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Abstract

The present contribution is chiefly a review, augmented by some new results

on amphioxus and lamprey anatomy, that draws on paleontological and

developmental data to suggest a scenario for cranial cartilage evolution in the

phylum chordata. Consideration is given to the cartilage‐related tissues of

invertebrate chordates (amphioxus and some fossil groups like vetulicolians)

as well as in the two major divisions of the subphylum Vertebrata (namely,

agnathans, and gnathostomes). In the invertebrate chordates, which can be

considered plausible proxy ancestors of the vertebrates, only a viscerocranium

is present, whereas a neurocranium is absent. For this situation, we examine

how cartilage‐related tissues of this head region prefigure the cellular cartilage

types in the vertebrates. We then focus on the vertebrate neurocranium, where

cyclostomes evidently lack neural‐crest derived trabecular cartilage (although

this point needs to be established more firmly). In the more complex

gnathostome, several neural‐crest derived cartilage types are present: namely,

the trabecular cartilages of the prechordal region and the parachordal cartilage

the chordal region. In sum, we present an evolutionary framework for cranial

cartilage evolution in chordates and suggest aspects of the subject that should

profit from additional study.
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1 | INTRODUCTION

Extant vertebrates include cyclostomes (lampreys and
hagfish) and gnathostomes (Janvier, 2015). One of the
major features of vertebrates is their highly complex
heads consisting of the brain, cranial nerves, skeletal
muscles, cranium, and special sensory organs (Gee, 2018).
Among the cranial elements, the developmental and
evolutionary origins of the cranium has been a major
topic in comparative morphology since the 19th century
(Huxley, 1858). The cranium is composed of the
neurocranium, which encloses the brain and sensory
organs, and the viscerocranium, which includes the jaw
and pharyngeal skeletons (Romer, 1977). One of the
earliest studies on the cranial origin focused on the
similarities and differences between the cranium and
vertebrae (Goethe, 1790), with the vertebral theory
regarding the cranium as a group of vertebrae
(Goethe, 1790). The evolution of the jaw on the
viscerocranium has been extensively discussed as a serial
homolog of pharyngeal arches (de Beer, 1937, reprinted
1971; Huxley, 1874). To understand the formation of the
jaw, which is derived from the mandibular arch, key
developmental events include interactions between the
head mesoderm (premandibular and mandibular meso-
derm) and the trigeminal crest, which consists of the
supraoptic, infraoptic, and mandibular streams (Kuratani
et al., 2013). In the muscular/skeletal system of the jaw,
muscles develop from the mandibular arch mesoderm,
and skeletons are formed from the mandibular crest.
Developmental comparisons between lampreys (jawless
vertebrates) and gnathostomes (jawed vertebrates) have
shown that the different roles of the neural crest in the
premandibular and mandibular regions in these species
may provide clues on how the jaw develops (Kuratani
et al., 2004, 2013). The difference in the contribution of
the neural crest to oral formation is also considered to
influence the distance between the nasal sac and
hypophysis, and a relationship with the emergence of
the trabecular cartilage of the neurocranium in gnathos-
tomes, which is a paired rod‐like structure derived from
neural crest cells, has been proposed (Kuratani &
Ahlberg, 2018). However, whether or not cyclostomes
have trabecular cartilage remains controversial.

To understand the early evolution of the neurocra-
nium, it is important to study the ancestral condition of
the neural crest cells because they may play a major role
in the formation of the neurocranium in early verte-
brates. For this purpose, the evolution of neural crest cell
types has been studied at the molecular level, which
suggests how vertebrate‐specific neural crest cell types
evolved from neural crest‐like cells in chordate ancestors
(Cattell et al., 2011; Jandzik et al., 2014). Particularly,

interesting findings have been reported on the similari-
ties between the gene regulatory networks (GRNs) of
neural crest cells in vertebrates and mesoderm in
chordates such as amphioxus, which is a basal chordate
(Jandzik et al., 2014).

In this review, we first summarize the histology of
chordate cartilage to understand the similarities and
differences between cellular and acellular cartilage as
well as their evolutionary relationships. Second, we
reconsider how trabecular and parachordal cartilage
evolved in early vertebrates.

