline the method first proposed in Ref. [Kousaka et al., 1999] and use it to compute the relevant Jacobian
matrix. We also explain the method that we use to locate the local bifurcation sets to investigate the
existence of periodic points. In the last subsection of Sec. 2, we describe the border-collision bifurcation
observed in the Poincaré map. We mathematically demonstrate the equivalence between the unstable
synchronization and the border-collision bifurcation. In Sec. 3, we propose a numerical method that can
be used to find the unstable synchronization parameter, i.e., a method that can be used to find the border-
collision bifurcation parameter. We formulate an objective function representing the criteria for the unstable
synchronization to occur and solve it via numerical optimization. We suggest a calculation method based
on Newton’s method to obtain the partial derivatives of the objective function. In Sec. 4, we discuss the
results of the numerical work undertaken here. The results presented in this work include a two-parameter
bifurcation diagram, a one-parameter diagram, a collection of the attractors, a transition of the eigenvalues,
and a change in the eigenvectors. Based on the obtained results, we summarize the characteristics of the
border-collision bifurcation, i.e., the structurally unstable synchronization phenomenon. We conclude and
summarize the study in Sec. 5.

2. Model

2.1. The Izhikevich neuron model and the corresponding coupled model

The Izhikevich neuron model [Izhikevich, 2003] is a system of two ordinary differential equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I,

du

dt
= a(bv − u), (1)

and a map representing the auxiliary after-spike resetting,

(v, u) 7→ (c, u+ d), if v ≥ 30, (2)

where v is the membrane potential of a neuron, u is the recovery variable, I is the synaptic currents or
injected DC-currents, a is the timescale of u, b is the sensitivity of u to v, c is the after-spike reset value
of v, and d is the after-spike reset value of u.

Connecting two neurons via a gap junction, we obtain the two-coupled Izhikevich neuron model [Ito
et al., 2010] described by

dvα
dt

= 0.04v2α + 5vα + 140− uα + Iα + δ(vα − vβ),

duα
dt

= aα(bαvα − uα),

dvβ
dt

= 0.04v2β + 5vβ + 140− uβ + Iβ + δ(vβ − vα),

duβ
dt

= aβ(bβvβ − uβ),

(3)

and

(vα, uα, vβ, uβ) 7→ (cα, uα + dα, vβ, uβ), if vα ≥ 30,

(vα, uα, vβ, uβ) 7→ (vα, uα, cβ, uβ + dβ), if vβ ≥ 30,
(4)

where the α and β used as subscripts identify the neurons and δ is the coupling coefficient. When manipu-
lating the system parameters, the coupled model is seen to exhibit a rich variety of trajectories, including
periodic motions with various periods, and chaotic motions.
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Fig. 1. Example of a periodic motion near the structurally unstable synchronization with δ = −0.1 and (top) aα = 0.22,
(middle) aα = 0.243153, and (bottom) aα = 0.245. Other parameters values are fixed, as given in Eq. (29). The orange and
green curves show the trajectories of vα and vβ , respectively. The middle figure shows the case of a structurally unstable
synchronization. The gray shaded area denotes the region for which vi > 30.

Synchronous firing is the phenomenon in which the firing of multiple neurons is coincident, i.e., vα =
vβ = 30. In the two-coupled case, it can be seen that the phenomenon can be structurally unstable to
parameter perturbations. We refer to this phenomenon as the structurally unstable synchronization case.
Figure 1 shows an example of a structurally unstable synchronization observed in the periodic motion of
the model. In the top figure (for aα = 0.22), at around t = 0.27, neuron β fires prior to neuron α. By
increasing the value of aα, it can be seen that neuron β fires at the same time as neuron α, as shown in
the middle figure (aα = 0.243153). By increasing further, the order of the firing reverses, as shown in the
bottom figure. We show here that in this observed change in the order of firing of the neurons, the stability
of the periodic motion is drasrtically changed (see Sec. 4).

2.2. Mathematical definitions

In the vector form, the system described by (3) is written in

dv

dt
= fλ(v), v ∈M, (5)

where v = (vα, uα, vβ, uβ) is a state variable vector, fλ : M → R4 is a vector-valued function representing
the right-hand side of Eq. (3), λ represents a controllable parameter of the system (3), i.e., λ ∈ {ai, ci, Ii}∪
{δ} for i ∈ {α, β}, and M is a manifold defined by

M =
{
v ∈ R4 | vα ≤ 30 and vβ ≤ 30

}
. (6)

The maps given in Eq. (4) are described by

Fα : Πα− → Πα+ ; v 7→ v + cα,

Fβ : Πβ− → Πβ+ ; v 7→ v + cβ,
(7)
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where

Πα− =
{
v ∈M

∣∣ qα(v) = vα − 30 = 0
}
, Πα+ =

{
v ∈M

∣∣ vα − cα = 0
}
,

Πβ− =
{
v ∈M

∣∣ qβ(v) = vβ − 30 = 0
}
, Πβ+ =

{
v ∈M

∣∣ vβ − cβ = 0
}
,

cα =


−30 + cα

dα
0
0

 , cβ =


0
0

−30 + cβ
dβ

 .

