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ABSTRACT
Thispaperproposeddeep learning to create anaccurate forecasting systemthatuses adeepcon-
volutional long short-termmemory (DCLSTM) for forecasting wind speed and direction. In order
to use the DCLSTM system, wind speed and direction are represented as an image in 2D coor-
dinates and make it to time sequence data. The wind speed and direction data were obtained
from AMeDAS (Automated Meteorological Data Acquisition System), Japan. The target of the
proposed forecasting system was to improve forecasting accuracy compared to the system in
SICE 2020 (The Society of Instrument and Control Engineers Annual Conference 2020) in all sea-
sons. For verifying the efficiency of the forecasting systemby comparisonwith persistent system,
deep fully connected-LSTM (DFC-LSTM) and encoding-forecasting network with convolutional
long short-term memory (CLSTM) systems were investigated. Forecasting performance of the
systemwas evaluatedby RMSE (rootmean square error) between forecasted andmeasureddata.
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1. Introduction

Currently, almost all countries in the world exploit
renewable energy sources to reduce dependencies on
fossil fuels, which can produce 26.2% of global elec-
tricity in the world in 2019. In 2018, the total capacity
for producing renewable energy increased up to 52%
in Asia. The wind power source is a kind of renewable
energy that is rapidly attracting attention as an alterna-
tive source for solving electricity demand. Wind power
generation contributed around 28% of new energy
additions in the world in 2018. The advantage of wind
power is being clean, reliable, most abundant, and
affordable as part of the renewable energy resources,
with having the potential for supply energy and being
able to increase producing energy, significantly in the
future [1,2]. However, the principal problem of wind
power is the wide fluctuation of output caused by a
change in wind speed and direction. Thus, forecasting
wind speed and direction is needed for regulating wind
power generation effectively and can offer information
for power companies which can assist in stabilizing the
electrical power system and organizing the operation of
the thermal power plant [3,4].

There are three mainmethods of wind speed predic-
tion: numerical, statistical, and machine learning. The
numerical method such as NWP (numerical weather
prediction) is suitable for predicting full data on
atmospheric and weather, which requires a long time

to run the program and high computation costs [4,5].
The statistical methods such as autoregressive integral
moving average (ARIMA) and Markov chain adjust
different parameters of the model between measured
and forecasted data [4–7]. Machine learning based on
the neural network such as ANN (artificial neural net-
work), RNN (recurrent neural network) can predict
the future wind speed by representing the complex
nonlinear connections between output and input data
[5–7].

This paper proposed forecasting wind speed and
direction system using deep convolutional long short-
term memory (DCLSTM). The DCLSTM system
is suggested to extend and improve the encoding-
forecasting network with the convolutional long short-
term memory (CLSTM) system in SICE 2020 which
uses a more number of filter, deep CLSTM layer, and
dataset of a longer period. DCLSTM can extract spa-
tiotemporal feature maps of wind speed and direction
and evaluate time sequence image data. The predic-
tion period of the forecasting system is one-hour ahead
that can improve accuracy compared to the system
in SICE 2020 and shows good performance by com-
paring persistent system, DFC-LSTM, and encoding-
forecasting network with CLSTM system. Perfor-
mance of the system is evaluated by RMSE between
measured and forecasted data for four seasons in
1 year.

CONTACT Anggraini Puspita Sari anggi@ee.tokushima-u.ac.jp Department of Electrical and Electronic Engineering, Tokushima University,
Tokushima 770-8506, Japan; Department of Electrical Engineering, University of Merdeka Malang, Malang 65-146, Indonesia

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/18824889.2021.1894878&domain=pdf&date_stamp=2021-06-16
mailto:anggi@ee.tokushima-u.ac.jp
http://creativecommons.org/licenses/by/4.0/


SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 31

Figure 1. Wind data on the coordinate system. (a) Vector dia-
gram (b) Explanation of component v(t).

Figure 2. Explanation of wind direction.

2. Proposed forecasting system

2.1. Explanation of wind speed and direction

The wind speed and direction (wind data) in
Tokushima city, Japan were taken from AMeDAS at 10
min interval. The wind data can be visualized on the
coordinate system by graphic expression as shown in
Figure 1. Both x-axis and y-axis represent the direction
of E (east) – W (west) and the direction of N (north)
– S (south), respectively. Wind direction of AMeDAS
is divided into 16 as shown in Figure 2. Equations (1)
and (2) show x and y components of wind vector, vx(t)
and vy(t),

vx(t) = v(t) · cos θ(t) (1)

vy(t) = v(t) · sin θ(t) (2)

where θ(t) means wind direction [◦] and v(t) means
wind speed [m/s].