2 | DIVERSITY OF
CARTILAGINOUS SKELETONS IN
CHORDATES

Early vertebrates have cartilaginous craniums, and to
understand its origins, it is important to define the
chordate cartilages before starting a detailed considera-
tion of the evolution of the neurocranium. Cartilage is a
special type of fibrous connective tissue that is both
elastic and stiff. Similar to other connective tissues,
cartilage is composed of cells, called cartilage cells, and
intercellular substances, called cartilage matrix
(Ito, 2005). In humans, there are three types of cartilage:
hyaline, elastic, and fibrocartilage. In hyaline cartilage,
which first forms in place of bone during ontogeny,
chondrocytes are spherical or oval in shape, and a few
chondrocytes are enclosed in the lacuna cartilaginea (a
small cavity in the cartilage matrix). Fibrous connective
tissue develops at the margins where fibroblasts are well‐
developed (Ito, 2005). Additionally, in hyaline cartilage,
the cartilage matrix consists of fibrils (e.g., type II
collagen) and amorphous ground substances (e.g.,
proteoglycan). Proteoglycans contain mucopolysacchar-
ides, including mucopolysaccharide chondroitin, keratan
sulfate, and chondronectin (Ito, 2005). Elastic cartilage is
considered to be transformed hyaline cartilage (Ito, 2005).
In elastic cartilage, the cells are relatively smaller than
those of hyaline cartilage, and there are large amounts of
elastic fibrils in the cartilage matrix (Ito, 2005). Mean-
while, fibrocartilage consists of one, two, or three
separate cartilage cells, and its matrix contains a large
amount of collagen fibers (type I collagen), which makes
it relatively soft (Ito, 2005).

Connective tissues include cells such as fibroblasts,
fat cells, and pigment cells, while intercellular substances
include collagens and elastin for fibrils, proteoglycans
(acid mucopolysaccharide and protein complex), and
glycoproteins (e.g., fibronectin) (Ito, 2005). Acid muco-
polysaccharides (glycosaminoglycans) include hyal-
uronic acid, heparin, and chondroitin sulfate (Ito, 2005).
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The evolution of cartilage in vertebrates has been
investigated from the perspective of cartilage in gnathos-
tomes. However, the question is whether ancestral
vertebrates have true cartilage (de Beer, 1937, rep-
rinted 1971).

A study of the amphioxus skeletal system revealed
cartilage‐like structures in adult oral cirri, velar tentacles,
endostylar cartilage, gills, and tongue bars
(Ruppert, 1997) (Figure 1a–e); these cartilages are
classified as cellular or acellular. However, Van Wijhe
proposed that oral cirri had true cartilage (Van
Wijhe, 1901). According to de Beer, buccal cirri are
homologous to oral cartilage in vertebrates (de Beer, 1937,
reprinted 1971). The buccal cirri consist of cellular
cartilage, and chondrocytes are seen in the skeletal rod,
which expresses the fibrillary collagen (ColA) gene
(Jandzik et al., 2014). Moreover, transmission electron
microscopy (TEM) images revealed fibrous collagen
sheaths (Ruppert, 1997). However, the amorphous
ground substance in cirral skeletons remains unknown.

In amphioxus, velar tentacles, which contain rigid
cartilage‐like connective tissue (Drach, 1948), were
thought to be homologs of gills (Yarrell, 1859).

Additionally, TEM showed that there were multiple
heterogeneous cells inside a tentacle (Ruppert, 1997).
Meanwhile, the endostyle is a mucus‐secreting organ
that develops ventrally into the pharynx (Ruppert, 1997).
At the base of the endostyle, a paired subendostylar
skeletal plate develops to support the endostyle, and the
subendostylar skeleton appears to have cartilage‐like
tissue (Drach, 1948).