(8)

2.3. Poincaré map

Let φλ be the solution trajectory of the system described by Eq. (5) together with an initial state v0
at t = 0, such that v(t) = φλ(v0, t), and let τk be the time interval between the (k − 1)-th firing of a
neuron and the k-th firing of the same or a different neuron in the system. Then, the trajectory starting
from v0 ∈ Πα+ and returning to Πα+ as a result of neuron β firing N times can be decomposed into the
following maps:

T0 : Πα+ → Πβ− → Πβ+ ; v0 7→ φλ(v0, τ1) 7→ v1 = Fβ(φλ(v0, τ1)),

T1 : Πβ+ → Πβ− → Πβ+ ; v1 7→ φλ(v1, τ2) 7→ v2 = Fβ(φλ(v1, τ2)),

...

TN−1 : Πβ+ → Πβ− → Πβ+ ; vN−1 7→ φλ(vN−1, τN )

7→ vN = Fβ(φλ(vN−1, τN )),

TN : Πβ+ → Πα− → Πα+ ; vN 7→ φλ(vN , τN+1)

7→ Fα(φλ(vN , τN+1)).

(9)

In this study, we construct the Poincaré map of the coupled Izhikevich neuron model by composing the
maps Tk

T[N ] : Πα+ → Πα+ ; v0 7→ T[N ](v) = TN ◦ TN−1 ◦ · · · ◦ T0(v0). (10)

We note that for the case of N = 0, we have

T[0] : Πα+ → Πα− → Πα+ ; v0 7→ φλ(v0, τ1) 7→ v1 = Fα(φλ(v0, τ1)). (11)

Since T includes a trivial element that is tangent to Πα+ (which is parallel to the direction of vα-axis), we
can degenerate T into another equivalent map, U[N ]:

U[N ] : Π0 → Π0; x0 7→ p−1 ◦ T[N ] ◦ p(x0), (12)

where x = (uα, vβ, uβ), Π0 =
{
x ∈ R3

∣∣ vβ ≤ 30
}
, and

p : Π0 → Πα+ ; x0 = (uα, vβ, uβ) 7→ v0 = (cα, uα, vβ, uβ),

p−1 : Πα+ → Π0; v = (cα, uα, vβ, uβ) 7→ x = (uα, vβ, uβ).
(13)

We can then consider the discrete-time dynamical system

xn+1 = U[Nn](xn), n ∈ Z+, (14)

where Z+ is the set of non-negative integers, rather than the original continuous-time dynamical system
to solve the stability problem of the periodic motion. We note that the value of Nn is dependent on xn

but can only be obtained after the evaluation of xn+1 as Nn is the number of firings that occur prior to
the state xn+1 being realized.

Figure 2 summarizes the mathematical definitions used here as well as the Poincaré map of the
model illustrated using an example solution trajectory. In the figure, we use the initial state x0 =
(−2.17,−29.43,−4.41) ∈ Π0. The map p maps x0 to v0 = (−50,−2.17,−29.43,−4.41) ∈ Πα+ , which
is the initial state of the original time-continuous model. Solving the original model, we find that
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Fig. 2. Schematic of the definitions considered here and the Poincaré map. The filled points represent the initial state,
x0 = (−2.17,−29.43,−4.41) in Π0 and v0 = p(x0) = (−50,−2.17,−29.43,−4.41) in Πα+ ; the unfilled points represent
the next states of the discrete-time system, (−50,−2.61,−50.57,−2.08) in Πα+ and x1 = p−1(−50,−2.61,−50.57,−2.08) =
(−2.61,−50.57,−2.08) in Π0.

(−50,−2.61,−50.57,−2.08) ∈ Πα+ at t ≈ 2.83, which is the time at which φλ first reaches Πα− .
In the time interval t ∈ [0, 2.83], neuron β fires twice, i.e., N0 = 2. Thus, we can describe the
Poincaré map in Πα+ as T[2](−50,−2.17,−29.43,−4.41) = (−50,−2.61,−50.57,−2.08). Since we have

the same value of vα in the manifold Πα+ , we can reduce the dimension of the state by using p−1:
p−1(−50,−2.61,−50.57,−2.08) = (−2.61,−50.57,−2.08). Hence, we can describe the next state, x1, of
the degenerate Poincaré map in Π0 as x1 = U[2](x0) = (−2.61,−50.57,−2.08).