2.2. Dataset

In this paper, wind data for four years were used: two
years for training, 1 year for validation, and 1 year for
test as shown in Table 1. The test dataset was divided
into seasons to validate seasonal characteristics.

Table 1. Dataset period.

Dataset Period Total data

Training March 2013–February 2015 105,120
Validation March 2015–February 2016 52,704

Spring March–May 2016
Test Summer June–August 2016 52,560

Autumn September–November 2016
Winter December 2016–February 2017

The size of output and input images were 128 × 128
pixel. The maximum wind speed during the training
dataset was slightly below 20m/s. Therefore, the scale
of plotting image by PIL (python imaging library) was
set as follows,

px =
(
64
20

· vx
)

+ 64 (3)

py = 64 −
(
64
20

· vy
)

(4)

where px and py are the plotted point of wind data for
x-axis and y-axis, respectively and 64 means half of the
image size.

For expressing a change of wind data, six points were
plotted on one image im(t) from p(t − 5) to p(t) and
each point was connected by the line that describes 1-
h data as shown in Figure 3. Moreover, the point of
the newest data in the image was plotted as the larger
point to express the time sequence. Furthermore, nine
time-series images from im(t − 8) to im(t)were used to
the input of the network to express the change of wind
vector transition.

2.3. DFC-LSTM

RNN (recurrent neural network) is a kind of neural
network that can solve time-series data but has the
principal problem about vanishing gradient. LSTM is
an advanced type of RNN that effectively solves the
vanishing gradient problem due to LSTM trained by
backpropagation (BP) algorithm and has cell state and
gates for controlling information flow, improving the
capability of RNN,making it easy to converge, and run-
ning faster than RNN. LSTM is powerful in solving
long-range dependency and handles for learning short
and long-term dependencies very well [8–11]. LSTM
is a popular and good performance tool for solving
time-series data and can be applied to caption genera-
tion [12],medical diagnostic [13], wind prediction [14],
scene label [15], speech recognition [16]. The inner
architecture of LSTM has three gates: input (i), forget
(f ), and output (o) gates; input vector (X); hidden state
(H); cell state (C); and activation function (σ ) as shown
in Figure 4 [8,9]. LSTM unit is calculated by

it = σ(WXi · Xt + WHi · Ht−1

+ WCi ◦ Ct−1 + bi) (5)
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Figure 3. Process to generate input image.

Figure 4. Inner architecture of LSTM.

f t = σ(WXf · Xt + WHf · Ht−1

+ WCf ◦ Ct−1 + bf ) (6)

Ct = f t ◦ Ct−1 + it ◦ tanh(WXC · Xt

+ WHC · Ht−1 + bC) (7)

ot = σ(WXo · Xt + WHo · Ht−1

+ WCo ◦ Ct + bo) (8)

Ht = ot ◦ tanh(Ct) (9)

where ◦ means hadamard product, and W means
weight [4,11,17].

Deep fully connected-LSTM (DFC-LSTM), which is
a multivariate type of LSTM that uses multiple LSTM
layers, was applied in this study as it is easy to learn
with the FC layer, and learns temporal features [18,19].
DFC-LSTM is composed of five LSTM layers and one
FC layer. All of the LSTM layers have 32 cells. The end
process of the DFC-LSTM system uses the FC layer for
producing the forecasted results.

2.4. DCLSTM

DCLSTM (deep convolutional LSTM) system is a
developed CLSTM system. The systemwas proposed in
this study to improve the capability of CLSTM system.
CLSTM system combines CNN (convolutional neural
network) and LSTM to improve the solving capability
of sequential images. CLSTM is known for being able to
learn representation from spatiotemporal features and
learning processes by sequence to sequence that uses
the input of the image [4,11,19].