Gill skeletons are acellular supporting tissues consist-
ing of gill and tongue bars where skeletal rods are located
(Ruppert, 1997). The amorphous ground substance of gill
skeletons was suggested to be either chitin
(Benham, 1893) or an acid mucopolysaccharide protein
complex (Azariah, 1974; Rähr, 1982), of which glycos-
aminoglycan is a major component based on Alcian blue
staining (Rychel et al., 2006). The fibrillar cartilage
matrix of gill skeletons has been suggested to be
collagenous (Fisher & Franz‐Odendaal, 2012; Rychel
et al., 2006) or noncollagenous (Wang & Zhu, 2004;
Wright et al., 2001). However, Rähr showed that collagen
was present around the skeletal rods (Rähr, 1982)
(Figure 1c–e). The gill and tongue bar skeletons in
amphioxus are not surrounded by branchial muscles as

FIGURE 1 Gill skeleton and muscular‐like cells in amphioxus. (a, f) The gill skeletons of amphioxus. The black box indicates the
magnified area (b). (c) Transmission electron microscope image of a tongue bar in (b). (d) Magnified area as indicated by a black box in (c).
(e) Magnified area in D black box). (g) Magnified region in (f) enclosed by a black box. (h) Magnified region is shown as a black box in (g). (i)
Magnified area in h (black box). (j) Magnified region as indicated by a black box in (i). ct; connective tissue, gae; glandular atrial epithelium,
gbc; gill bar coelom, hc; hepatic cecum, lcl; lateral cells, mlc; muscle like cells, skv; skeletal hemal vessel, ssp; stromal septum, tbs; tongue
bar skeletal rod.
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in vertebrates, while muscle‐like cells in the gill bar
coelom were previously reported (Welsch, 1968)
(Figure 1f–j). The muscle‐like cell faced the basal lamina
and probably differentiated from the ventral mesoderm
that elongated from the somites at the mid‐neurula
stages (Figure 1j) (Onai et al., 2017; Yong et al., 2021).

Cyclostomes and gnathostomes split more than 500
million years ago (Kuraku & Kuratani, 2006). Before the
split, the presence of at least one whole‐genome
duplication has been suggested, which is likely to be
related to vertebrate‐specific morphological evolution
(Martik et al., 2019; Ohno, 2013; Simakov et al., 2020).
Tendons, which connect muscles to bones, express
vertebrate‐specific small interstitial leucine‐rich repeat
proteoglycans (Yoon & Halper, 2005). These genes have
been suggested to have evolved through vertebrate‐
specific genome duplications (Matsushima et al., 2000).
The second whole‐genome duplication was proposed to
have occurred after the split of extant gnathostomes and
cyclostomes (Simakov et al., 2020).

The major differences between the skeletal systems of
gnathostomes and cyclostomes are (1) absence of bone in
cyclostomes and (2) evolution of new proteins
in cyclostomes (lamprin, myxinin, and pharymprin) in
addition to collagen fibers (Root et al., 2022). Lamprin is
an elastin‐like fiber expressed in annular, trabecular, and
piston cartilage but not in branchial and pericardial
cartilages (Fernandes & Eyre, 1999; McBurney &
Wright, 1996; Robson et al., 2000). Myxinin is a
lamprin‐like protein found in hagfish (Wright et al., 1984).
Pharymprin is expressed in the third and caudal
pharyngeal arch cartilages during lamprey development
(Yokoyama et al., 2019). Lampreys also have characteris-
tic cartilages called mucocartilage in the oral and
pharyngeal regions that is derived from the mandibular
and hyoid arches (Gaskell, 1908; Johnels, 1948). Muco-
cartilage, which is now considered homogenous for
fibrillar collagens (Root et al., 2022), consists of
mucopolysaccharides and mesenchyme and is once
considered a unique tissue for larval lampreys (Wright
& Youson, 1982). A recent study systematically revealed
the evolution of the collagen gene family in vertebrates
and showed cyclostome‐specific gain or loss of genes
(Root et al., 2022). Hence, true cartilage in vertebrates
can be considered as consisting of type II collagen fibers
and chondrocytes. The above evidence of amphioxus and
cyclostome cartilages suggests that the basis for true
cartilages already present in the common ancestor of
chordates and cyclostomes evolved unique repertories of
collagen gene expression patterns in pharyngeal carti-
lages as well as elastin‐like fibers, while extant gnathos-
tomes established the cartilage identity, which consists of
type II collagen fibers.

