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Abstract

Let e > 2 be a fixed integer, and let p = 2°T'¢ 4+ 1 be an odd
prime number with 2 t g. For 0 < n < e, let k,, be the subfield
of the pth cyclotomic field Q(¢,) of degree 2". For Ly = Q(v/2)
or Q(v/2¢) with an odd prime number ¢, we put L, = Lok,. For
each 0 < n < e — 1, we denote by F, the quadratic subextension
of the (2,2)-extension L, 1 /k, with F,, # Ly, kny1. It is a real
cyclic field of degree 2"*!. We study the Galois module structure
of the 2-parts of the narrow and the ordinary class groups of F,.
This generalizes a classical result of Rédei and Reichardt for the
case n = 0.
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1 Introduction

Let e > 2 be a fixed integer, and let p = 2°t1g + 1 be an odd prime number
with 2 1 g. For each 0 < n < e+ 1, we denote by k,, the subfield of the pth
cyclotomic field Q((,) of degree 2. We denote by P the set of prime numbers
¢ satisfying

(%) =—-1 and ¢=+1mod 8. (1.1)

Let Ly = Q(v/*2) or Q(v/*2¢) with ¢ € P, and put L, = Lok,. For each
0<n<e, Lyi1/k,isa(2,2)-extension with quadratic subextensions k1 and
L,,. We denote by F,, the third quadratic subextension of the (2, 2)-extension
Lpi1/kn. Tt is a cyclic extension over Q of degree 2”1, The cyclic field F,, is
real when L is real and 0 < n < e—1 or when L is imaginary and n = e. It is
imaginary otherwise. When n = 0, Rédei and Reichardt [11] studied the 2-part
of the class group of the quadratic field Fy = Q(1/%2p) or Q(v/£2pf). In the
previous papers [5, 6], we studied the Galois module structure of the 2-part of
the class group of F,, when F,, is imaginary, and generalized the classical result
on Fy. In this paper, we study the class group of F,, when F,, is real. To avoid
confusion, we only deal with the case where Lj is real and 0 <n <e —1.

In all what follows, we let Ly = Q(v/2) or Q(v/2f) with ¢ € P. Let Clg
and Clp be the ideal class groups of a number field F' in the narrow sense
and in the ordinary sense, respectively, and let Ap and Ap be the 2-parts of
Clp and Clp, respectively. We put h,, = |Clz,|, b, = |Clz,|, A, = Az, and
A, = Az, . Let Py (resp. P_) be the subset of P consisting of those £ € P with
£ =1mod 8 (resp. £ =—1 mod 8), so that we have P = P, UP_. It is well
known that

i 7)29 when Ly = Q(v/2),
Ag={ 7/297/2  when Ly = Q(v/2() with £ € P,
Z)2®7)2 when Ly = Q(v/2f) with £ € P_,

for some j > 2 depending on Lg. This is due to Rédei and Reichardt [11]. There
are many other papers and results on the 2-part of class groups of quadratic
fields, such as [1, 3, 7, 8, 10, 14, 15]. We generalize the above classical result
for n > 1. We fix a generator ~, of the cyclic group I',, = Gal(F,,/Q) of order
2"+l Let R, = Z5[T',] be the group ring associated to I',, over the ring Zs
of 2-adic integers. Let A = Zs[[T]] be the 2-adic power series ring with an
indeterminate T. We identify the group ring R, = Zs[l',] with the residue
ring A/((1+T)*""" — 1) by the correspondence v, <+ 1+ T*

R, =A/(1+1T)

The class groups A, and A, are naturally regarded as modules over R,,, and
hence as modules over A. In this paper, we study the structure of these A-
modules when 0 < n <e—1. Asin [5, 6], our arguments are based upon the
following fact.

2n+1

~1). (1.2)
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Lemma 1.1. Under the above setting, (1+7T)*" +1 annihilates the A-modules
A, and A,,.

Let , be the smallest non-negative integer ~ such that p splits completely
in Q(21/2ew+1). It is known that 0 < k, < e and that for each ¢ with 0 < i <ee,
there exist infinitely many prime numbers p of the form p = 2¢t'q 4 1 with
kp =1 ([5, Lemma 1]). We put

f=e—r,+1 and f=min{e, f}.

Wehave 1 < f <easr, <e. Wehavefszhen/ﬁpz1,andf=f§e—1
if and only if x, > 2. In the following, we simply write “f < n < e—1"
when x, > 2 and f < n < e—1. It is also known that the prime number 2
splits completely in k; and that the primes over 2 remain prime in ke /k 7 (5,
Lemma 3]). For a finite abelian group A and an integer ¢ > 1, let

ot (A) = dimg, (271 A/27 A)

be the 2¢-rank of A, where 3 is the field of 2 elements. On the 2-rank of the
narrow class group A,, the following assertion holds.

Proposition 1.1. According as Ly = Q(v/2) or Q(V20) with £ € P, the 2-rank
ra(Ay) equals 2% or 142" for 0 < n < f — 1, and it equals 27 or 1+ 2/ for
f<n<e-—1.

Remark 1.1. As the ordinary class group A, is a quotient of the narrow one
A, we have 19t (A,,) < rot(A,,) for every n and Ly.

Proposition 1.2. (I) Let Ly = Q(v/2). The A-modules A,, and its quotient
A, are cyclic.

(I1) Let Lo = Q(v/2() with £ € P. The A-module A, is isomorphic to
A2, T) ® B,, for some cyclic A-module B,. Further, when ( € PL, A, is
isomorphic to A/(2,T) ® B,, for some cyclic A-module B,,, which is a quotient

of the A-module B,,.
Let A be a finite cyclic A-module which is annihilated by (1 + 7)%" + 1.

Then, we see that ro(A) < 2" since the quotient A/((1+T)?" +1) is isomorphic
to Z§?" as an abelian group. When r5(A) = 2" (and hence ordy(|A|) > 27),

we put { 1 (|A)"
sal4) = | =522 |

and
an(A) =2"s,(A) —orda(|A]), bn(A) =2" —a,(A).

Here, [z] denotes the smallest integer > z, and ords(*) the 2-adic additive
valuation on Q with ords(2) = 1. Then, we have s,(A) > 1, a,(A) > 0 and
b, (A) > 1. Further, we define an ideal ©,,(A) of A by

On(4) = (2, 271D (14 72" 4 1).
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Note that the integers s, (A), a,(A), b,(A) and the ideal ©,,(A) depend only
on the cardinality |A|. We see that

AJO,(A) = (Z/2sn(A)—1)eaan(A) a (Z/an(A))éan(A) (1.3)
as abelian groups. For a cyclic A-module A, the following holds.

Proposition 1.3. Let A be a finite cyclic A-module which is annihilated by
(1+T)% + 1. Then,

A = A/O,(A) when ro(A) =27
T A/, T2 when ro(A) < 2™ orry(A) =0

as A-modules.

Because of the above results, we can determine the A-module structures of
A,, and A,, once we know the (2-parts of the) class numbers h,, and h,, of Fus
respectively.

Now, we shall write down several results first on the narrow class group
A, and next on the ordinary one A,. When Ly = Q(vV20), B, (resp. By)
denotes the cyclic A-submodule of A,, (resp. A,) in Proposition 1.2. We have

r4(Byp) = 14(Ay) and r4(B,,) = r4(A,) by Proposition 1.2.
Proposition 1.4. When Lo = Q(v/20) with £ € P_, r4(A,) = r4(A,) = 0.
From Propositions 1.1-1.4, we obtain the following;:

Corollary 1.1. When Ly = Q(v/2() with £ € P_, the A-module B,, is isomor-
phic to A/(2,T2") or A/(2,T2f) according as 0 <n< f—1orf<n<e-—1.

In view of Corollary 1.1, we let £ € P..

Proposition 1.5. Let Ly = Q(v/2) or Q(v/20) with £ € P,. For0 <n <e—1,

ra(An) > 1 if and only if 0 <n < f —1.
From Propositions 1.1-1.3 and 1.5, we obtain the following:

Corollary 1.2. Let f <n <e— 1. According as Ly = Q(v/2) or Q(v/2€) with
¢ € Py, the A-module A, or B, is isomorphic to A/(2,T2f).

In view of Corollaries 1.1 and 1.2, we let 0 < n < f—1and £ € P,. We

already know that r4(A,) > 1 by Proposition 1.5. The following assertion gives
a relation between the 4 and 8-ranks of the class groups A,,.

Proposition 1.6. Let Ly = Q(v/2). For 0 < n < f —2, we have rs(fln) >1

if and only if ra(Aps1) > 2"+ 1.
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Let Ly = Q(\/ﬁ) When there exists an integer 0 < m < f — 1 with
r8(Am) =0, let m,, be the smallest such integer and put b, = r4(A;,,). Then,
it follows from Propositions 1.1 and 1.6 that

2mr~l 41 <b, <2 ifm,>1, and b,=1 if m, =0. (1.4)
When rg(/im) > 1 forall 0 <m < f —1, we simply put m, = co. Thus, the
condition m, < oo means 0 < m, < f — 1. In general, when 0 <n < f —1,
the submodule B,, of A,, depends on ¢. However, there are cases where it does
not depend on /.

Theorem 1.1. When the base field Ly moves over Q(v/2) or Q(v/2€) with
e Py, the following assertions hold.

(I) For 0 < n < f — 1, the 4-rank r4(A,) depends only on n and not on
individual Lg’s.

(II) Assume that m, < co.

(I14) Let 0 < n < my, — 1. Then, r4(A,) = 2" and r3(A,) > 1 when
Lo = Q(v/2), and r4(B,) = 2™ when Ly = Q(v/20).

(I-ii) Let my, <n < f—1. Put ©, = (4,27, (1+T)*" +1). Then, the
A-module A,, is isomorphic to A/©,, when Lo = Q(v/2), and B,, is
isomorphic to A/©,, and independent of £ when Lo = Q(v/2() and
(n,by) # (mp,2™2). When Ly = Q(v/2f) and b, = 2™», we only

have 74(By,,) = 2.

(IIT) Assume that m, = co. Then, for each 0 < n < f —1, r4(A4,) = 2" and
rs(Ap) > 1 when Lo = Q(v/2), and r4(B,) = 2™ when Lo = Q(v/20).

Next, let us write down our results on the ordinary class group A,,.