Figure 5 shows the inner structure of CLSTM that
uses convolutional structure in state-to-state and input-
to-state transitions [4,11]. The CLSTM layer produces
the image of the same size as the input. CLSTM layer
features are arranged based on five dimensions: number
of sample data (N), time-series (ts), height (h), width
(w), and channel (c). In CLSTM, the matrix product “·”
of the LSTM is a substituted convolutional operation
“∗”. The equation of CLSTM is shown in [4,11,17,19].

it = σ(WXi ∗ Xt + WHi ∗ Ht−1

+ WCi ◦ Ct−1 + bi) (10)

f t = σ(WXf ∗ Xt + WHf ∗ Ht−1

+ WCf ◦ Ct−1 + bf ) (11)

Ct = f t ◦ Ct−1 + it ◦ tanh(WXC ∗ Xt

+ WHC ∗ Ht−1 + bC) (12)

ot = σ(WXo ∗ Xt + WHo ∗ Ht−1

+ WCo ◦ Ct + bo) (13)

Ht = ot ◦ tanh(Ct) (14)

This paper proposes a forecasting systemusingmultiple
CLSTM layers, also known as deep CLSTM (DCLSTM)
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Figure 5. Inner structure of CLSTM.

that have five CLSTM layers in the encoder and fore-
caster network, respectively, as shown in Figure 6. The
encoder network is composed of oneConv3D layer, one
max-pooling3D layer, and five CLSTM2D layers. The
forecaster network is composed of five CLSTM2D lay-
ers, one up-sampling3D, and one Deconv3D layer. The
kernel size of Conv., Deconv., and CLSTM layers use
five. The stride of max-pooling uses two. The channel
size of CLSTM and Conv. are 32 and 16.

In the encoder network, height and width of feature
maps are downsampled by max-pooling. On the con-
trary, the feature maps are upsampled in the forecaster
network by up-sampling layer. In the forecaster net-
work, fore input is required to output forecast results
which are filled by zeros. The state of the CLSTM layer
in the forecaster network is copied from the last state of
the CLSTM layer in the encoder network. In the fore-
caster network, the final process generates the output
imagewith oneDeconv. layer by concatenating all states
of CLSTM layers to get forecasted output.

2.5. Learning procedure and parameters

Parameters of the proposed forecasting system with
DCLSTM are listed in Table 2. The training and vali-
dation processes were iterated for 20 epochs. To train
the system, RMSProp (root mean square propagation)
was used as an optimizer with parameters ρ (decay fac-
tor) and lr (learning rate). The activation function of the
forecasting system is Leaky ReLU (leaky rectified linear
unit) and its parameter σ(x) is,

σ(x) =
{
0.001x, x < 0
x, x ≥ 0 (15)

where x is input data.
The performance of proposed forecasting systems

was evaluated by RMSE as follows,

RMSE =
√√√√ 1

N

N∑
q=1

(yq − ŷq)2 (16)

where ŷq is qth forecasted data, yq is qth measured data,
and N means number of sample data. The forecasting

Table 2. Parameters of proposed systems.

Parameter Data

Epoch 20
Activation function Leaky ReLU
Batch size 4
Optimizer RMSProp lr 0.001

ρ 0.9

system is written by python with framework Keras and
Tensorflow as backend.

3. Forecasting results

The forecasted result of wind speed and direction was
taken out from a forecasted image by calculating the
centre of gravity (CoG) position (p̂x, p̂y) of the biggest
pixel cluster that has value zero. Then v̂x(t) and v̂y(t)
was obtained from CoG position p̂y and p̂x by the
following formula.

v̂x(t) =
(
20
64

)
· (p̂x − 64) (17)

v̂y(t) =
(
20
64

)
· (64 − p̂y) (18)

The forecasted wind speed v̂(t) and direction θ̂ (t) are
converted from v̂x(t) and v̂y(t),

θ̂ (t) = tan−1
(
v̂y(t)
v̂x(t)

)
(19)

v̂(t) =
√
v̂2x(t) + v̂2y(t) (20)

where θ̂ (t) is forecasted wind direction [◦] and v̂(t) is
forecasted wind speed (m/s).

The target of the proposed forecasting system pre-
dicts an image 1 h ahead. The forecasted results of wind
speed and direction one-day data on December 06,
2016, are shown in Figures 7 and 8, respectively. In
Figures 7 and 8, E-FN CLSTM is a forecasting system
of encoding-forecasting network with CLSTM (SICE
2020). From Figures 7 and 8, the DFC-LSTM system
happens some delay both in wind speed and direc-
tion with a quick change. On the other hands, the
network which uses the encoding-forecasting network
with CLSTM and DCLSTM can decrease delay effec-
tively. Moreover, the forecasting result of wind speed
and direction in the DCLSTM system is approaching
of measured data that confirm DCLSTM can efficiently
extract spatiotemporal feature maps.