2.4. Periodic points and their local stability

A point x∗ that satisfies

U[Nℓ−1] ◦ U[Nℓ−2] ◦ · · · ◦ U[N0](x
∗)− x∗ = 0, (15)

is an ℓ-periodic point of U , which corresponds to a periodic motion in the original model. The local stability
of x∗ can be evaluated by considering the Jacobian matrix of U ℓ = U[Nℓ−1] ◦ U[Nℓ−2] ◦ · · · ◦ U[N0] at x

∗. An
ℓ-periodic point x∗ is asymptotically stable if all the eigenvalues of the matrix are within the unit circle
on the complex plane; x∗ is unstable if some eigenvalue(s) is(are) outside of this unit circle.

From Eq. (12) and using the chain rule of differentiation, we can obtain the following expression as
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the Jacobian matrix,

∂U ℓ

∂x0

∣∣∣∣
x0=x∗

=
∂p−1

∂v

(
ℓ−1∏
n=0

∂T[Nℓ−1−n]

∂v0

∣∣∣∣
v0=v∗

ℓ−1−n

)∣∣∣∣∣
v0=v∗

∂p

∂x0
(16)

where v∗ = p(x∗) and

∂p−1

∂v
=

0 1 0 0
0 0 1 0
0 0 0 1

 ,
∂p

∂x0
=


0 0 0
1 0 0
0 1 0
0 0 1

 . (17)

From Eq. (10), it can be seen that the Jacobian matrix of T[Nn] at v
∗
n is described by

∂T[Nn]

∂v0

∣∣∣∣
v0=v∗

n

=

(
N∏
k=0

∂TNN−k

∂vN−k

)∣∣∣∣∣
v0=v∗

n

. (18)

From Eq. (9), it can be seen that the Jacobian matrices of each local map Tk at vk are given by

∂Tk

∂vk
=

∂Fβ

∂v

[
∂φλ

∂v0
(τk)

∣∣∣∣
v0=vk

+ fλ(vk+1)
∂τk+1

∂vk

]

=

[
I − 1

dqβ
dv fλ(vk+1)

fλ(vk+1)
dqβ
dv

]
∂φλ

∂v0
(τk)

∣∣∣∣
v0=vk

, (19)

for N ≥ 1 and 0 ≤ k < N , where I is the 4× 4 identity matrix. The Jacobian matrices of the first and last
local maps are given by

∂Tk

∂vk
=

[
I − 1

dqα
dv fλ(vk+1)

fλ(vk+1)
dqα
dv

]
∂φλ

∂v0
(τk)

∣∣∣∣
v0=vk

, (20)

for N = 0 and k = N , respectively. The derivation of Eqs. (19) and (20) is provided in Ref. [Kousaka et al.,
1999]. The partial derivative of φλ with respect to v0 can be obtained as the solution of the following
differential equation:

d

dt

∂φλ

∂v0
=

dfλ
dv

(φλ)
∂φλ

∂v0
,

∂φλ

∂v0
(0) =

∂v0
∂v0

= I. (21)

2.5. Local bifurcations

By controlling the system parameter λ, the stability of an ℓ-periodic point can be changed from stable to
unstable, and vice versa. This change in stability is referred to as a local bifurcation. A local bifurcation
causes a significant change in the vector field of U , including the appearance or disappearance of periodic
points. Since the eigenvalues of the Jacobian matrix determine the stability, we can classify the local
bifurcations by considering the expression,

det

(
∂U ℓ

∂x0

∣∣∣∣
x0=x∗

− ejθI

)
= 0, (22)

where j =
√
−1, and θ indicates the argument of the eigenvalue with a magnitude equal to one. Three

types of local bifurcations can be observed: a tangent bifurcation (for θ = 0), a period-doubling bifurcation
(θ = π), and a Neimark-Sacker bifurcation otherwise.

Numerical methods including Newton’s method can be used to solve Eqs. (15) and (22) simultaneously.
In the case where the derivatives of U ℓ with respect to the parameter λ are required, we can derive them
using the method proposed in Ref. [Ito et al., 2010].
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2.6. Border-collision bifurcation

The discrete-time dynamical system described in Eq. (14) is defined in Π0, which is the manifold with the
boundary

∂Π0 =
{
x ∈ Π0

∣∣ vβ = 30
}
. (23)

Considering an ℓ-periodic point x∗ near the boundary and manipulating some system parameters, we
translate x∗ onto ∂Π0. Around such a parameter setting, we can observe the appearance/disappearance
of x∗ by perturbing the controlling parameter. In the discrete-time discontinuous dynamical systems, this
sudden appearance or disappearance of x∗ represents a border-collision bifurcation of x∗.