Proposition 1.7. When Ly = Q(v/2() with { € P_, A, = 7/2 for every
0<n<e—1.

In view of this proposition, we let Ly = Q(v/2) or Q(v/2¢) with ¢ € P,.
Let Lo = Q(v/2). By Proposition 1.5 (and Remark 1.1), we already know that
r4(A,) =0 for f <n <e—1. When there exists an integer 0 < n < f —1 with
r4(An) = 0, let n, be the smallest such integer and put ¢, = r2(A,,). When
ry(A,) > 1forall0 <n < f—1, we put n, = oco. Then, the condition n, < oo
means 0 < n, < f —1. When n, = co and f < e — 1 (or equivalently , > 2),
we put d, = r2(Ay). When n, = oo and f = e (or equivalently, k, =0, 1), we
do not define d,. The following two assertions are analogous to the assertion
(1.4) and Theorem 1.1 for the narrow class group A,,.
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Proposition 1.8. When n, < 0o, we have
2"+ 1<, <2™ ifn,>1, and c,=1 ifn,=0.  (L5)
When ny, = 0o and f < e—1, we have

2/71 11 <4a, <27 (1.6)

Theorem 1.2. When the base field Ly moves over Q(v/2) or Q(v/20) with
e Py, the following assertions hold.

(I) Let 0 < n < e — 1. The 2-rank ro(A,,) for Ly = Q(v/2) and ro(B,,) for
Lo = Q(\/ﬂ) depend only on n and not on individual Lg’s.

(IT) Assume that n, < co.

(II-i) Let 0 < n < n, — 1. Then, ro(A,) = 2" and r4(A,) > 1 when
Lo = Q(v/2), and ro(B,,) = 2™ when Lo = Q(v/2().

(II-ii) Let n, < n < e — 1. Then, the A-module A,, is isomorphic to
A/(2,T¢) when Ly = Q(v/2), and B, is isomorphic to A/(2,T¢)
and independent of ¢ when Ly = Q(v/20) and (n,c,) # (n,,2").
When Lo = Q(V20) and c, = 2", we only have r3(B,,) = c,.

(IIT) Assume that n, = co.

(IT1-i) Let 0 < n < f —1. Then, ro(A,) = 2" and r4(A,) > 1 when
Lo = Q(v/2), and 5(B,,) = 2" when Ly = Q(v/20).

(II1-ii) Let f < n < e—1. The A-module A, or B, is isomorphic to
A/(2,T%) according as Ly = Q(v/2) or Q(v/20).

This paper is organized as follows. In Section 2, we give some related results
and remarks. In Section 3, we give several lemmas which are necessary to show
our results. Proposition 1.3 is shown in Section 3. In Section 4, we introduce
several submodules of k/(k)? which play important roles for showing the
results. In Section 5, we construct the class fields of F,, corresponding to
/Nln/;li and A, /A%, respectively. Lemma 1.1 and Propositions 1.1, 1.2 are
shown in Section 5. In Section 6, we prove Theorems 1.1, 1.2 and Propositions
1.4-1.8. In Section 7, we give several numerical examples mainly related to
Theorems 1.1 and 1.2.
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2 Related results and remarks

In this section, we give some related results and remarks. First, we show the
following simple assertion on the invariants m, and n,,.

Lemma 2.1. We have n, > m,,.

Proof. Let L/F be a cyclic extension of degree 8 unramified at all finite prime
divisors. Then, the quartic subextension N/F' is everywhere unramified (in-
cluding the infinite ones). Therefore, it follows that r74(Ap) > rs(Ap). From
this, we obtain the assertion. ]

In [10], Morton studied the narrow class number ho and the fundamental
unit of the real quadratic field 7y = Q(y/2p) (associated to Ly = Q(v/2)).
We already know that 4|hg by [11]. From Lemma 2.1, we see that m, = 0 if
np = 0, and that n, > m, > 1if 8|}~L0. The following assertion is essentially
due to Morton.

Proposition 2.1. (i) We have S‘ZLO (or equivalently, my, > 1) if and only if
e>3and f > 2.

(ii) When e = f =2, we have n, =0 and ¢, = 1.

(iii) When e =2 and f =1, we have n, = 0o and d, = 2.

(iv) When e >3 and f =1, we have n, =0 and ¢, = 1.

Proof. The first assertion (i) is nothing but [10, Theorem 3]. For showing (ii)
and (iv), let us assume that e = f = 2 or that e > 3 and f = 1. Then, by (i), we
have 4| hg. Let € be the fundamental unit of Fy = Q(v/2p). By [10, Theorem
5], we have Ne = 1. Therefore, we obtain 2|/hg. This implies that n, = 0, and
hence ¢, = 1 by (1.5). Next, for showing (iii), assume that e = 2 and f = 1.
Then, we have 4||ho by (i), and Ne = —1 by [10, Theorem 5]. Hence, it follows
that 4||hg. This implies n, = oo, and hence d, = 2 by (1.6). O

The following assertion is an immediate consequence of Theorems 1.1, 1.2
and Proposition 2.1.

Proposition 2.2. Let Ly = Q(\/i), and assume that e > 3 and f > 2.

(i) Assume further that rs(Ay) = 0. Then the abelian group A, is isomor-
phic to (Z/2)C" =2 o (2/4)%2 for 1 <n < f — 1.

(ii) Assume further that r4(A1) = 0. Then the abelian group A,, is isomor-
phic to (Z/2)%? for1 <n<e—1.

Proof. As e >3 and f > 2, we have rg(Ag) = 1 by Proposition 2.1(i). There-
fore, if 7"8(1211) =0, then we have m, = 1, and hence b, = 2 by (1.4). Thus, we
obtain the assertion (i) from Theorem 1.1(II-ii) and (1.3). We have r4(Ap) =1
as rg(flo) = 1. Therefore, if 74(A;1) = 0, then we have n, = 1, and hence ¢, = 2

by (1.5). Thus, we obtain the assertion (ii) from Theorem 1.2(1I-ii). O
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Remark 2.1. (I) As we will see in Section 7, there are several examples with
np, = mp or n, = my + 1 when n, < oo. However, we have at present no
example with m, +2 < n, < co.

(IT) Let p = 2593, 4513 or 7489. Then, by Table 3 in Section 7, we see that
f =4 and that rg(A;) = 0 and 74(A4;) = 0 for Ly = Q(v/2). Hence, these p
satisfy the assumptions in Proposition 2.2.

Remark 2.2. (I) When Ly = Q(v/2f) with £ € P, it is shown that 7g(Ag) = 1
2

if and only if p = ¢ mod 16 and <£> = 1 by Zhang and Yue [15, Corollary
p

4
2].

(IT) In Theorem 1.1(11-ii), the group Bmp for Ly = Q(v/2¢) depends on ¢
when b, = 2™». Let us give some example. Let e =2 or f =1, so that m;, =0
and b, = 1 = 2™» by Proposition 2.1(i) and (1.4). The above mentioned result
[15, Corollary 2] tells us how rg(Bo) depends on £ for such a case. For example,
let p=73. Then, e =2, K, = 0 and f = 2. Further Ay = 7Z/4 for Ly = Q(v/2)
and m, = 0. The group By for Ly = Q(v/2¢) is isomorphic to Z/2 when
¢ =113, 313; to Z/4 when ¢ = 17, 193; to Z/8 when ¢ = 41, 89; to Z/16 when
=97, 601; to Z/32 when ¢ = 641. These are found in the table of Wada [12]
on class numbers of real quadratic fields.

(III) In Theorem 1.2(ILi), the group B, for Ly = Q(v/2¢) depends on ¢
when ¢, = 2"». For example, let p = 73 as above. Then, we have Ay = Z/2 for
Lo = Q(v/2), and n, = 0 and ¢, = 1 = 2"». From the table [12], we find that
By is isomorphic to Z/2 when ¢ = 113, 313; to Z/4 when ¢ = 17, 41; to Z/8
when ¢ = 97, 401; to Z/16 when ¢ = 601, 641.

(IV) Several related examples are given in Section 7.

Remark 2.3. Let Ly = Q(v/2) or Q(+v/2¢) with £ € P,. Then, we see from
Proposition 1.5 that 7"4(/~ln) > 1 if and only if p splits completely in Q(21/2"+1)
similarly to [6, Remark 2.4]. Thus, we can say that Q(2'/ 2"") is a “governing
field” for the 4-rank of A,, to be positive.

3 Several lemmas

In this section, we collect several general lemmas, which are necessary to prove
our results. We also show Proposition 1.3 on a finite cyclic A-module at the
end of this section.

For a number field F, let Op be the ring of integers and Er = O the
group of units of F'. The following lemma is shown in [5, Lemma 6].

Lemma 3.1. Let F' be a real abelian field of degree n. Assume that the narrow
class number hp is odd and that the prime number 2 splits completely in F;
(2) =q1---qn. Then, the map

Ep — (Op/4)* = (Op/q3)* @& (Or/42)"; € — e mod 4



On the Class Groups of Certain Real Cyclic Fields of 2-power Degree 39

1S surjective.
The following lemma is well known (Washington [13, Exercise 9.3]).

Lemma 3.2. Let F' be a number field. Let q be a prime ideal of F' over 2, and
let a > 1 be the integer with q*||2. Let K = F(y/w) be a quadratic extension
over F with w € F* relatively prime to q. Then, (i) the prime ideal q is
unramified in K if and only if w = u?® mod ¢ for some u € Op, and (i) it
splits in K if and only if w = u? mod q?**! for some u € Op. In particular,
when q is unramified over Q (a = 1) and its degree is one, (1) q is unramified
in K if and only if w = 1 mod g2, and (ii’) it splits in K if and only if
w =1mod q3.

For an integer s > 1, Cs denotes a cyclic group of order 2°. We call a cyclic
extension of degree 2° over a number field simply as a Cas-extension. For a
finite abelian group A, let 3 A be the subgroup of A consisting of elements a € A
with a2 = 14, where 14 is the identity element of A.

We say that an extension K/F is “narrowly unramified” when it is unrami-
fied at all finite prime divisors, and that it is “unramified” when it is unramified
at all prime divisors including the infinite ones. Let Mp/F and Mg /F be the
class fields corresponding to the class groups Ap and Ap of F, respectively.
Then, we have the following identifications via the reciprocity law map:

Gal(Mp/F) = Ap: p. < ¢, and Gal(Mp/F)=Ap: p. < c.