3 | THE PREMANDIBULAR ARCH
AND HEAD SEGMENTATION

Trabecular cartilage is a paired rod‐like structure located
beneath the forebrain. Trabecular cartilage is well
conserved in gnathostomes and is a key skeletal element
for understanding the basic pattern of the neurocranium
(de Beer, 1937, reprinted 1971) (Figure 2a,b). Regarding
the origin of trabecular cartilage, Huxley proposed that it
evolved from the premandibular arch skeleton
(Huxley, 1874) (Figure 2c,d). Meanwhile, de Beer
claimed that the premandibular arch mesoderm was
located anterior to the mandibular visceral slit in an
ancestral amphioxus‐like premandibular arch mesoderm
(Figure 2e) (de Beer, 1937, reprinted 1971); this
hypothesis is deeply related to the head segmentation
theory (Goodrich, 1930). According to the head segmen-
tation theory, vertebrate heads are serial homologs of the
trunk, which is highly segmented as seen in the vertebrae
and spinal nerves (de Beer, 1937, reprinted 1971).
Additionally, each segmental unit consists of spinal
nerves, somites, and gill slits, and the theory assumes
that ancestral vertebrates are amphioxus‐like
(Goodrich, 1930). From the perspective of head segmen-
tation, there are three pairs of somite homologs, called
head cavities, in shark and lamprey embryos, with each
cavity situated in the premandibular, mandibular, and
hyoid head mesoderm (Goodrich, 1930). Although extant
vertebrates do not possess an arch region in the
premandibular mesoderm, the premandibular arch
hypothesis is expected to be true in ancestors. Evidence
for the presence of the premandibular arch is provided by
the trigeminal ganglia that separately form V1 and V2–3;
the profundus nerve corresponds to the premandibular
arch, and the trigeminal nerve corresponds to the
mandibular arch as a segmental unit (Goodrich, 1930).
For the embryonic origin of the pharyngeal muscles,
Noden proposed that from quail‐chick chimaeras,
branchial muscles are derived from paraxial mesoderm,
but not from the lateral plate mesoderm (Noden, 1983).
On the branchial arches, Noden considered that bran-
chiomery (segments represented by branchial arches)
varies independently from somitomery (segments orga-
nized by trunk somites) (Noden, 1983). Further,
Northcutt proposed that amphioxus does not have a
comparable series of branchiomeric muscles
(Northcutt, 1996). Current molecular embryology ques-
tions Goodrich's model. A developmental comparison
between the head cavities and somites in shark embryos
highlighted the differences between them (Kuratani &
Adachi, 2016), and a secondary comparison
between amphioxus and vertebrate mesoderm indicated
that the preotic head mesoderm does not express
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somitogenesis‐related genes (Onai et al., 2015). This
evidence deals with the dorsal part of the head
mesoderm, which is comparable to trunk somites as
both are located dorsally. In the ventrally situated
pharyngeal mesoderm, it has been proposed that the
head mesoderm is derived from somites based on tbx1/10
expression in amphioxus somites and tbx1 expression in
the vertebrate pharyngeal mesoderm (Koop et al., 2014).

For evidence of head segmentation in lampreys, the
key study is a classic histological study wherein Koltzoff
found head somites (premandibular, mandibular, and
hyoid somites) during pharyngeal stages (Koltzoff, 1902).

However, our recent study using confocal and TEM
microscopes clearly demonstrated the absence of somites
in the head mesoderm (Onai et al., 2021). In this paper,
we found that there are several somite‐rosette‐like
structures in the mandibular and hyoid head mesoderm
in lamprey embryos at pharyngeal stages. However, cell
clusters of such pseudo‐rosettes were fundamentally
different from those in trunk somites. In addition,
somitogenesis‐related genes were not expressed in those
pseudo‐rosettes (Onai et al., 2021). A recent re‐
interpretation of the Cambrian fossil yunnanozoans
indicates that the earliest vertebrates are more similar