The prediction error (RMSE) of wind speed and
direction to all seasons, which is the main proposed
prediction system of the encoding-forecasting network
with CLSTM in SICE 2020 fromMarch 2016–February
2017 learned by 1-year training data shown in Table 3.
Table 4 shows the prediction error (RMSE) of wind
speed and direction to all seasons and improvement
rates by the persistent system from March 2016 to
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Figure 6. Network architecture of DCLSTM system.

Figure 7. Forecasted result wind speed on December 06, 2016.

February 2017 learned by two years training data. The
persistent system is the standard system for short-time
forecasting which outputs the current value as fore-
casting output. From Table 3, the best system in SICE
2020 is the encoding-forecasting networkwith CLSTM.
We extend and improve the encoding-forecasting net-
workwithCLSTM, use theDCLSTMsystem. InTable 4,
an encoding-forecasting network with CLSTM com-
pares the proposed system for two years of training
data which are used to investigate the best system
and improve forecasting accuracy. From Table 4, the
DCLSTM system can improve the forecasting accuracy

of the encoding-forecasting network with CLSTM both
in wind speed and direction effectively, it confirms
the DCLSTM system as the highest forecasting accu-
racy and the best forecasting system in proposed sys-
tems. The effectiveness of the DCLSTM system is con-
firmed by comparing persistent, DFC-LSTM, and the
encoding-forecasting network with CLSTM systems.
From Table 4, DCLSTM can improve accuracy more
than twice of DFC-LSTM by comparing the persis-
tent system in most of all seasons. RMSE of forecast-
ing systems each month in 1 year are shown in Fig-
ures 9 and 10. The forecasting accuracy of theDCLSTM
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Figure 8. Forecasted result wind direction on December 06, 2016.

Table 3. Prediction error of wind speed and direction to all seasons for one-year
training (SICE 2020).

RMSE

FC- Stacked Encoder-decoder Encoding-forecasting
Description LSTM CLSTM network with CLSTM network with CLSTM

Spring v(t) (m/s) 1.1257 0.8011 0.7191 0.6588
θ(t) (◦) 45.3794 35.6979 33.8240 27.7298

Summer v(t) (m/s) 0.9666 0.8520 0.7117 0.6692
θ(t) (◦) 50.7650 35.0061 33.9482 27.5454

Autumn v(t) (m/s) 0.9854 0.7324 0.6315 0.6132
θ(t) (◦) 39.8416 32.6678 31.5565 25.9453

Winter v(t) (m/s) 1.4326 0.8331 0.7479 0.7261
θ(t) (◦) 36.7751 33.1920 32.9444 27.8196

Total v(t) (m/s) 1.1415 0.8050 0.7027 0.6679
θ(t) (◦) 43.5648 34.1620 33.0845 27.2713

Table 4. Prediction error of wind speed and direction to all seasons for two years training.

RMSE Improvement rate [%]

Encoding-forecasting Encoding-forecasting
Description Persistent DFC-LSTM network with CLSTM DCLSTM DFC-LSTM network with CLSTM DCLSTM

Spring v(t) (m/s) 1.5991 1.1078 0.6440 0.5368 30.72 59.73 66.43
θ(t) (◦) 62.0996 42.9808 27.4283 23.6467 30.79 55.83 61.92

Summer v(t) (m/s) 1.3890 0.9367 0.6317 0.5372 32.56 54.52 61.32
θ(t) (◦) 68.4892 49.3753 27.3775 23.3138 27.91 60.03 65.96

Autumn v(t) (m/s) 1.2939 0.9698 0.6074 0.5233 25.05 53.06 59.56
θ(t) (◦) 55.9855 38.6346 25.6335 23.2173 30.99 54.21 58.53

Winter v(t) (m/s) 1.5294 1.1391 0.6628 0.5192 25.52 56.66 66.05
θ(t) (◦) 48.4319 35.0154 27.6424 22.7946 27.70 42.93 52.93

Total v(t) (m/s) 1.4577 1.0237 0.6440 0.5296 29.77 55.82 63.67
θ(t) (◦) 59.2834 41.4452 27.1956 23.2427 30.09 54.13 60.79

system is the highest in all months and it indicates that
DCLSTM is the best forecasting system.