Here, p. (resp. pe) is the Frobenius automorphism on My (resp. M F) asso-
ciated to a narrow (resp. an ordinary) ideal class ¢. The following lemma has
its origin in [11] and was repeatedly used in the study of 4, 8 and 16-ranks of
class groups of quadratic fields, and it is an immediate consequence of class
field theory. For a proof, see [6, Lemma 3.3].

Lemma 3.3. (I) An unramified Cas-extension K/F extends to an unramified
Cyst1-extension if and only if (1) pe acts trivially on K for every ¢ € 3 Ap.

(I1) A narrowly unramified Css-extension K/F extends to a narrowly un-
ramified Cyst1-extension if and only if (i) p. acts trivially on K for every
cE€LAFR.

Remark 3.1. Let p; (1 < i < r) be some prime ideals of F', and let h be an
odd integer. When 5 A is generated by the ordinary classes [pf], the condition
(i) in Lemma 3.3 holds if and only if the prime ideals gp; split completely in
K. When the base field F is totally real and A is generated by the narrow
classes [p?] and [(z)] for all z € F*, the condition (ii) in Lemma 3.3 holds if
and only if K is totally real and the prime ideals gp; split completely in K.

The following lemma is an exercise in Galois theory, and is quite easy to
show.
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Lemma 3.4. Let K/F be a quadratic extension, and let o be the nontrivial
automorphism of K/F. Let N = K(y/a)/K be a quadratic extension with
a € KX\ (K*)2. The extension N is Galois over F if and only if a*t7 = a?
for some a € K*. Further, N/F is a Cy-extension if and only if a'=% = —1,
and it is a (2,2)-extension if and only if a € F*.

Lemma 3.5. Let K/F be a narrowly unramified quadratic extension, and let
N = K(y/a)/F be a narrowly unramified Cy-extension with o € K*. Then,
every narrowly unramified Cy-extension over F containing K is given by the
form K (\/ac) with some ¢ € F* for which F(y/c)/F is narrowly unramified.

Proof. Let K(v/B)/F with 3 € K* be another narrowly unramified Cy-extension
containing K. Then, we see from Lemma 3.4 that a'T = a? and g7 = b?
for some a, b € K* such that a'=% = b1=9 = —1. Thus, (af)'™7 = (ab)?
with (ab)!=7 = 1. It follows from Lemma 3.4 that K (v/aB) = K(/c) for some
¢ € F*. Therefore, we see that K(y/B) = K(y/ac) and that the extension

F(y/c)/F is narrowly unramified as F(y/c) C K(y/a,/B). O

Let G = (p) be a cyclic group of order 27, and let R = F[G]. For 0 <i <
27 let U; be the principal ideal of R generated by (1 + p)’. Then, we have a
filtration

Uy=RDU; D--DUsy_; DUy =40}

For 0 <n < f, let

2f—m_1

Nim= Y. ()Y =0+p? " (3.1)
=0

be a norm element in R. Here, the second equality is shown in the proof of [6,
Lemma 4.3]. Let J,, = (Ny/y,) be the ideal of R generated by Ny/,,. On these
ideals, we showed in [6, Lemma 4.3], the following:

Lemma 3.6 ([6]). (I) The ideals U; are all the ideals of R, and dimg, U; =
2f —i. In particular, the ideals of R are parametrized by their dimensions over
Fs.

(IT) For 0 < n < f, J, = Uss_on and hence Jy = Uys_; is the smallest
nontrivial ideal of R.

In the later sections, we use this lemma for the cyclic Galois group G = Gy =
Gal(ks/Q) of order 27.

Remark 3.2. For ideals I and J of R, Lemma 3.6(I) implies that ITN.J C J
if and only if I C J.

Proof of Proposition 1.3. When ro(A) = 2™ and r4(A) > 1, the assertion is
already shown in [6, Lemma 3.5]. So it suffices to show the assertion when
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ro(A) = 2" and r4(A) = 0 and when ro(A) < 2.

First, let ro(A) = 2™ and r4(A) = 0. Then, A = A/(2,T?") as A is cyclic
over A. On the other hand, we observe that s,(A) =1, a,(A) =0, b,(A) =2"
from the assumptions, and hence 0,,(A) = (2,7%") = (2,T7724)). Therefore,
we obtain the assertion under this setting.

Next, let r = ro(A) < 2™. It suffices to show that r4(A) = 0. Assume to
the contrary that r4(A4) > 1. We can write

A= é(zmi)%
i=1

as abelian groups for some integers s > 1, ¢; >0 (1 <i<s—1) and t; > 1.
As r9(A) = r, we have

D ti=r and Y it; = ordy(|A|). (3.2)
1=1 =1

The assumption r4(A) > 1 means that ordy(|A|) > r + 1. Then, it follows

that s > 2. Put B = A2, Then, B is a cyclic A-module annihilated by
(1+T7)%" +1 and it is isomorphic to

(Z)2)%'=1 @ (Z/4)®"  with t,>1

as an abelian group. From these conditions on B, we see that t5_1 + t5s = 2"
immediately from [5, Proposition 3]. Then it follows from (3.2) that r > 2™, a
contradiction. Thus we have shown r4(A) = 0. O

4 Submodules of kX /(k))?

We use the same notation as in Sections 1 and 2. In particular, p = 2¢t1g + 1
is a prime number with e > 2 and 21 ¢, and k,, (0 <n < e+ 1) is the subfield
of Q(¢p) of degree 2. In this section, we introduce submodules V.., Vi, and
Qn of kX /(kX)?, which play important roles in the proofs of our results. In all
what follows, we let

h = hy,
be the narrow class number of k.. By Conner and Hurrelbrink [2, Corollary
12.9], h is odd and hence it coincides with the ordinary class number of k..
The narrow class number hy, of k, (0 < n < e) is a divisor of h as k./Q is
totally ramified at p, and hence it is odd. Let p,, be the unique prime ideal of
ky, over p, so that we have (p) = p%n in k,. For each 0 < n < e, there exists an
element d,, of k,, such that k,.1 = k,(1/9,). The element &, is totally positive
when 0 < n < e—1, and it is totally negative when n = e. Since ky,,11/k, is
ramified only at p,, and A is odd, we can choose the element ¢, so that

(6,) =p" and 6, =u® mod 4 (4.1)

e
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for some u € Oy, . Here, the congruence holds by Lemma 3.2(i). Further, since
2 splits completely in k f~/ Q and the primes over 2 remain prime in ket /k 7 ([5,
Lemma 3]), we see from Lemma 3.2(ii), (ii") that

bp=1mod8 when0<n<jf—1 (4.2)

but
6, # u? mod 8 for any u € O, when f <n <e. (4.3)

Fo=ka(\/20,) or kn(\/205,) (4.4)

according as Lo = Q(v/2) or Q(v/2¢) with ¢ € P.

We put G,, = Gal(k,,/Q), which is a cyclic group of order 2”. Let q; be a
fixed prime ideal of ky over 2, and set q, = Ny nqy for 0 <n < f — 1, where
Ny, is the norm map from k¢ to k,,. Then, since 2 splits completely in ky ([5,
Lemma 3]), gy, is a prime ideal of k,, over 2 and

2= [T o

oelGy,

We see that

When (k, > 2 and) f < n < e — 1, the prime ideals over 2 remain prime
in ky,/ky¢ by [5, Lemma 3]. We denote the unique prime ideal of k, over q%
(0 € Gy) by q7; 97 = g7, in ky,. In the following, we choose and fix a prime
number ¢ € P. We put

o[ 2 when Ly = Q(v/2) or Q(v/2¢) with £ € P,
“ |l -2 when Ly = Q(v/2/¢) with £ € P_,

and
s ¢ whenLo= Q(V2f) with £ € P,
| ¢ when Ly = Q(v/2¢) with £ € P_.

Then, by (1.1), we have

*

/
2°0* =20, (*=1mod38, and <p> =-1 (4.5)

for every ¢ € P.

Recall that the narrow class number h = Bke of k. is odd and hence that of
ky is also odd. Then, by virtue of Lemma 3.1, we can choose an element w of
k¢ such that q? = (w) and

(;:)h =1mod ¢} and w=1mod (q%)° (4.6)

for o € Gy with o # 1. Here, 1,, is the identity element of G),. For 0 < n <
f —1, we put w, = Ny /,w so that we have q/ = (w,) and

;f;h =1mod q> and w, =1mod (q9)? (4.7)

—~
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for o € G, with o # 1,,. In particular, we have wy = (2*)". When Ly = Q(v/2),
we put wy =w. When Ly = Q(\/ﬂ), we put wy = w or wl* according as w is a
square modulo p or not, so that wy is a quadratic residue modulo p; by (4.5).
For f <n <e, we put w,, = wys. Though our target is the class groups A, and
A, for 0 <n < e—1, it is convenient to define w,, (and the modules V,,, Vi)
also for n = e. In any case, we see that w, satisfies the congruence (4.7) for
any n as £* =1 mod 8, and that

wn = Ny jpwy mod (k)3 (4.8)
for 0 <n < f—1. From (2*)" = wg and (4.8), we have
(2°)" = Ny jown = Ny oy mod (Q¥)? (49)
for 0 <n < f —1. From the choice of wy and (4.8), we have

Lemma 4.1. When Ly = Q(v/2¢) with { € P, w, is a quadratic residue modulo
the prime ideal p,, for 0 < n <e.

Let V, be the submodule of kX /(k})? generated by the class [w,] over the
group ring F2[G]. When Ly = Q(v/20), let W,, be the submodule of k) /(kX)?
generated by the class [¢*] and the submodule V;,.

Lemma 4.2. Under the above setting, the following assertions hold.

(I) When 0 < n < f — 1, the submodule V,, of kX/(kX)? does not depend
on individual Lq’s.