In order to analyze border-collision bifurcations, it is useful to consider a ℓ-periodic point x∗
0 of U and

another ℓ-periodic point x∗
1 that satisfies the following condition:

U[N0](x
∗
0) = x∗

1; (24)

we assume x∗
1 is the point that appears or disappears as a result of the border-collision bifurcation. Hence,

we describe the criterion for a border-collision bifurcation of the ℓ-periodic point x∗
1 as

U[N0](x
∗
0) = x∗

1 ∈ ∂Π0. (25)

We can rewrite Eq. (25) as

U[N0](x
∗
0) ∈ ∂Π0,

⇒ p−1 ◦ T[N0] ◦ p(x∗
0) ∈ ∂Π0,

⇒ p ◦ p−1 ◦ T[N0](v
∗
0) ∈ p[∂Π0] =

{
v ∈M

∣∣ vα = cα and vβ = 30
}

⇒ v∗
1 ∈

{
v ∈M

∣∣ vα = cβ and vβ = 30
}
,

⇒ F−1
α (v∗

1) ∈ F−1
α [p[∂Π0]] =

{
v ∈M

∣∣ vα = 30 and vβ = 30
}

= Πα− ∩Πβ− ,

where F−1
α : Πα+ → Πα− ; v 7→ v − cα. The last equation given above represents the criterion for the

synchronous firing phenomenon to occur. Thus, the border-collision bifurcation of an ℓ-periodic point in the
discrete-time dynamical system (described by Eq. (14)) is identical to the synchronous firing phenomenon
of a periodic motion in the original continuous-time model. We note that the equivalence is not always
present in the case of a smooth system showing synchronous motions as the border-collision requires a
border within the domain of the map, like the firing border in the Izhikevich neuron model.

3. Obtaining a parameter set that corresponds to a synchronous firing event

Let tn be the time at which a neuron fires for the n-th time, synchronous firing is defined by

tN − tN+1 = 0. (26)

Since tN+1 is the time at which neuron α first fires and tN is the time at which neuron β fires for the N -th
time, they satisfy

lim
t→t−N+1

qα(v(t)) = 0 and lim
t→t−N

qβ(v(t)) = 0, (27)

where the concept of limits is necessary because the left-sided limit of v(t) indicates the state before firing
whereas the right-sided limit represents the state after firing. The state v ∈ M at the time t depends on
the initial value x0 ∈ Π0 and the system parameters, i.e., tN+1 and tN are implicit functions of (x0, λ), as
defined by Eq. (27). Hence, we can rewrite the condition given in Eq. (26) as

tN (x0, λ)− tN+1(x0, λ) = 0. (28)

As in the case of the local bifurcation sets, numerical methods including Newton’s method can be used
to solve Eqs. (15) and (28) simultaneously; this can be done using the left-hand side of the two expressions
as an objective function. When the derivatives of tn are necessary, the method presented in Ref. [Miino
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et al., 2015] can be used to derive them. This method adds a new state variable that is equivalent to time,
t. It then calculates the required derivatives with respect to an initial state or a system parameter by
composing the Jacobian matrices of the local maps. Alternatively, the following recurrence relation can be
used to calculate the derivatives

∂tn
∂x0

=
∂

∂x0
(tn−1 + τn) =

∂tn−1

∂x0
+

∂τn
∂xn−1

∂xn−1

∂x0
, with

∂t1
∂x0

=
∂τ1
∂x0

,

∂tn
∂λ

=
∂

∂λ
(tn−1 + τn) =

∂tn−1

∂λ
+

∂τn
∂xn−1

∂xn−1

∂λ
+

∂τn
∂λ

, with
∂t1
∂λ

=
∂τ1
∂λ

,

for 2 ≤ n ≤ N + 1. The derivatives of xn−1 and τn can be obtained by calculating the Jacobian matrix of
the Poincaré map. Reference [Ito et al., 2010] provides more details regarding their derivations.

4. Numerical results

In the numerical work undertaken here, we considered the following parameters to have fixed values:

aβ = 0.2, bi = 0.2, ci = −50, di = 2, Ii = 10, (29)

for i ∈ {α, β}, and used (aα, δ) as the bifurcation parameter. For aα = 0.2, the system described in
Eq. (5) is equivariant [Chossat & Lauterbach, 2000] with respect to the cyclic group Z2 = ⟨γ⟩, where
γ : (vα, uα, vβ, uβ) 7→ (vβ, uβ, vα, uα). Considering two neurons with identical initial states and aα = 0.2,
we observe complete synchronization within the system, i.e., neurons α and β are identical. On the other
hand, if x∗ is an ℓ-periodic point with aα = 0.2, γ(v∗) is also an ℓ-periodic point regardless of whether
v∗ = γ(v∗) or v∗ ̸= γ(v∗).