FIGURE 2 Premandibular arch hypothesis and head segmentation. (a, b) The trabecular and parachordal cartilages in polypterus
embryos redrawn with modification from de Beer (1937). (a) Dorsal view. (b) Sagittal view. (c) Ancestral chordates having premandibular
arch redrawn from De beer (1937). (d) Ammocoete larva of Petromyzon redrawn from de Beer (1937). (e) Scyllium embryo redrawn from de
Beer (1937). ac, auditory capsule; ch, ceratohyal cartilage; e, eye; hyp, hypophysis; fn, facial nerve; gn, glossopharyngeal nerve; gs, gill slit;
ha, hyoid arch; hr, rudiment of hyosymplectic cartilage; ma, mandibular arch; mcr, rudiment of Meckel's cartilage; ms, mandibular visceral
slit; n, notochord; ov, otic vesicle; pma, premandibular arch; pn, profundus nerve; qr, rudiment of quadrate cartilage; sp, spiracular slit; spp,
spiracular pouch; st, stomodaeum; stp, stomodaeal pouches; tn, trigeminal nerve. v, velum; var, rudiment of ceratobranchials.
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to cyclostomes than to amphioxus (Tian et al., 2022).
Regarding the morphology of stem chordates, recent
work suggests that the enigmatic Cambrian fossil called
vetulicolians represent stem chordates (Gee, 2018).
Vetulicolians share a segmented tadpole shape
(McMenamin, 2019). They are diverse and include
several groups. Some (e.g., Bellamya constricta) have
posterior segments but not anterior, others (e.g., Dida-
zoon haoae) have segments throughout the body similar
to extant amphioxus (McMenamin, 2019). The majority
view is that vetulicolians fossils might be represent
ancient invertebrate chordates. However, the identity of
these enigmatic fossils remains to be settled definitively.
There are scientists who think vetulicolians are some sort
of arthropod (Butterfileld, 2002). And a couple of papers
doubt if they really chordates although without suggest-
ing a firm alternative (Briggs et al., 2005; Schubert
et al., 2006). There is even one group that thinks
vetulicolians are a missing link between amphioxus
and tunicates (Syed et al., 2007).

4 | THE EVOLUTIONARY AND
DEVELOPMENTAL ORIGIN OF
THE TRABECULAR AND
PARACHORDAL CARTILAGES IN
VERTEBRATES

Trabecular cartilage is derived from the neural crest of
gnathostomes (Wada et al., 2005). In zebrafish, trans-
genic analysis revealed that trabecular and parachordal
cartilages develop separately; the former is from the
neural crest and the latter is from the mesoderm, which
eventually fuse leading to an unclear interface (Kague
et al., 2012). In amphibians, lineage trace studies indicate
that trabecular cartilage has a neural crest origin
(Hanken & Gross, 2005). In lampreys, trabecular carti-
lage develops as a paired rod‐like structure beneath the
optic vesicle, similar to gnathostomes (Johnels, 1948).
Meanwhile, in a histological study, Damas considered
trabecular cartilage to be derived from the neural crest
(Damas, 1944). As such, perturbation studies of the
neural crest have resulted in conflicting results (Langille
& Hall, 1988; Newth, 1956). However, a cell lineage study
showed that the trabecular bone originated from the
head mesoderm (Kuratani et al., 2004). Therefore,
trabecular cartilage in lampreys is a parachordal homo-
log, with similar results having been reported for hagfish
(Oisi et al., 2013). If trabecular cartilage is absent from
cyclostomes, it might have emerged in stem gnathos-
tomes as a plate to support the forebrain (Kuratani &
Ahlberg, 2018). Therefore, the upper lip of cyclostomes is
derived from the premandibular crest, and this cell

population evolved to form trabecular cartilage in jawed
vertebrates (Kuratani & Ahlberg, 2018). The proposed
transformation fits well with stem gnathostome fossils
such as Romundina, which revealed a stepwise evolution
(e.g., expansion of the distance between the nasal sac and
hypophysis and enlarged forebrain) of gnathostome faces
(Dupret et al., 2014).