(IT) According as 0 <n < f—1 or f <n <e, we have

dimp, V,, =2"  or 2f

and

dimp, W, =1+2" or 142/
for any Lo’s. Further, the natural lifting map ¢, from k) /(k))* to FX /(F))?
is injective on V,, and W,.
Proof. The assertion (I) is obvious from the definition of w,, for 0 <n < f—1.
Let us show the second one (IT) when Ly = Q(v/2¢). Tt suffices to show that

the dimension of cpn(Wn) over Fy equals 1+ 2" or 1 + 2f. Let us show this
when f <n <e (so that w, = wy). Put

z= ) [ Wh €k

oeGy

with s, t, = 0,1. Assume that = is a square in F,,. By (4.4) and (4.5), we have
Fn = kn(v/2°0%0,,). Then, it follows from the assumption that = or y = 2*¢*§,x
is a square in k,. When z is a square in k,,, we see that the principal ideal

(2) = (0 T (@)

oGy
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is a square of an ideal of k,, where u = 0 or ) _t, according as wy = w or
wl*. Since the prime numbers ¢ and 2 are unramified in k,, and h is odd, we
see that s + u is even and ¢, = 0. Hence, s = t, = 0. Further, we see that y is
not a square in k, because p”||0,, 21 h and x is relatively prime to p,,. Thus,
we have shown (II) when Ly = Q(v/2/) and f < n < e. It is shown similarly
for the other cases. O

By Lemma 4.2(IT) and (4.8), we see that the natural lifting map from
k) (k52 t0 k[ (kyq)? induces an injection Vi = Vpgp for 0<n< f—1
and an 1sornorph1 V,, 22 V41 for f < n <e— 1. Therefore, letting V = Vf,
we regard V,, (0 < n < f —1) as a submodule of V, and we identify V,,
(f <n<e)with f/. We can naturally regard the modules V,, as modules over
the group ring R = F3[G¢]. By Lemma 4.2(II), we have an isomorphism

LV —R

of R-modules sending the class [wy] to 1;. We denote the element of R as-
sociated to the norm map N/, from ky to k, by the same letter Ny/,. Let
Jn = (N¢/p) be the ideal of R generated by Ny/,. Then, we see from (4.8)
that

L(Vy) = Jn (4.10)
for 0 < n < f. Further, by virtue of the last assertion of Lemma 4.2(II), we
may and shall denote the submodules ¢, (V;,) and o, (W,,) of F.X /(F)? simply
by the same symbols V,, and W,,, respectively.

Remark 4.1. The module V = Vf depends on Lg’s by the definition of wy,
while its proper submodules V,, (0 < n < f — 1) do not depend on Ly’s by
Lemma 4.2().

In the rest of this section, we let Ly = Q(v/2) or Q(v/2¢) with ¢ € P, so
that we have 2* = 2 and ¢* = (. In this case, we define submodules V" and V,,
of V by

V={le]eV]|a>0} and V,=VnV,={a]eV,|a>0}

for 0 < n < e. Here, for z € kj,, we write z > 0 when x is totally positive.
Clearly, these are R-submodules of V. For f < n < e, since V,, = V, we have
V, = V. For each 0 <n < f — 1, consider an element

o= H (wp)*  with a, =0,1
O’EGn

of k). By (4.7), it satisfies the congruence

a
o = 1 mod (q9)? or a=1mod (q7)2 (4.11)
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according as a, = 1 or 0. For 0 < n < f —1, let @, be the subset of V,,
consisting of the classes [a] for all such « satisfying the stronger condition

a>0, and gh =1mod (q9)® or a=1mod (q2)* (4.12)
according as a, = 1 or 0. We easily see that (), is an R-submodule of f/, and
that Q,, = Q1 NV, from the norm relation (4.8). Let Q and Q,, be the ideals
of R corresponding to the R-submodules Qy—; and @, of V:

Q=1(Qr-1), and Q, =u(Qn).
Then, as @, = Q-1 N Vi, we see from (4.10) that
Qn=9NJ,. (4.13)
By (4.9), we observe that [2] € Q,, for every n and that @, is nontrivial.
Lemma 4.3. Let Ly = Q(v/2) or Q(v/2() with £ € P,.. For0<n < f—1, the

submodules V,, and @Q,, depend only on n and not on indiwidual Ly’s. Further,
for f <n <e, dimg, V,, depends only on n.

Proof. The first assertion on V,, follows from Lemma 4.2(T). The assertion on
@, holds because w, = Nf/nw for 0 < n < f —1 and the element w defined
in (4.6) does not depend on Ly’s. For f < n < e, w, = wy depends on L.
However, the last assertion on dimg, V;, holds because wy = w or wf* and £* = /¢
is positive. O]

5 Class field corresponding to A, /fl%

In this section, we construct the class fields of F,, corresponding to A, / /LQL and
A, /A2 (0 < n < e—1), respectively, and show Lemma 1.1 and Propositions 1.1,
1.2. We begin with showing Lemma 1.1. Let J be the nontrivial automorphism
of Fy/kn.

Proof of Lemma 1.1. Via the identification (1.2), the automorphism J corre-
sponds to (1 +T)?" € A. Since the narrow class number hy,, of k, is odd, the
norm Nz, /. = 1+ J annihilates A,, and its quotient A,. From this we obtain
the assertion. O

Next, let us show Proposition 1.1 on the 2-rank r9(A,). Let L/K be a
quadratic extension over a totally real number field K with G = Gal(L/K).
When the narrow class number hg is odd, we have the following invariant class
number formula on the narrow class group Cly:

~ G |élK|XH e
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Here, p runs over the prime ideals of K and e, is the ramification index of p
in L. This is a special case of a general invariant class number formula due to
Gras [4, II, Proposition 6.2.4].

Proof of Proposition 1.1. We show the assertion for the case Ly = Q(\/ﬂ) It

is shown similarly when Lo = Q(v/2). Let g,, be the number of invariant classes
~ - G

in A,; namely g, is the 2-part of [Clz | with G = Gal(F,/k,) = (J). Let r

be the 2-rank of fln. For a class ¢ € fln, we see from Lemma 1.1 that ¢/ = ¢

if and only if ¢ = 1. It follows that g, = 2". Further, the prime ideals of k,

ramified in F,, are those over the prime numbers p, ¢ and 2. The number of
such prime ideals of k,, are

1+14+2" or 1+1+2f

according as 0 <n < f—1or f <n <e—1. Accordingly, we see from (5.1)
and 21 hy, that g, = 2'+2" or 2142’ Thus, we obtain the assertion. O

The prime ideals p,, and q of k,, are ramified in F,,, where ¢ € G,, for
0<n<f—-1and o € Gy for f <n < e—1. We denote the prime ideals
of F,, over p,, and q9 by B,, and Q7, respectively, so that we have p,, = P2
and q2 = (Q9)2. When Ly = Q(+/2¢) with £ € P, the prime number ¢ remains
prime in k,, by (1.1) and the prime ideal of k,, over ¢ ramifies in F,,. Let £,
be the prime ideal of F,, over ¢; (£) = £2.

Lemma 5.1. When Lo = Q(v/2), 2 A, is generated by the narrow classes Q7]
and [(z)] with all x € F* over the group ring Fo[G,]. When Ly = Q(v/20)
with £ € P, 5 A, is generated by the narrow classes [B], [QL] and [(z)] with
all x € F)* over Fo[G,].

Proof. We show the assertion when Ly = Q(v/2f). Tt is shown similarly when
Lo = Q(v/2). We see that the narrow classes [P"] and [QF] are elements
of 5 A, because P2" = p and Q> = g" are principal ideals of k, and the
narrow class number ﬁkn of k,, is odd. Conversely, let ¢ be an arbitrary class
in oA,. Then, by Lemma 1.1, we have ¢/ = ¢! = ¢. For an ideal A € ¢,
it follows that A/ = pA for some p € FX with p > 0. Then, we see that
n = Ng,/k,p € En = Ey,. We have n > 0 as p > 0, and hence we see that
n = €2 for some unit € € E,, as ﬁkn is odd. Using pe~! in place of p, we observe
that A7 = p2A and Nz, /k,p = 1. Then, we can write p = '~ for some
r € FX, and we have (z21)7 = 22(. Therefore, it follows that 2l is a product
of some powers of invariant prime ideals B,,, Q7 (o € G,,), £, of F,/ky, and
an ideal of k,. As hy, is odd, it follows that the narrow class ¢ = ¢ = [A"]
is a product of some powers of the narrow classes [B?], [(Q2)"], [£"] and [(z)]

with some € F¢. Further, we have

(V205,) =phe, T[T ©@0)"

oceGy
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in Fp, = kn(3/200,,) (see (4.4)). Therefore, we can express the class ¢ as a
product of some powers of [B”], [(Q2)"] and [(x)] with some z € F. O

For 0 <n <e-—1, we put
M’rll = }—n(\/a | [a] € ‘771)
for every Lg. When Ly = Q(\/ﬂ) with ¢ € P, we put

M? = F,(vV¢*) and M2 = MM} = F,(Va ‘ [a] € W,,).

n

Further, when ¢ € P (and hence ¢* = {), we put
My =F.(Val|la] €Vy) and Mg =MIM) = F,(Vi,Va | [o] € V).

Lemma 5.2. (I) The case Lo = Q(v/2). The extensions M} /F, and M}/F,

are the class fields of F,, corresponding to [ln/fli and A, /A%, respectively.
(I1) The case Ly = Q(v/2€) with £ € P. The extension M?/F, is the class

field of F,, corresponding to fln/fl%, and M,IL/]—'” s the maximal subextension

of Mﬁ/]—'n in which the prime ideal *B,, splits completely. When ¢ € P, the
extension M2/ JF, is the class field of F, corresponding to A, /A2.