Using Newton’s method, we can then numerically obtain the local and border-collision bifurcation
points by solving Eqs. (15) and (22) for the local bifurcations and Eqs. (15) and (28) for the border-
collision bifurcations. Here, we set the tolerance in the method to be 1× 10−7. We also use the parameter
continuation method to compute the bifurcation curves from the obtained bifurcation points.

4.1. Bifurcation diagram in the parameter plane

Figure 3 shows the numerically obtained results. Considering the tangent bifurcation sets G1 and I1 and
I2, it can be seen that there is a symmetry with respect to the line aα = 0.2. The line represents the
border-collision bifurcation set BC1 of a 1-periodic point. It is expected that aα = 0.2 corresponds to
BC1 as the original model is an equivariant dynamical system for aα = 0.2. In other words, BC1 is the
border-collision bifurcation set of v∗ that satisfies v∗ = γ(v∗). Far from the line aα = 0.2, at aα = 0.4 for
example, a period-doubling cascade of I1, I2, and further Iℓ can be observed. This represents a typical
scenario in which chaotic motion can be observed.

Considering the border-collision bifurcations BC2 in Fig. 3, we observe the mechanism by which the
attractor is affected. Figure 4 shows the one-parameter bifurcation diagram for the same parameter interval
used in Fig. 3. To generate this figure, aα was decreased from 0.31 to 0.14 in 2,000 steps, 1,000 counts of
Poincaré map (Eq. (12)) were calculated for each parameter, and the last 150 vβ values were plotted. Let
us confirm the change in the attractor that occurs as the parameter decrease by observing Fig. 5. Prior to
the tangent bifurcation occurring, the model shows aperiodic motion in the region close to aα = 0.3. After
the bifurcation occurs, a 1-periodic trajectory can be observed (around aα = 0.28). This presents a stable
attractor that maintains its stability until the period-doubling bifurcation I1 occurs. Afterward, around
aα = 0.25, the 1-periodic trajectory becomes unstable, and a new stable 2-periodic trajectory appears.
The 2-periodic trajectory includes two 2-periodic points: x∗, and U[1](x

∗). As shown in the trajectory,
x∗ is very close to the line vβ = 30, which is the boundary Πβ− . The point x∗ approaches the line as

aα decreases and finally contacts the boundary at the line labeled BC2. At that point, x∗ undergoes a
border-collision bifurcation and disappears. We note that the periodic point U[1](x

∗) also disappears at

this time. Simultaneously, a new 2-periodic point x∗ appears close to Πβ+ as shown in the trajectory
depicted at aα = 0.245; equivalently, a point U[0](x∗) also appears. One may hypothesize that x∗ and x∗
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aα

δ

Fig. 3. Bifurcation diagram of the two-coupled Izhikevich neuron model with aα ∈ [0, 0.6] and δ ∈ [0, 0.25]. The green curves
labeled Gℓ represent tangent bifurcation sets, the blue curves labeled Iℓ are period-doubling bifurcation sets, and the orange
curves labeled BCℓ represent border-collision bifurcation sets. The superscript ℓ denotes the period ℓ of the periodic point.
The region within the rectangle in the bottom left of the plot is shown in more detail in Fig. 6.

are equal and the point x∗ jumps to x∗. This could be considered more plausible as the equivalent pair
of x∗, U[1](x

∗), seems to smoothly evolve into U[0](x∗) around BC2. Due to this smoothness, it might be

hypothesized that points on either side of BC2 are equal. However, in terms of topological conjugacy, they
are distinct periodic points: x∗ indeed disappears, and a distinct 2-periodic point simultaneously emerges.
We will investigate the behavior of the system at BC2 in the next subsection. At aα = 0.235, via the period-
doubling bifurcation I2, the 2-periodic point becomes unstable, and another stable 4-periodic trajectory

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

−40

−20

0

20

G1 G1I1 I1I2 I2 I2

aα

v β
(n
)

BC2 BC2

Fig. 4. One-parameter bifurcation diagram of the Poincaré map given in Eq. (12) for aα ∈ [0.14, 0.31] and δ = 0.104. vβ(n)
represents the value of vβ at xn. The vertical lines indicate the bifurcation parameters obtained in Fig. 3.
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vβ