If the parachordal cartilage evolved before the
trabecular cartilage, it could be present in jawless
vertebrates such as Metaspriggina, a Cambrian fossil
(Onai et al., 2017). In extant vertebrates, parachordal
cartilage differentiates from the presomitic head meso-
derm after induction by notochordal signals (McBratney‐
Owen et al., 2008). If the medial paraxial head mesoderm
near the notochord becomes the parachordal cartilage,
there are three possible ancestral conditions depending
on the contribution of somites: the parachordal cartilage
originates from the scleromesothelium of somites or
mesenchymal head mesoderm, or expands dorsally from
the ventral mesoderm (Aldea et al., 2019; Mansfield
et al., 2015; Onai et al., 2015) However, recent findings
suggest that contrary to the model proposed by Kuratani
et al. (2004), the trabecular cartilage in lampreys may be
neural crest‐derived and not mesoderm‐derived. In stage
26 lamprey embryos, the neural crest cells were
recognized above the dorsal neural tube and mandibular
arch which are similar to other vertebrates
(Trainor, 2013) (Figure 3a–c). If trabecular cartilage is
derived from the neural crest in lampreys, it might have
been present in early vertebrates. A loss‐of‐function
study of the gnathostome sox8/9/10 homolog soxE (a
neural crest marker) in lamprey embryos showed failure
of trabecular formation (Lakiza et al., 2011), suggesting
that trabecular cartilage may be derived from the neural
crest. Histological studies of the lamprey cartilage at
stage 27 showed that trabeculae were situated ventral to
the eye (Figure 3d,e). Curiously, the prospective trabecu-
lar cells were longitudinal and continuous with the
neural crest stream from the dorsal neural tube
(Figure 3d,e). No medial crest cell population is seen in
the cephalic crest, but the situation in lampreys might
not be similar based on a cell lineage tracing study
(McCauley & Bronner‐Fraser, 2003). Collectively, these
evidence might be consistent with the neural crest origin
of the trabecular in lampreys. If the trabecular cartilage
originated from the neural crest already in early
vertebrates, their homologs should be located in the
lateral neural tube of the last common ancestor of
tunicates and vertebrates (Cattell et al., 2011). However,
the neural crest‐like cells in this pre‐vertebrate ancestor
did not seem to have been able to differentiate into
cartilage cells (Cattell et al., 2011). Molecular compari-
sons of the pharyngeal mesoderm of amphioxus and arch
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skeletons of vertebrates suggest that cartilage properties
in the neural crest cells evolved by co‐option of GRNs in
the pharyngeal mesoderm of amphioxus‐like ancestors
(Cattell et al., 2011; Jandzik et al., 2014). Since
amphioxus are more distantly related to vertebrates than

tunicates, the scenario presented here would, however,
still be compatible with the neural crest already
producing cartilage in the last common ancestor of
tunicates and vertebrates. In the initial phase of
vertebrate evolution, this animal might have had its

FIGURE 3 Transmission electron microscope (TEM) images of neural crest cells and plastic section images of prospective trabecular
cartilages in lamprey embryos (a) A scheme of stage 26 lamprey embryo which was examined in TEM experiments in this study. Black boxes
indicate that the regions observed in TEM images (b, c). (b, c) TEM images of mandibular arch crest cells (b) or dorsal neural crest cells (c).
(d, e) Plastic section images of prospective trabecular cartilages at stage 27. (d) is rostral to (e). GV1, Ganglion of trigeminal nerve1; MM,
mandibular head mesoderm; N, notochord; Nc, neural crest; Nt, neural tube; Re, retina; Tr, trabecular progenitors.
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hypophysis derived from the premandibular endomeso-
derm, which is homologous to the anterior gut diverticu-
lum in amphioxus and consistent with a recent study
showing the endodermal origin of hypophysis in zebra-
fish (Figure 4a) (Fabian et al., 2020). In this animal, the
pharyngeal arch skeleton likely formed from the head
mesoderm or somites, depending on whether the rostral
somites extended into the rostral end (Figure 4a). In the
second phase, represented by cyclostomes, the pharyn-
geal arch skeletons are derived from the mesoderm and
neural crest, which recruit cartilage GRNs from the
ancestral mesoderm, while the trabecular cartilage is
derived from the neural crest (Figure 4b) (Sleight &
Gillis, 2020). If so, the evolutionary origin of the

trabecular cartilage is the ancient pharyngeal mesoderm,
which, unlike the premandibular arch mesoderm, leads
to the conclusion that this skeleton was invented through
a stepwise evolution of the neural crest cell types
including copying pharyngeal mesoderm GRNs in the
chordate ancestor (Figure 4b,c). The neural crest has
been considered to be the most important developmental
novelty in vertebrate evolution (Northcutt, 1996). From
the perspective of neurocranium evolution, the neural
crest might have taken skeletogenesis properties from the
pharyngeal mesoderm in an ancestral chordate, which
eventually might have allowed the pharyngeal mesoderm
to generate well‐developed branchial muscles for a
predatory lifestyle.