Proof. We show the assertion (IT) for the case Ly = Q(v/2f). The assertion (I)
is shown similarly and more easily. We see from Lemma 4.2(1T) that the Galois
group Gal(M?/F,) is isomorphic to 1 4 2™ or 1+ 2/ copies of Cy according as
0<n<f—-1lorf<n<e—1. On theother hand, by Proposition 1.1, the quo-
tient A, /121,2I is also isomorphic to 1 + 2" or 1 + 2f copies of Cy. Therefore, for
showing the first assertion of (II), it suffices to show that M2/F, is narrowly
unramified. To show that it is narrowly unramified, it suffices to show that
the quadratic subextensions F,,(v/¢*)/F,, and Fn(VwG)/F, with o € G, are
narrowly unramified. As F,,/Q is Galois, the extension F,,(y/wg)/F, is nar-
rowly unramified if and only if so is 5, (/wn)/Fy. The extension F, (V€*)/F,
is narrowly unramified outside ¢ because of /* = 1 mod 8 and Lemma 3.2.
It is unramified also at £ because in the (2,2)-extension F,(vV€*)/kn, £ is
ramified in the quadratic subextension F,/k,. From this, we also see that
Fn(\Jwrn)/Fy is unramified at ¢ even when (f < n < e—1 and) w, = wl*.
Therefore, as (w) = qI, F,(\/wn)/Fn is narrowly unramified outside 2. We
have F,, = k,,(v/2*0*0,,) by (4.4) and (4.5), and hence

Folyan) = Folv/z) with o= (;‘jj;h X (£%6,)7 L.
Therefore, it follows from the congruences (4.1), (4.5), (4.7) and Lemma 3.2(i)
that F,(y/@n)/Fn is unramified also at 2. Thus, we have shown that M2 /F,
is the class field corresponding to A, /A2. The element ¢£* is a quadratic non-
residue modulo B,, by (4.5), and w, is a quadratic residue modulo J,, by
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Lemma 4.1. Therefore, M}L/}'n is the maximal subextension of Mg/]—'n in
which the prime ideal %B,, splits completely. When £ € P, we see that M2 is
the maximal totally real subextension of Mﬁ /Fy, from the definition of V,, and
¢* = (. This implies that M2 /F,, is the class field corresponding to A, /A2. O

Proof of Proposition 1.2. We show the assertion (II) for Ly = Q(v/2f) with
¢ € P. The assertion (I) is shown similarly. Let M, /F, and M,,/F, be the
class fields of F,, corresponding to the class groups A, and A,, respectively.
The Galois groups Gal(M,,/F,) and Gal(M,,/F,) are naturally regarded as
modules over I';, = Gal(F,,/Q), and hence as modules over A by (1.2). We
have identifications of A-modules:

Gal(M,,/F,) = A, and Gal(M,/F,) = A,
via the reciprocity law map. We put
B, = Gal(M,,/M?), and B, = Gal(M, /MD).

The group B, is defined only when ¢ € P, (and hence M? = F,(v/{)). By
Lemma 5.1, the narrow (resp. ordinary) class containing ‘Bn is an element of
oA, (resp. 2A ). Let C,, (resp. C,) be the subgroup of A, (resp. A,) gener-
ated by this narrow (resp. ordinary) class.

Let us deal with the narrow class group A,. We see that B, is a A-
submodule of A,, because Mg is Galois over Q. We see that C, is a A-
submodule of fln since the prime ideal 93, is invariant under the action of
I, = Gal(F,/Q). Further, as the narrow class [J3"]? is trivial, we see that C,,
is trivial or isomorphic to A/(2,T). By Lemma 5.2(IT), the prime ideal *B,, re-
mains prime in the quadratic extension M?9/F,,. This implies that [Bh] ¢ B,
Gal(M,,/M?2). Tt follows that C,, = - A/(2,T) as IC'nl < 2 and that B,, N C’n =
{0}. Therefore We see that A, = B, @ C,, since [A,, : B,] = [M° : F,] = 2.
Hence, A2 = B2. Therefore, we see from Lemma 5. 2(II) that the subextension
of M / M 10 correspondlng to B2 by Galois theory equals M 2 = MOM 1. Hence,
we obtain an isomorphism

B,/B2 = Gal(NI2/10) = Gal(J1}/ F,), (5.2)

which is compatible with the action of I',,. As we mentioned after showing
Lemma 4.2, we may regard Vj, as a submodule of FX/(FX)2. Then, we can
regard Vn as a module over R,, = Zs[I',,] through the surjection I';, — G,,, and
hence as a module over A by (1.2). The module V,, is cyclic over A since it is
cyclic over F5[G,,]. The Kummer pairing

Gal(M, /Fp) x Vo — {1} (g, [0]) = (b,0) = (Vo)™

is nondegenerate and satisfies (b7,v7) = (b,v) for v € I,,. Thus we obtain an
isomorphism B B
Gal(M}/F,) = H = Hom(V,,, {£1}), (5.3)
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which is compatible with the action of I',,. Here, v € I',, acts on f € H by
() = f([v]’fl). From this, we see that Gal(M!/F,) is cyclic over A as
V, is cyclic over A. Hence, so is B, /B2 by (5.2). Now we see that B, is
cyclic over A by Nakayama’s lemma. Thus, we have shown the assertion (II)
of Proposition 1.2 for the narrow class group A,,.

Let us show the assertion for A,,. Similarly to A,,, we can show that A,, =
B, ®C, and C, = A/(2,T). Further, B, = Gal(M,,/M?) is a quotient of
B, = Gal(M,,/M?) as a A-module since M,, is Galois over Q. Hence, B, is
cyclic over A since so is B,,. ]

Corollary 5.1. (I) We have dimg, V,, = r2(A,,) or ro(By,) according as Lo =
Qv2) or Q(V3D).

(I1) We have dimg, V,, = 72(A,) or ro(By) according as Ly = Q(v/2) or
Q(V20) with £ € P.

(II1) The 2-rank r3(Ay) for Lo = Q(v/2) and r2(B,,) for Ly = Q(\/2¢) with
€ P, depend only on n and not individual Lg’s.

Proof. The assertions (I) and (II) for Ly = Q(v/2) are immediate consequences
of Lemma 5.2(T). The assertion (I) for Ly = Q(v/2¢) follows from (5.2) and (5.3).
We can show the assertion (IT) for Ly = Q(v/2¢) by a similar way replacing
X to X for every object X in the Kummer theory argument in the proof of
Proposition 1.2. The assertion (III) follows from (II) and Lemma 4.3. O

6 Proofs of Theorems

In this section, we prove Theorems 1.1, 1.2 and Propositions 1.4-1.8. We use
the same notation as in the previous sections. First, we show Proposition 1.7.

Proof of Proposition 1.7. Let £ € P_ and Ly = Q(v/2f). Let 0 <n < e—1. By
genus theory, the assumption ¢ € P_ implies that the ordinary class number of
Lg is odd. The prime number p remains prime in Ly by (1.1), and the Con+1-
extension L, 1/ Lo is ramified only at the prime ideal over p. It follows that the
ordinary class number of L, ;1 is odd by [13, Theorem 10.2]. On the other hand,
we observe that L,1/F, is unramified because L, /k, is unramified outside
2¢ and k;,11/k, is unramified outside p. Therefore, we obtain A, 2 Z/2. O

For s > 2, let ngs be the composite of all narrowly unramified quadratic
extensions over F,, which extends to a narrowly unramified Css-extension, and
let Ly, 2s be the composite of all unramified quadratic extensions over F,, which
extends to an unramified Cys-extension. We easily see that a narrowly unram-
ified (resp. an unramified) quadratic extension N/F,, extends to a narrowly
unramified (resp. an unramified) Cos-extension if and only if N is contained in
Zn,QS (resp. Ly 2+), and that En,gs (resp. Ly 2¢) is Galois over Q.
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Lemma 6.1. Let Ly = Q(V20) with £ € P, and let [o] € W,,. We have [o] € V},
if Fr(Va) C Ly, 4.

Proof. Assume that F,, (y/«)/F,, extends to a narrowly unramified Cy-extension.
Then, by Lemma 3.3 (with Remark 3.1) and Lemma 5.1, we see that the prime
ideal 3, of F,, splits in F,(y/a). Hence, we see from Lemma 5.2(1I) that [«]
is an element of V. O

In view of Lemma 6.1, let Vn_rgs (resp. Vi 2¢) be the submodule of v, (resp.
V,) consisting of elements [ for which F,(y/a) C Ly s (vesp. Fp(va) C
Ly 29).

Lemma 6.2. We have ros(A,) > 1 if and only if F,(vV/2*) C Lpos, and
ros (An) > 1 if and only if Fn(v/2%) C Ly, s

Proof. Since in’zs is Galois over Q, Vn’gs is a submodule of V,, over Fo[Gh].

This implies that the image ¢(V}, 2¢) is an ideal of R = F3[G]. By Lemma
3.6(II), the smallest nontrivial ideal of R is .Jo = (N /o). Therefore, we observe

that 79:(A,) > 1 if and only if Jy C 1(V,2:). By (4.9), the last condition is
equivalent to [Ny owys] = [2*] € Vj,25. Thus we obtain the assertion for A,.

The assertion for A,, is shown similarly. O

Proof of Proposition 1.4. As £ € P_, we have F,,(v/2*) = F,,(v/—2). Since the
narrowly unramified quadratic extension F,, (v/—2)/F, is totally imaginary, we
see from Lemma 3.3 and Remark 3.1 that it does not extends to a narrowly
unramified Cy-extension. Now, the assertion follows from Lemma 6.2 with
s =2. O

Proof of Proposition 1.5. We have F,,(v/2*) = F,(v/2) and £* = / in this case.
Further, by (4.4), we have

]:n(\/i):}-n(\/a) or fn(\/&Tn)

according as Ly = Q(v/2) or Q(v/2¢) with ¢ € P,. Then, it follows from the
congruences (4.2), (4.3) and Lemma 3.2(ii) that the prime ideals Q7 (o € Gy,)
of F,, split in F,(v/2) if and only if 0 < n < f —1. When Lo = Q(v/2¢), we see
that the prime ideal 9B, of F,, splits in F,, (v/2) because p = 1 mod 8. Therefore,
for Ly = Q(v/2) or Q(v/2¢) with ¢ € P, we observe that F,,(v/2) C Ly 4 if
and only if 0 <n < f —1 from Lemma 3.3 (with Remark 3.1) and Lemma 5.1.
Thus, we obtain the assertion from Lemma 6.2. O]

Lemma 6.3. Let Ly = Q(v/2) or Q(v/20) with £ € P,.. Then, for0 <n < f—1,
we have ~ .
Voa=Qn and ry(A,) = dimg, Q,

In particular, the module Vn,4 and the 4-rank 7‘4(An) depend only on n.
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Proof. Let 0 <n < f—1. We begin with a simple remark. Let = be an element
of k,, relatively prime to the prime ideal q of k,, over 2 with ¢ € G,,. Then,
we easily see that the prime ideal Q7 of F,, over q9 splits in F,,(v/z)/F, if and
only if q2 splits in k,,(y/z)/ky. Since 2 splits completely in k,, we obtain the
following equivalence from Lemma 3.2(ii’):

07 splits in F,(v/x)/F, < x =1mod (q7)3. (6.1)

Let

a= T @

oceGy,

be an element of &k with a, = 0, 1. Then, « satisfies the congruence (4.11),
and F,,(y/«)/F, is narrowly unramified by Lemma 5.2. By Lemma 3.3 (with
Remark 3.1) and Lemma 5.1, we observe that [a] € Vj, 4 if and only if o > 0
and the prime ideals Q7 with o € G,, (and B, when Ly = Q(v/2¢)) split in
Fn(v/a@). As [a] € V,, we see from Lemma 5.2(IT) that 9, splits in F, (y/a)
when Lo = Q(v/2f). By (4.4), we have

Fn(Va) = Fo(\/B) with 5:%x(5nerl.