Fig. 5. A collection of the attractors in the (vβ , uβ)-plane of the coupled Izhikevich neuron model (Eq. (5)) with δ = 0.104.
The points in each trajectory represent the corresponding Poincaré map in the same plane.

appears. No evidence of chaotic motion around aα = 0.235 is observed as the period-doubling cascade stops
by I4. Further decreasing aα to 0.2, the stable 4-periodic trajectory disappears, and a 2-periodic point again
becomes stable via the reverse process of I2. We note that the 2-periodic points observed at aα = 0.2 are
topologically equivalent to the 2-periodic points at aα = 0.245. Furthermore, by decreasing aα until 0.18,
a chaotic attractor caused by a period-doubling cascade can be observed. The attractor is present until
around aα = 0.164 and evolves into the periodic motion via a period-doubling cascade in reverse. For
aα = 0.1625, we observe the 4-periodic points; however, this behavior disappears at the line labeled BC2;
simultaneously, a new 2-periodic trajectory emerges like the trajectory observed around aα = 0.16. The
observed phenomenon is quite similar to the period-doubling bifurcation, however, it is not equivalent as
the transition of the eigenvalues of the point is not smooth, as shown in Fig. 9. The 2-periodic points then
disappear via the period-doubling bifurcation I2, and a stable 1-periodic point appears as the attractor. We
note that the 1-periodic point at aα = 0.15 is not topologically equivalent to the one observed at aα = 0.28
as it undergoes the border-collision bifurcation BC1 at aα = 0.2. Finally, the 1-periodic point disappears
via the tangent bifurcation G1, and the attractor turns into an aperiodic motion at around aα = 0.14.

Here, we focus on the region of the parameter space that is shown in Fig. 6. In this region, the cusp
structures of tangent bifurcation sets G3 and G4 can be observed. Inside both cusps, the border-collision
bifurcation sets BC3 and BC4 exist along with the tangent bifurcation sets. One can also observe the
period-doubling bifurcation sets I3 and I4 departing from the border-collision bifurcations. Despite the
two branches of I3 both being 3-periodic points, they are observed to depart from different points on BC3.
This implies the existence of different 3-periodic points on the left- and right-hand sides of BC3. Otherwise,
the two branches of I3 would be smoothly connected. The set BC4 also separates I4 into two components
in a similar manner; the sets BC2 in Fig. 3 are also similar. In other words, the border-collision bifurcation
sets cut the period-doubling bifurcation sets into two parts and shifts them in different directions. This
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Fig. 6. A detailed view of the region within Fig. 3 with aα ∈ [0.09, 0.13] and δ ∈ [0, 0.1].

GℓGℓ

Iℓ(= G2ℓ)Iℓ(= G2ℓ)

BC2ℓBC2ℓ BCℓ

(a) General BCℓ.

GℓGℓ

IℓIℓ

BC2ℓBC2ℓ BCℓ

(b) BCℓ with complete synchronization.

Fig. 7. Schematics of the bifurcation structures around the border-collision bifurcations in a parameter plane. (a) The
general case (ℓ > 1 in the numerical work), which shows a ‘strike-slip fault’ structure cutting and shifting the period-doubling
bifurcation sets. The half-filled circles indicate the local bifurcation points in the border-collision bifurcation sets; the direction
of the circles shows the location of the focusing periodic point seen from BCℓ. (b) Case of BCℓ with complete synchronization
(ℓ = 1 in the numerical work). The filled circles represent the local bifurcation points in BCℓ.

novel structure of the bifurcation set resembles a ‘strike-slip fault’ observed in geology. Figure 7 (a) shows
a schematic of the strike-slip fault structure of a period-doubling cascade for an ℓ-periodic point. Due to
the structure, the attractor sometime maintains its form through the border collision, and the other case
changes its form to another attractor, which is periodic or aperiodic. We note here that the numerical
computation of the local bifurcations was stopped where it arrived at the border-collision bifurcation sets.
This implies that the border-collision bifurcation erases the periodic point, and the numerical method thus
misses the target point. The observed behavior cannot be explained without considering border collisions.
Figure 8 shows the border-collision bifurcation diagram of the two-coupled Izhikevich neuron model. The
sets of BC2 can be seen to branch from a single point in BC1, which is with complete synchronization,
whereas the sets of BC4 branch from distinct points in BC2. We hypothesis that this branching will
continue as long as the period-doubling bifurcation cascade continues. We refer to the tree structure of the
border-collision bifurcation sets as the border-collision bifurcation tree (BC tree). We note that any other
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kind of border-collision bifurcations can occur without branching from the BC tree if it is independent of
local bifurcations.