4. Conclusions

This paper proposed a DCLSTM system for wind
speed and direction forecasting one-hour ahead. To

confirm the effectiveness of the forecasting systems,
RMSE was used by comparing persistent, DFC-LSTM,
and encoding-forecasting network with CLSTM sys-
tems. The forecasted result of the DCLSTM system is
better than the other systems. The DCLSTM system
can improve the forecasting accuracy of theDFC-LSTM
system, in which encoding-forecasting network with
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Figure 9. RMSE of wind speed for each month.

Figure 10. RMSE of wind direction for each month.

CLSTM system and all systems in SICE 2020 indicates
that DCLSTM is the best forecasting system. In the
comparison of the persistent system, the DCLSTM sys-
tem can improve forecasting accuracy drastically than
the DFC-LSTM system.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Notes on contributors

Anggraini Puspita Sari She received her
B.E. and M.E. degrees from the Uni-
versity of Brawijaya, Malang, Indone-
sia in 2009 and 2012, respectively. Cur-
rently, She is pursuing Dr. Eng. degree
at Tokushima University, Tokushima,
Japan who is research about wind power
prediction system. She is a lecturer in

Electrical Engineering, the University of Merdeka Malang,



SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 37

Malang, Indonesia since 2016. She is a member of the Electri-
cal Engineering Education Forum Indonesia (Fortei Indone-
sia) and a student member of the Institute of Electrical Engi-
neers of Japan (IEEJ).

Hiroshi Suzuki He received his Ph.D.
degree from Tokushima University,
Japan, in 2011. He is an Assistant Pro-
fessor in the Faculty of Science and
Technology, TokushimaUniversity since
2016. His current research interests are
intelligent control and sensor network.
Dr. Suzuki is a member of the Institute

of the Electrical Engineers of Japan (IEEJ), and the Society of
Instrument and Control Engineers (SICE).

Takahiro Kitajima He received his Dr.
Eng. degree from TokushimaUniversity,
Japan in 2014. He is currently a techni-
cian with the Department of Electrical
and Electronic Engineering, Tokushima
University.His current research interests
include the power output prediction of
renewable energy and intelligent control

systems of robots. He is a member of the Institute of Elec-
trical and Electronics Engineers (IEEE), and the Institute of
Electrical Engineers of Japan (IEEJ).

Takashi Yasuno He received his Ph.D.
degree from Tokushima University,
Japan, in 1998. He is a Professor in
the Faculty of Science and Technology,
Tokushima University since 2013. His
current research interest includes intel-
ligent control of autonomous mobile
robots, output prediction of wind power

generation system, control engineering of rehabilitation sys-
tem, agriculture support system (advanced motion control,
intelligent control, robotics). He is a member of the Society
of Instrument and Control Engineers (SICE), the Institute
of Electrical Engineers of Japan (IEEJ), the Institute of Sys-
tems, Control and Information Engineers, the Robotics Soci-
ety of Japan, and the Institute of Electrical and Electronics
Engineers (IEEE).

Dwi Arman Prasetya He received his
B.E. degree from Sepuluh Nopember
Institute of Technology (ITS) in 2004.
He received M.E. degree from Uni-
versity of Brawijaya, Malang, Indonesia
in 2010. He received Dr. Eng. degree
fromTokushimaUniversity, Tokushima,
Japan in 2013. He is an Associate Pro-

fessor in Electrical Engineering, the University of Merdeka
Malang, Malang, Indonesia. His current research interest
includes intelligent control of robotics and mechatronic sys-
tem. He is a member of the Electrical Engineering Education
Forum Indonesia (Fortei Indonesia), the Institute of Electri-
cal and Electronics Engineers (IEEE), and Deputy head of
the certification department of The Institution of Engineers
Indonesia.

Abd. Rabi’ He received his B.E. Degree
from Sepuluh Nopember Institute of
Tech-nology, Surabaya, Indonesia, in
1987. He received M.E Degree from
SepuluhNopember Institute of Technol-
ogy, Surabaya, Indonesia, in 2002. He
is an Assistant Professor in Electrical
Engineering, the University of Merdeka

Malang, Malang, Indonesia. His current research interests
are computer and image processing. He is a member of the
Electrical Engineering Education Forum Indonesia (Fortei
Indonesia).

References

[1] Renewables 2019. Global status report. [cited 2020
Oct 11]. Available from: https://www.ren21.net/reports/
global-status-report/.