Further, 6,/ = 1 mod 8 by (4.2). Now, we see from (4.11) and (6.1) that
the prime ideals Q7 over 2 split in F,(y/«)/F, if and only if « satisfies the
congruence in (4.12). Therefore, we have shown that [a] € f/nA if and only if
« satisfies the two conditions in (4.12). Thus, we obtain ‘N/n74 = @y, and hence

r4(Ay) = dimp, Q,. The last assertion follows from Lemma 4.3. O

For a while, let Ly = Q(v/2), and let 0 < n < f — 1. Then, the unramified
quadratic extension L, 1 = .7-"”(\/5) over F,, extends to a narrowly unramified
Cy-extension by Proposition 1.5 and Lemma 6.2. Let us give a generator of such
a Cy-extension. Let p be a generator of the cyclic Galois group Gy = Gal(k;/Q)
of order 2. For each 0 <n < f — 1, we put

2" —1

an= Y p ER=F[G)] and m = (wnr))™ €KL
j=0

so that we have 3
[ﬂ'n] S ‘/n+1-

We can easily show that
an = (1+p)* 7"

by induction on n. Then, because of (3.1) and (4.8), we see that

W[m]) = (o)) = Ny gy = (1497 @ e R (62)
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Lemma 6.4. Let Ly = Q(v/2), and let 0 < n < f — 1. Under the above
notation, Ly+1(\/Tn)/Fn is a narrowly unramified Cy-extension.

Proof. We see that the element a,(1 4+ p>") € R acts on k,,; as the norm
Nyj10 from kyipq to kg = Q. Let o be the nontrivial automorphism of

Ly41/Fn. Since o coincides with p?* on k,41, we observe from (4.9) that
27’1,
7T71L+U = (WnJrl)an(l—H) ) = Nn+1/0(wn+1) = 2" mod (QX)Q-

As V27 = —/2, we see from Lemma 3.4 that Ly1(y/mn)/Fn is a Cy-extension.
Further, we see from (wy,+1) = g% ; and the congruence (4.7) that the extension
Lyp1(y/Tn)/Ln41 is narrowly unramified because of Lemma 3.2(i). Thus we
obtain the assertion. O

Proof of Proposition 1.6. Let Ly = Q(v/2) and let 0 < n < f — 2. By Lemma
6.2, we have rg(fln) > 1 if and only if the unramified quadratic extension
Lyy1 = Fn(\/2)/F, extends to a narrowly unramified Cg-extension. By Lemma
6.4, Ly+1(y/Tn)/Fn is a narrowly unramified Cy-extension containing L, 41. By
Lemma 3.5, other such Cy-extensions are of the form L, (/T a)/F, with
[a] € V,,. Therefore, we see that rg(A,) > 1 if and only if there exists some
la] € V, such that (x) the narrowly unramified Cy-extension Ly 1 (y/Tne)/Fy
extends to a narrowly unramified Cs-extension. As L1 (y/T,a)/F, is a nar-
rowly unramified Cy-extension, the primes over 2 split in the quadratic subex-
tension L,4+1/F, by Lemma 3.3 (with Remark 3.1) and Lemma 5.1. Then,
by the same two lemmas, we see that the condition (x) on [a] € V}, is equiv-
alent to saying that m,a > 0 and the prime ideals of L, 41 over 2 split in
Ln+1(\/m)/Ln+1-

Asn+2 < f, the primes over 2 split in k;,,+2/kp 41, and hence in Ly, 4o/ Ly, 1.
Therefore, we see that the primes over 2 split in Ln+1(m) /L1 if and only
if they split in Lyio(\/Tna)/Lnt2. Asn+1 < f—1, we have r4(A,11) > 1
by Proposition 1.5, and hence we see that L, .o = Fn11(v/2) C f/n+1,4 by
Lemma 6.2. Thus, the primes over 2 split in L,y2/F,+1 by Lemma 3.3
(with Remark 3.1) and Lemma 5.1. It follows that the primes over 2 split
in Lyqo(y/Tn@)/Lyyo if and only if they split in 7y, 11 (\/Tpa)/Fry1. Thus, we
have shown that rs(A,) > 1 if and only if 7,c > 0 and the prime ideals Q7_
(0 € Gpyr) of Fryq split in Fpp1 (/Tnet)/Fryr for some [a] € V,,. Again, by
the same two lemmas, we see that ’I"g(An) > 1 if and only if [m,a] € Vn+174
for some [a] € V,,; namely if and only if [r,a] € Q, 41 for some [a] € V,, by
Lemma 6.3.

As [a] € V,,, we have i([a]) € J,, = (Nf/n) by (4.10). Hence, we observe
from (3.1) and (6.2) that

([mna]) = u([ma]) + ([a]) = (1+p)2f7(2n+1)+ra(1+p)2f72n
= ()2 T w = y([m)) x w (6.3)
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with
u=14r.(1+p).

Here, 7, is an element of R depending on a. As u is a unit of R, we see that
rg(A,) > 1if and only if [r,] € Qny1. The ideal (¢([7,])) of R coincides with
Uss —(2n41y by (6.2), and 1(Q,) = Q, by definition. Therefore, we see from

Lemma 3.6 that the condition [m,] € Q11 is equivalent to

2" + 1 = dimg, Uss _(2n41) < dimp, Q1 = ra(Any1).

Here, the last equality holds by Lemma 6.3. Therefore, we obtain the assertion.
O

Proof of Proposition 1.8. Let Ly = Q(v/2) and let 0 <n < f — 1. By Lemma
6.2, we have 14(A,) > 1 if and only if there is an unramified Cy-extension of
Fp containing L,y; = F,,(v/2). By Lemma 6.4 combined with Lemma 3.5,
the last condition holds if and only if m,a > 0 for some [a] € V,,, namely if
and only if [r,a] € V41 for some [a] € V,,. By (6.3), this is equivalent to
[7n] € Viug1. Thus, we have seen that r4(A,) > 1 if and only if [7,] € V,41.
By (6.2), we have (¢([7,])) = Uss_(an41). Therefore, we observe from Lemma
3.6 that [m,] € V41 if and only if

2" +1= dil’n[ﬁ2 U2f_(2n+1) S din’l[ﬁ2 L(Vn+1).
Thus, we obtain the equivalence
T4(An) > 1< dimF2 Vot 2 2" 4+ 1. (64)

(This holds even when f =e and n = f — 1 as we have defined V,, also for the
case n = e.) First, assume that n, < oo (so that 0 < n, < f—1). By Corollary
5.1(II), the 2-rank ¢, = r2(A,,) equals dimg, V,,, (< 2"). When n, > 1, we
see that dimg, V;, > 2"~ +1 from ry(A,,—1) > 1 and (6.4). Thus, we obtain
(1.5) in this case. When n, = 0, ¢, = r2(Ag) = 1 by genus theory. Assume
that n, = oo and f < e — 1. Then we have

2771 11 < dimg, V; (< 27)

from r4(Ay_1) > 1 and (6.4). Therefore, we obtain (1.6) from Corollary 5.1(II).
O

Proof of Theorem 1.1. The assertion (I) is contained in Lemma 6.3.
Let us show (I1-i). Let 0 < n < m,, — 1. First, let Ly = Q(v/2). Then, from

the very definition of m,, we have rg(A4,,) > 1 for each 0 <n < m, — 1. This
implies that 74(A,) = 2" by Proposition 1.3 and (1.3). Here, the A-module A,
satisfies the assumptions of Proposition 1.3 by Lemma 1.1 and Proposition 1.2.
Then, we see from the assertion (I) that r4(A,) = 2" also for Ly = Q(v/2f)
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Let us show (II-i). Let m, < n < f—1. For Ly = Q(v/2), we have

r8(Am,) = 0 and r4(A,,,) = b, < 2™». Recall that 2"» = dimp, V,,,, =
dimg, J,,,, by Lemma 4.2(II) and (4.10), and that b, = 7“4(;1,%) = dimp, Qp,,
by Lemma 6.3.

First, assume that b, < 2™. Then, we observe that Q,,, = QNJp, C Jn,
by (4.13) and Lemma 3.6. This implies that Q C .J,,, by Remark 3.2. Hence,
Q,=9nJ, = Qmp for every m, <n < f—1. Therefore, we see from Lemma
6.3 that

7’4(An) = dim]}r2 O, = bp (< 2“) (65)
for my, <n < f —1 and every Lg. We have

A/@n = (Z/Q)@(T‘fbp) ® (Z/4>®bp

as abelian groups. Therefore, we see from Proposition 1.3 and (1.3) that (6.5
implies that A, or B, is isomorphic to A/©,, for each n according as Ly =
Q(v2) or Q(v20).

Next, assume that b, = 2™ and m, < f — 2. For Lo = Q(v/2), we already

know that r4(A,,41) < 2™ by rg(Am,) = 0 and Proposition 1.6. On the
other hand, since Qp,, € Qm,+1, we see from Lemma 6.3 that

bp =2"Mr = 7‘4(Amp) = dimmz Qmp < dim[g‘2 Qmp+1 = 7‘4(Amp+1).