4.2. Border-collision bifurcations and related periodic points

Let us consider the border-collision bifurcation of 2-periodic points shown in Fig. 9. Around aα = 0.162,
we observe two 2-periodic points: the one labeled x∗

0 is unstable, and the point labeled x∗
0 is stable. On

manipulating aα from 0.164 to the point of BC2, the unstable point approaches Πβ− , i.e., v∗β approaches
vβ = 30. As a result of the border-collision bifurcation, x∗

0 suddenly disappears. However, the pair of x∗
0,

which is denoted x∗
1 and depicted by the violet curves in the figure, seems not to disappear as a result

of BC2 as the coordinate of the point continuously transitions across BC2. This phenomenon is highly
unusual as x∗

1 should disappear simultaneously with x∗
0 disappearing. To understand this phenomenon,

we evaluate the eigenvectors of the pair, as shown in Fig. 10. For aα = 0.162, one of the eigenvectors of
the pair point is a real vector and the others are complex vectors. In the case of the complex vectors, we
have drawn the eigenspace spanned by the vectors rather than showing the vectors. The difference to the
point spirally converges in the eigenspace around the periodic point. We can thus classify the point as a
spiral sink based on the behavior of its corresponding eigenvalues. By contrast, with aα = 0.164, all the
eigenvalues are real vectors. By observing the corresponding eigenvalues, we can classify the point as a
saddle. A spiral sink and a saddle are topologically distinct, even though their coordinates are precisely
the same. In other words, remarkably, the periodic points before and after the border-collision bifurcation
are topologically different, despite them sharing a single coordinate in the state space. Hence, we conclude
that x∗

1 disappears simultaneously with x∗
0; however, another periodic point, x∗

1, appears simultaneously
and is (by coincidence) located at the coordinate of x∗

1.
In the case of complete synchronization, the coupling term always becomes zero since vα(t) = vβ(t)

[Elkaranshawy et al., 2021]. This is represented by the case of aα = 0.2 in this study. In such a case,
the coupled system reduces to that comprising uncoupled single neuron systems sharing some parameter.
The synchronous motions in the single systems independently (but identically) change as a result of the
shared parameter changing. In other words, such synchronous motions are structurally stable unless the
single systems are structurally unstable. Thus, the period-doubling bifurcation sets on both sides of the
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Fig. 8. Bifurcation diagram for BCℓ with ℓ = 1, 2, and 4.
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line aα = 0.2 share a single point on the line, as shown by BC1 in Fig. 3 and generalized in Fig. 7 (b).
Based on the above considerations, the authors conclude that complete synchronization in the Izhikevich
model is a particular case of border-collision bifurcations and is structurally stable because the parameter
moves across the bifurcation curve.

On the left- and right-hand sides of the border-collision bifurcation BC2 near aα = 0.248, two 2-
periodic points that are both stable and have similar trajectories can be observed. In such a case, their
eigenvalues are different, as shown in the top right window of Fig. 9; there is a similar difference in
their eigenvectors. We note that they represent the same type of periodic points, i.e., stable spiral sinks;
nevertheless, topologically, they are distinct periodic points.
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Fig. 9. Transitions of 2-periodic points and their eigenvalues µ (their absolute values are shown) around the border-collision
bifurcation parameters with δ = 0.104. The left figure shows that the BC2 causes a change in the stability of the point; the
right figure shows the case in which there are no changes in the stability. In the trajectory figures, the green curves indicate
x∗
0 and x∗

0 and the violet curves show the other periodic points x∗
1 = U[2](x

∗) and x∗
1 = U[1]

(
x∗), which are the equivalent

periodic points to x∗
0 and x∗

0, respectively.
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Fig. 10. Comparison of the eigenvectors of the 2-periodic point of U before and after the border-collision bifurcation. In the
case of aα = 0.162, we have drawn only one eigenvector and depicted a single eigenspace for the other eigenvalues as the other
eigenvectors are complex vectors.
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Here, we briefly derive the topological difference in the periodic points by considering an example from
the region close to aα = 0.162. Suppose again that x∗

0 and x∗
1 are unstable 2-periodic points of U for

aα = 0.1625, and x∗
0 and x∗

1 are the stable 2-periodic points for aα = 0.162. As defined in Sec. 2.3, U2 for
the periodic points x∗

1 and x∗
1 can be decomposed into

U2(x∗
1) = U[2] ◦ U[0](x

∗
1) =

(
p−1 ◦ (T2 ◦ T1 ◦ T0) ◦ T0

)
(v∗

1)

=
(
p−1 ◦

(
Tα
β ◦ T β

β ◦ T β
α

)
◦ Tα

α

)
(v∗

1) ,

U2
(
x∗
1

)
= U[1] ◦ U[1]

(
x∗
1

)
=
(
p−1 ◦ (T1 ◦ T0) ◦ (T1 ◦ T0)

) (
v∗
1

)
=
(
p−1 ◦

(
Tα
β ◦ T β

α

)
◦
(
Tα
β ◦ T β

α

)) (
v∗
1

)
,

where v∗
1 = p(x∗

1), v
∗
1 = p(x∗

1), and T ito
ifrom

denotes the map from Πi+from
→ Πi+to

. We note that the result of

the numerical integration of the trajectory determines the firing count N . In the right-hand sides of both

expressions, the maps labeled T β
α and Tα

β are present, while the maps labeled Tα
α and T β

β are not present
in the second equation. Consequently, they are distinct maps. It is thus natural that x∗

1 forms a spiral
sink, while x∗

1 forms a saddle. It is generally impossible to define a homeomorphism between a spiral and
a saddle. In other words, the mappings are topologically not conjugate near x∗

1 or x∗
1. Furthermore, the

Jacobian matrices of U2 at x∗
1 and x∗

1 are described as

∂U2

∂x0

∣∣∣∣
x0=x∗

1

=
∂p−1

∂v

(
∂Tα

β

∂v2

∂T β
β

∂v1

∂T β
α

∂v0

)∣∣∣∣∣
v0=v∗

0

(
∂Tα

α

∂v0

)∣∣∣∣
v0=v∗

1

∂p

∂x0
,

∂U2

∂x0

∣∣∣∣
x0=x∗

1

=
∂p−1

∂v

(
∂Tα

β

∂v1

∂T β
α

∂v0

)∣∣∣∣∣
v0=v∗

0

(
∂Tα

β

∂v1

∂T β
α

∂v0

)∣∣∣∣∣
v0=v∗

1

∂p

∂x0
,

respectively. We also observe a quite different construction in the corresponding matrices. Therefore, it is
expected that the eigenvalues and eigenvectors of x∗

1 and x∗
1 are dissimilar.

5. Conclusion

In this study, we investigated the structurally unstable synchronization phenomenon observed in the two-
coupled Izhikevich neuron model. To analyze this phenomenon, we derived a discrete-time dynamical system
that is equivalent to the original system. We established that the synchronous firing in the continuous-time
dynamical system is equivalent to the border-collision bifurcation in the discrete-time system. Furthermore,
we proposed an objective function that yields the parameter set at which the border-collision bifurcation
arises. The function is numerically differentiable and can be solved using Newton’s method. We have
suggested some numerical techniques to obtain the Jacobian matrices with respect to the initial state and
some parameter, λ. We have numerically obtained a bifurcation diagram in the (aα, δ)-plane, which include
the border-collision bifurcation sets. In the bifurcation diagram, we observed that the border-collision
bifurcation sets construct a novel bifurcation structure that resembles the ‘strike-slip fault’ in geology. This
structure implies that, before and after the border-collision bifurcation occurs, the stability of the periodic
point discontinuously changes in some cases but maintains in other cases. Based on observations of the one-
parameter bifurcation diagram and the collection of attractors, we have carefully confirmed the transition
of the attractors through the bifurcations. In addition, we demonstrated that a border-collision bifurcation
sets branch at distinct points. This results in the border-collision bifurcation diagram having a tree-like
apperance; we refer to this structure as a border-collision bifurcation tree (BC tree). By further investigating
the border-collision bifurcations, we observed discontinuous changes in the eigenvalues and eigenvectors
of the periodic points and demonstrated that there exist two topologically different periodic points near
the bifurcation. We provided evidence demonstrating that the periodic points that share a coordinate are
topologically different near the border-collision bifurcation. We observed that in the discrete-time dynamical
system, at the border-collision bifurcation, as one periodic point disappears, another one simultaneously
appears, which corresponds to the change in the firing order in the continuous-time dynamical system.
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In the future, synchronous firing phenomena in multiple coupled models should be investigated. It
is expected that the objective function presented here can be naturally extended to the case of multiple
coupled models. It is also of interest to investigate the case of chemical coupling as well as the electric
coupling investigated here. The method presented here is likely to be capable of investigating such systems
if discrete-time dynamical systems with a differentiable maps can be obtained for these problems. It is also
of interest to consider the effect of a border-collision bifurcation in the global state space. In the Poincaré
maps that include many unstable periodic points in the state space, the border-collision bifurcation is likely
to significantly impact the periodic points and their stability. Observing the basin of attraction before and
after the bifurcation would also be of interest. We conclude by noting that there remain a wide range of
phenomena to be investigated in the two-coupled Izhikevich neuron model.
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