FIGURE 4 Scenario of the evolution of the cranium of vertebrates. (a) Early vertebrates before evolution of the trabecular cartilage.
Parachordal cartilage can be present if Metaspriggina (Morris & Caron, 2014) is a primitive vertebrate that may have rostral somites forming
cartilages. Alternatively, the parachordal cartilages can be derived from the mesenchymal head mesoderm if yunnanozoans are the most
basal vertebrates (Tian et al., 2022). In this case, the preotic head mesoderm does not include somites. (b) Jawless vertebrates having
trabecular cartilages. (c) Jawed vertebrates. Dark red structure indicates mesodermal cartilage, and yellow structure indicates cartilages from
neural crest cells. Light green stream is neural crest migration pathways. adh, adenohypophysis; gs, gill slit; ha, hyoid arch; hm, head
mesoderm; ma, mandibular arch; ne, neural tube; nhp, nasohypophysial placode; np, nasal placode; nt, notochord; pas, pharyngeal arch
skeleton; pch, parachordal cartilage; pcp, prechordal plate endomesoderm; ph, pharynx; s, somite; sp, spiracle; tr, trabecular cartilage.
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5 | CONCLUSIONS

For the early evolution of the vertebrate neurocranium,
the developmental origin of trabecular cartilage must be
first understood to clarify that trabecular cartilage is a
common feature of extant cyclostomes and gnathos-
tomes. However, cell lineage studies of trabecular
cartilage in lamprey embryos are insufficient. Therefore,
to confirm the theories of neurocranial evolution, future
studies should address this problem.

6 | MATERIALS AND METHODS

6.1 | Animal collection

Adult amphioxus were collected from the ocean in
Amakusa, Kumamoto, Japan. After collection, the adults
were kept in a tank containing artificial seawater. The
temperature was maintained at 20°C. Adult lampreys
were collected from a river in Hokkaido, Japan. They
were placed in a tank that was maintained at 12°C. In
vitro fertilization was performed as previously described
(Onai et al., 2015). Fertilized eggs were cultured in 10%
Steinberg's solution until the stage was fixed.

6.2 | TEM analysis

Samples of adult amphioxus were fixed in 1% para-
formaldehyde (PFA) and 1.25% glutaraldehyde (GA) in
filtered seawater for 2 h at room temperature, and then
for more than 24 h at 4°C. The samples were washed
with filtered seawater twice on ice and with 0.1M
cacodylate buffer twice on ice. Lamprey embryos were
fixed with 2% PFA and 2.5% GA/PBS (−) and washed
with PBS (−). The samples were treated by 1% osmium
tetroxide in 0.1M cacodylate buffer for 2 h in the dark.
The samples were then washed thrice with Milli‐Q water
at room temperature. Block staining was performed by
adding 0.5% uranium acetate for 2 h at room tempera-
ture. The samples were dehydrated using an EtOH series
(50%–100%). Propylene oxide (PO) was added twice for
20 min. PO:resin was added in a 1:1 ratio for 30 min and
later in a desiccator overnight. The samples were treated
in 100% resin thrice for 2 h at room temperature,
evacuated for 30 min, and then placed under vacuum
overnight. The samples were then embedded in Polybed
812 for 48 h at 60°C. The sections (90 nm) were double‐
stained with uranyl acetate and lead citrate and imaged
using an electron microscope (JEOL JEM‐1010. Japan;
Hitachi H‐7650, Japan). Regarding identification of the
neural crest cells, we applied criterions that the neural

crest arises from the dorsal roof of the neural tube, and
the neural crest covers mesodermal core in the mandib-
ular arch. The evidence can be found in (Noden &
Francis‐West, 2006; Trainor, 2013).

6.3 | Toluidine blue staining

Toluidine blue solution (0.5% toluidine blue O, 1% borax
in water) (Waldeck, Germany) was applied to the
sectioned samples. The samples were placed on a hot
plate for 30 s. They were then washed with Milli‐Q water.
After the samples were dried at room temperature, they
were covered with Entellan (Fuji Film, Japan).
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