Therefore, we have r4(Amp+1) =b, = 2™ < 2™F! for [y = Q(v/2). Then,
similarly to the case m([lmp) = b, < 2™ we can show that r4(4,) = b, (< 2")
for every m, +1 < n < f —1 and every Lg. Therefore, for these n, we see
from Proposition 1.3 and (1.3) that A, or B, is isomorphic to A/©,, according
as Ly = Q(v/2) or Ly = Q(V2¢). Let us deal with the case where (b, = 2™
and) n =m, < f — 2. For Ly = Q(v/2), we have A,, = (Z/4)%?"" as abelian
groups from the definition of m,,. It follows from Proposition 1.3 and (1.3) that
the A-module Amp is isomorphic to A/©,,, because

Om, = (4,27, (1+T)*"" +1) = (4,1 +1)*"" +1)

as b, = 2"». For Ly = Q(v/2(), we have 7‘4(;1,%) = 2™» by the assertion (I).
Let b, = 2™» and m, = f — 1. Then, the assertion is shown similarly to
the above case where b, = 2™ and n = m,, < f —2. Thus, we have shown the
assertion (II-ii).
Finally, we show (III). The assertion for Ly = Q(v/2) follows from the
definition of m,, Proposition 1.3 and (1.3). Then, the assertion for Ly, =
Q(v/2¢) follows from (I). O

Proof of Theorem 1.2. The assertion (I) is contained in Corollary 5.1(IIT).
Let us show (II-i). Let 0 < n < n, — 1. For a while, let Ly = Q(v/2). Then,
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from the definition of n,, we have r4(A,,) > 1 for these n. Therefore, we obtain
ro(Ay) = 2" by Propositions 1.2(T) and 1.3. Then, by the assertion (I), we see
that 7o(B,,) = 2" for Ly = Q(\/20).

Let us show (II-ii). Let n, < n < e — 1. For a while, we let Ly = Q(v/2).
By the definition of n, and Proposition 1.1, we have ry(4,,) = 0 and ¢, =
ra(Ap,) < 2", By Proposition 1.3, we have A,,, = A/(2,T) for Ly = Q(v2).
It also follows that dimp, V;,, = ¢, < 2" by Corollary 5.1(II).

First, assume that ¢, < 2"». Then, we observe from Lemma 4.2 that V,, C
f/np or equivalently ¢(V;,,) L(Vnp) = Jp,. Since V,,, = Vﬂf/np, it follows that
t(V) € Jp, from Remark 3.2. This implies that V' C Vnp. Therefore, we see

that V,,, =V and that V;, =V N Vn =V, for every n, <n < e—1. For these
n, we see from Corollary 5.1(IT) that when Lo = Q(v/2),

79 (An) = disz V, = dil’Il]F2 Vnp =cp < 2"

and that when Ly = Q(v/2(), r9(B,,) = ¢, < 2". Then, for these n, we observe
from Proposition 1.3 that A, or B, is isomorphic to A/(2,T°) according as
Lo = Q(v2) or Q(v20).

Next, assume that ¢, = 2" and n, < e — 2. For a while, let Ly = Q(\/?)
Then, as r4(A,,) = 0, we have 75(V;,,41) < 2" < 271 by (6.4). Further, as
Vi, € Vy1, we see that

dimF2 Vnp+1 > dim[p‘z Vnp =cp = 2Mp

Hence, dimp, V,,+1 = 2" < 2metl Ag ny+1 < e—1, it follows from Corollary
5.1(I) that
ro(Any11) = r2(Vo 1) = ¢p = 2" < 2!

for Ly = Q(\/?) Then, for n, +1 <n <e—1, we can show that A, or B, is
isomorphic to A/(2,T) exactly similarly to the case ¢, = 72(4,,) < 2"7. Let

us deal with the case n = n,. We already remarked that A, = A/(2,7°) for
Lo = Q(v/2) at the beginning of the proof of (II-ii). Then, by the assertion (I),
we obtain ro(B,,) = ¢, for Ly = Q(V20).

Finally, assume that ¢, = 2"» and n, = e — 1. (This case happens only
when f = e). The assertion is shown exactly similarly to the above case for
n = n,. Thus, we have shown the assertion (II-ii).

Let us show (III). The assertion (I11-i) is shown similarly to the assertion (II-
i). Let us show (ITI-ii). As79(Af) = d,, for Ly = Q(v/2), we have dimg, V; = d,,
from Corollary 5.1(II). Let f < n < e — 1. Then, as V,, = V, we see from
Corollary 5.1(II) that r2(A,,) or r2(B,) equals d, according as Lo = Q(v/2) or
Q(V/2¢). On the other hand, r4(A,) = 0 for these n by Proposition 1.5 and
Remark 1.1. Therefore, we obtain the assertion from Proposition 1.3. O]
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7 Numerical data

In the previous sections, we were working with a fixed e > 2 and prime numbers
p of the form p = 2°T1¢+ 1. In this section, we deal with various e and various
prime numbers p < 104, and we put

ep =ordy(p—1)—1 and f, =min{e, —kp+ 1,¢p},

so that we have p = 2°»T1q + 1 with 21 q.
In Table 1 (resp. Table 2), we give the number of prime numbers p < 10%

with (ep, kp) = (e, k) (resp. fp = f).

Table 1. The number of prime numbers with (e

P

e\ kK 0 1 2 314 |5 ]6]7] 8] total
0 308 | 311 0 0] 0] 0 |0]|0]0]| 619
1 0 0 |314] 0| 0] 0 |0]0]O0]| 314
2 35 (39 | |0 |0]0]0|0]O0 151
3 5 12 18 13| 0] 0 [0]0|0 71
4 2 1 3 101900010 35
5 0 0 2 216 |11]00]0 21
6 0 1 0 0123|5010 11
7 0 0 0 0 1 0130 5
8 0 0 0 OO0 | 0]0|0]1 1

total || 350 | 364 | 414 | 48 | 28 | 14 | 6 | 3 | 1 | 1228

Table 2. The number of prime numbers with f, = f.
f 0 1 2 3 4156 | total
933 | 152 | 112 | 24 | 6 | O | 1 || 1228

Table 3 deals with prime numbers p < 10* with fp > 3, Table 4 those with
fp =3, and Table 5 those with f, = 2 and e, > 3. By Proposition 2.1, these
are the prime numbers satisfying rs(Ag) = 1 (or equivalently myp > 1). In these
tables, we give the data on the abelian groups A, and A,, for n =0, 1 and 2.
In the column A, (resp. A, ), the sequence of integers €1, &, ..., & (resp. ej,
€2, ..., e.) indicates that

A, = éZ/Zéi (resp. A, = é;Z/Qe"’)
i=1

i=1

as abelian groups. The structures of the abelian groups A, and A, can be
computed by Magma [9] for n = 0, 1, 2 under the generalized Riemann hy-
pothesis. It seems to be difficult to compute A3 and As by ordinary commands
of Magma, because the extension degree [F3 : Q] = 16 is large. However, we
can determine the values of m,, b,, n,, ¢, and d, from these data, except
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for daggs. For p = 4993, we have e, = 6, f, = 3, n, = oo in Table 4, and
hence d, = r2(As). We compute daggs with another method, which we explain
later. Note that in Table 4, n, = oo but d, is not defined for p = 1553, 4273
and 6481 since e, = f, = 3 for these p. (We are dealing with those n with

0<n<e,—1)

On the other hand, Tables 6-8 list the prime numbers p < 10* with ep > 2
and rg(Ap) = 0 (or equivalently m, = 0). These three tables correspond to the
cases (ii), (iil) and (iv) in Proposition 2.1, respectively.

Table 3. A,, A, and invariants for prime numbers p with f» > 3.

p fp €p | Kp Ao A1 AQ myp bp Ao A1 AQ Np | Cp dp
6529 || 6 | 6| 1|3 [23[2222| 2|4 2]|12|1,1,1,1|2]4

257 4171410 3]123]1,222|2 3] 2]22 1,1,1 2|3
2113 || 4 |5 [ 2| 3|22 | 1,122 | 1|2} 3|12 1,1,1 2|3
2603 || 4140 4]22]| 1,122 12| 3]|11 1,1 112
2657 || 4141 3|23]|1222] 23| 2|22 1,1,1 2|3
4513 || 4| 4]0 | 4|22 | 1,122 | 1|2 4|11 1,1 1] 2
7489 || 4 |5 2|3 |22| 1,122 1|2 3|11 1,1 112

Table 4. A,, A, and invariants for prime numbers p with fr=3.

P fp €p | Kp AO Al A2 mp bp Ao Al AQ np Cp dp
337 313|013 ]22]1,1,22|1]|21]2]22 1,1,1 2 |3
881 |3 ]3]0 |l3]22|1122 12222 1,11 | 2 |3
1217 || 3|5 |3 4]23] 1,222 |2 |3] 3|12 1,1,1 2 |3
1249 || 3 |4 |2 3]22] 1,122 |1 |21 2|22 1,1,1 2 |3
1553 || 3|3 | 11]/3]23]2222] 2|4 2]|12]1222]| —
wrr || 3131322 1,122 1|21 3|12 1,1,1 2 |3
2833 |13 131 3]|22|1,122]|1|2(2]|1,1 1,1 112
4049 || 3 | 3 | 1 || 3|22 | 1,122 | 1|21 2|22 1,1,1 2 |3
4177 11313101322 |1,122|1|2]3]22|1L1,1,1| 2 |4
4273 || 3|3 |1 || 3123|2222 |2 |4 2|12 11,12 | o -
4481 || 3| 6 | 4 || 4|23 | 1222 | 2|3 3|12 1,1,1 2 |3
4721 113|303 (221,122 | 1|2 3]|22|11,1,1| 2 |4
4993 || 3| 6 | 4 || 3|23 2223] 0 2 (12| 11,12 | oo *6
5207 || 3 |3 | 1| 4123|1222 2 |3]| 3|12 1,1,1 2 |3
6353 || 330322 1,122|1]|2] 3|12 1,1,1 2 |3
6449 || 3 |3 |1 || 3|22 | 1,122 |1 |2] 2|11 1,1 112
6481 || 3|3 |1 |3 22| 1,122 | 12| 3|22 11,12 | o0 —
6689 || 3|4 2322|1122 1]2] 2|11 1,1 112
71210 |33 (13|22 |1,122 |1 |2(2|12|1111| 2 |4
8081 || 3|3 |1 |3 22| 1,122|1]2] 2|11 1,1 112
8609 || 3| 4|21 4(33[2222| 2|41 3|33 1L,1,1,1| 2 |4
9137 || 3|3 | 1322|1122 |1 |2 2121111 2 |4
9281 || 3|5 |3 || 4231222 2 |3] 3|12 1,1,1 2 |3
9649 || 3 | 3 | 1 || 3|22 | 1,122 | 1 |2] 3|12 1,1,1 2 |3
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P fp €p | Kp Ao Al AQ mp bp Ao A1 Az Np | Cp dp
113 232322111 1]2]3]11 1,1 1] 2
353 |[ 2143322111112 2]1,1 1,1 1] 2
577 || 2|5 14 31]23)| 1,1,1,1 | o 2122 1,1,1 | 3
503 (| 213232211111 |21 2]1.1 1,1 1] 2
1153 || 2165322111112 2|11 1,1 1] 2
1200 || 23 2][3]23]1,1,1,1 |0 3112 1,1,1 |oo 3
1601 || 2|5 |4 3]33]1,1,1,1 |0 3123(1,1,1,1 |0 4
1889 || 2|4 |3]|[3]23]1,1,1,1 |0 2 12| 1,1,1,1 | 4
2120 || 2|3 23|22 | 11,11 1|2 2]1.1 1,1 1] 2
2273 || 2 |4 3|3 22| 1,110 1 |2 2]1:1 1,1 1] 2
2689 || 216 |5 3|22 11,111 ]22]22| 1,1,1 | 3
3080 || 2 3|2 4|22 1,110 |1 ]2(4]|11 1,1 1] 2
3121 |23 23|22 |1,1,1|1]2(3]11 1,1 1] 2
3137 || 2 |5 |4 3|44 1,1,1,1 | 3134 1,1,1,1 |oo 4
3217 |1 21321 3|23 1,1,1,1 | 2 12| 1,1,1,1 |oo 4
3313 |23 24|22 |1,1,1|1]2(4]1.1 1,1 1] 2
3361 || 243|422 |11,1,1 12312 1,1,1 | 3
3761 || 2 132 3|23 1,1,1,1 | 3112 1,1,1 | 3
4001 || 2|43 3]23]|1,1,1,1 |oco 2122 1,1,1 |oo 3
4289 | 2|54 3|22 |11,1,1 |1 ]2 2|11 1,1 1] 2
4657 | 2|32 322 |11,1,1 |1 ]2 2|11 1,1 1] 2
4801 || 2|54 3]23| 1,1,1,1 | oo 2 11,2 1,1,1,1 |oo 4
817|232 3[22|11,1,1 |1 ]2(3]|11 1,1 1] 2
5233 |1 2 (3 |2 3|22 1,110 1 ]2 21,1 1,1 1] 2
5303 || 2 |3 |2 4|22 |1,,1,1 |1 ]2 3|11 1,1 1] 2
5569 || 2 |5 |4 3|22 1,111 ]2 2|11 1,1 1] 2
7393 |2 43322 1,111 1 2] 2]1,.1 1,1 1] 2
7793 121321 3|23 1Ll | 3112 1,1,1 |oo 3
7841 243|422 | 1,110 1|2 3]1,1 1,1 1] 2
8161 || 2 |4 33|22 11,111 ]22]|12]1,1,1,1 00 4
8209 || 2 3|2 3|22 |11,1,1 |1 ]2 3|11 1,1 1] 2
82731121321 3|33 1,1,1,1 | 3122 1,1,1,1 |oo 4
8369 || 2 323 |22|11,1,1 |1 ]22]22| 1,1,1 | 3
9377 |l 2143 3|22 |11,1,1|1]2(3]11 1,1 1] 2
9473 || 2 | 7|6 (| 4|22 1,11 |1 ]2 3|11 1,1 1] 2
9521 || 2 |3 2422111112312 1,1,1 | 3
9601 21615 4122 (1,1,1,1 112 3| 1,1 1,1 112
9697 || 2 |4 |3 (| 3|22 111,11 22|12 1,111 | 4
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Table 6. Prime numbers p with f, =2 and e, = 2.
mp =0,bp =1, np=0and ¢y, =1
73,89,233,281,601, 617 937,1033,1049,1097,1193,1289,1433,1481,1609,1721,1753,1801,1913,
2089,2281,2393,2441,2473,2857,2969,3049,3257,3449,3529,3673,3833,4057,4153,4201,4217,
4297,4409,4457,4937,5081,5113,5209,5689,5737,5881,6089,6121,6361,6521,6553,6569,6 761,
6793,6841,6857,7129,7481,7529,7577,7753,7817,7993,8233,8537,8713,8761,8969,9001,9209,
9241,9337,9721,9769

Table 7. Prime numbers p with f, =1 and e, = 2.
mp =0,bp, =1, np =00 and dp = 2
41,137,313,409, 457 521,569,761,809,857,953,1129,1321,1657,1993,2137,2153,2297,2377,
2521,2617,2633,2713,2729,2777,2953,3001,3209,3433,3593,3769,3881,3929,4073,4441,4649,
4729,4793,4889,4969,5273,5417,5449,5641,5657,5801,5849,5897,6073,6217,6329,6473,7001,
7177,7193,7321,7369,7417,7433,7561,7673,8009,8089,8297,8329,8377,8521,8681,9049,9161,
9257,9433,9497,9689,9817,9833,9929

Table 8. Prime numbers p with f, =1 and e, > 3.
mp =0,bp =1, np =0and c, =1
17,97,193,241,401, 433 449,641,673,769,929,977,1009,1297,1361,1409,1489,1697,1873,2017,
2081,2161,2417,2609,2753,2801,2897,3041,3169,3329,3457,3617,3697,3793,3889,4129,4241,
4337,4561,4673,5009,5153,5281,5441,5521,5857,5953,6113,6257,6337,6577,6673,6737,6833,
6961,6977,7057,7297,7457,7537,7649,7681,7873,7937,8017,8353,8513,8641,8689,8737,8753,
8849,8929,9041,9857

Let us look back our results using the data in the tables. In the following,
we denote the groups B,, and B, in Theorems 1.1 and 1.2 for Ly = Q(V21)
with [ € Py by B, (I) and B,(l). We use the symbols A,, and A,, only for the
case Ly = Q(v/2).

First, let us look at p = 6529 in Table 3. As f, = e, = 6, our targets are
the class groups of F,, with 0 < n < 5. By Theorem 1.1 and the data in Table
3, we observe that

AO = Z/8a

A, 27/467)8,

Ay = (Z/4)%4,

A, =(2)2)9C"-Y g (z/4)®* =B,() for 3<n<5.

Further, by Theorem 1.2 and the data in Table 3, we observe that

Ay =7/4,

Ay X729 7/4,

Ay =(Z/)2)%4,

A, =2 (7)2)%* =~ B, (1) for 3<n<5.

The groups B, (¢) and B, (f) are independent of ¢ for 3 < n < 5. However, as
Table 9 shows, the structures of B,,(I) and B,,() depend on [ for n = 0, 1 and
2. This is caused by the data m, = 2, b, = 2™», n, = 2 and ¢, = 2"» in Table
3. Recall here that the assertion of Theorem 1.1(II-i) (resp. Theorem 1.2(1I-
1)) is divided into two cases according as (n,b,) = (m,,2™?) (resp. (n,cp) =
(np,2")) or not.
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Table 9. B, (1) and B,(l) for p = 6529 and Lo = Q(v/2]).

U Bo) [ Bi) | Bo() || Bo)) | Bi(D) | Bo()
97 2 2,2 | 2222 1 1 | 1222
137 | 2 2,2 | 2222 2 22 | 1,1,1,1
193 2 2,2 | 2222 1 L1 | 1,1,1,2
233 2 2,2 | 2223 1 11 | 1,1,22
241 2 2,2 | 2222 1 11 |2222
353 3 2,3 | 2222 2 2,3 | 1,1,1,1
449 2 2,2 | 2222 1 11 |2222
521 2 2,2 | 2222 2 12 | 1,111
569 2 2,2 | 2222 2 12 | 1,111
593 3 2,3 | 2222 3 12 | 1,1,1.1

Next, let us look at p = 257 in Table 3. As f, =4 and e, = 7, our targets
are the class groups of F,, with 0 < n < 6. By Theorem 1.1, Corollary 1.2 and
the data in Table 3, we see that

1210 = Z/Sv

A =7/487)8,

Ay =7/2@ (Z/4)%3 =~ By(l),

Ay =(2/2)% @ (2/4)%° = By(l),

A, =(7/2)®16 ~B,(1) for 4<n<6.

Further, by Theorem 1.2 and the data in Table 3, we see that

Ay =7/4,
Ay =(2/4)%2,
A, =2(Z2/2)® =B,(I) for 2<n<6.

The groups B, (¢) and By, (¢) are independent of £ for 2 < n < 6. However, as
Table 10 shows, the structures of B, (1) and B, (l) depend on [ for n = 0 and 1.
This is caused by the data m, =2, b, # 2™», n, = 2 and ¢, # 2"» in Table 3.

Table 10. B, (1) and B, (1) for p = 257 and Lo = Q(v/20).

U Bo) [ Bi) | Bo() || Bot) | B1(D) | Ba()
41 2 2,2 | 1222 2 12 | 1,11
97 2 2,2 | 1222 1 L1 | 1,11
233 2 2,2 | 1,222 1 L1 | 1,11
281 2 2,2 | 1222 1 L1 | 1,11
313 2 2,2 | 1222 2 12 | 1,11
337 || 3 2,3 | 12,22 3 22 | 11,1
353 3 2,3 | 1222 2 12 | 1,11
409 2 2,2 | 1222 2 2,2 | 1,1,1
449 2 2,2 | 1222 1 L1 | 1,11
521 2 2,2 | 1222 2 12 | 1,11
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Let p = 4993, and let us briefly explain how to compute the value d, in
Table 4. Since f = f, = 3 and [k3 : Q] = 8 is small, we can use Magma for
computing d, as follows, under the generalized Riemann hypothesis. We have
dimg, Vy = r2(Ay) = d,, by Corollary 5.1(II). First, we explicitly compute the
integer w € k3 defined by (4.6). Then, we have V = V; = Fy[G] - [w] and

V=V;={la] € Vs | a> 0} = (14 p)* >V} (= (2/2)%%)

Here, the third equality for Vy holds by dimp, Vy = d,, and Lemma 3.6(I). Next,
we check using Magma that w!*? is not totally positive and w(1+#)” is totally
positive. This implies that 2/ — d, = 2 and hence d,, = 6.
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