[2] Kamath PR, Senapati K. Short-term wind speed fore-
casting using s-transform with compactly supported
kernel. Wind Energy. 2021;24(3):260–274.

[3] Sari AP, Suzuki H, Kitajima T, et al. Prediction model of
wind speed and direction using deep neural network. J
Electr Eng Mechatron Comput Sci. 2020;3(1):1–10.

[4] Sari AP, Suzuki H, Kitajima T, et al. Prediction of wind
speed and direction using encoding-forecasting net-
work with convolutional long short-term memory. In:
Proceedings of the 2020 59th Annual Conference of the
Society of Instrument and Control Engineers (SICE);
Chiang Mai, Thailand: 2020. p. 958–963.

[5] Zhu Q, Chen J, Zhu L, et al. Wind speed prediction with
spatio-temporal correlation: a deep learning approach.
J Energies. 2018;11(4):705.

[6] Cali U, Sharma V. Short-term wind power forecasting
using long-short term memory based recurrent neural
network model and variable selection. Int J Smart Grid
Clean Energy. 2019;8(2):103–110.

[7] Marndi A, Patra GK, Gouda KC. Short-term forecasting
of wind speed using time division ensemble of hierar-
chical deep neural networks. Bull Atmos Sci Technol.
2020;1:91–108.

[8] Liang S, Nguyen L, Jin F. A multi-variable stacked long-
short termmemory network forwind speed forecasting.
2018. arXiv:1811.09735v1.

[9] Sari AP, Suzuki H, Kitajima T, et al. Prediction model
of wind speed and direction using convolutional neural
network – long short term memory. In: Proceedings of
the 2020 IEEE International Conference on Power and
Energy (PECon); Penang, Malaysia: 2020. p. 358–363.

[10] Zhang Y, YuanH,Wang J, et al. YNU-HPCC at EmoInt-
2017: using aCNN-LSTMmodel for sentiment intensity
prediction. In: Proceedings of the 8th Workshop on
Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis; Copenhagen, Denmark:
2017. p. 200–204.

[11] Shi X, Chen Z, Wang H, et al. Convolutional LSTM
network: a machine learning approach for precipitation
nowcasting. 2015;1–9. arXiv:abs/1506.04214.

[12] Chen X, Ma L, Jiang W, et al. Regulazing RNNs for
caption generation by reconstructing the past with the
present. In: IEEE Explore, CVPR Paper: Provided Com-
puter Vision Foundation; Salt Lake City, Utah: 2018. p.
7795–8003.

[13] Lipton ZC, Kale DC, Elkan C, et al. Learning to diag-
nose with LSTM recurrent neural networks. 2017;1–18.
arXiv:1511.03677v7.

[14] Fukuoka R, Suzuki H, Kitajima T, et al. Wind speed
prediction model using LSTM and 1D-CNN. J Signal
Proces. 2018;22(4):207–210.

[15] Byeon W, Breuel TM, Raue F, et al. Scene labeling
with lstm recurrent neural networks. In: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition; Boston, Massachusetts: 2015. p.
3547–3555.

https://www.ren21.net/reports/global-status-report/


38 A. P. SARI ET AL.

[16] Sainath TN, Vinyals O, Senior A, et al. Convo-
lutional, long short-term memory, fully connected
deep neural networks. In: Proceedings of the 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP); Brisbane, Australia:
2015.

[17] Agethen S, Hsu WH. Deep multi kernel convolutional
LSTM networks and an attention based mechanism for
videos. IEEE Trans Multimedia. 2019;22:819–829.

[18] Zhang L, Zhu G, Shen P, et al. Learning spatiotempo-
ral features using 3DCNN and convolutional LSTM for
gesture recognition. In: IEEE Explore, 2017 IEEE Inter-
national Conference on Computer Vision Workshops;
Venice, Italy: 2017. p. 3120–3128.

[19] Hong YY, Martinez JJF, Fajardo AC. Day-ahead solar
irradiation forecasting utilizing Gramian angular field
and convolutional long short-term memory. IEEE
Access. 2020;8:18741–18753.


	1. Introduction
	2. Proposed forecasting system
	2.1. Explanation of wind speed and direction
	2.2. Dataset
	2.3. DFC-LSTM
	2.4. DCLSTM
	2.5. Learning procedure and parameters

	3. Forecasting results
	4. Conclusions
	Disclosure statement
	Notes on contributors
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice




