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Abstract 

The streamwise velocity at two points in a turbulent boundary layer under zero pressure gradient was measured 

using two hot-wire probes separated in the wall-normal direction. The time trace of the fluctuating velocity 

difference, probability density function, fluctuating vorticity, structure function, and the spatial correlation 

coefficient was obtained. First, the physical importance of structure functions was explained in some detail. 

Then, the results of the measurements were considered. When the spatial separation between two points is small, 

the fluctuating velocity difference decreases monotonically as the two points move away from the wall. On the 

other hand, as the spatial separation increases, the similarity between the two fluctuating velocities decreases. In 

addition, the fluctuating velocity at the nearer point from the wall becomes dominant. When moving away from 

the wall, the fluctuating velocity difference first increases, then reaches a maximum, and finally decreases. When 

both positions are within the logarithmic region or defect region, the velocity difference is made between similar 

fluctuating velocities. Hence, the probability density function distribution shape is symmetrical with respect to 

positive and negative values, close to the Gaussian distribution. The fluctuating vorticity decreases 

monotonically as it moves away from the wall, regardless of the spatial separation. The structure function 

increases as the separation increases. Away from the wall, the length over which the correlation is maintained 

increases, resulting in a large eddy.   

Keywords : Boundary layer, Turbulence, Structure function, Spatial correlation, Spatiotemporal structure, Two-

point velocity difference  

 

1. Introduction 

1.1 The physical significance of the spatiotemporal structure of a turbulent boundary layer 

Until now, in mechanical engineering, the main problem of the turbulent boundary layer has been the distribution of 

wall shear stress in the streamwise direction. For a typical example of a flow field around a cylinder in a uniform stream, 

researchers’ interest is concentrated on the problem of wall shear stress profile along the cylinder arc length, since it 

determines the boundary layer separation point and that is the crucial factor of pressure drag of the cylinder, see 

Schlichting and Gersten (2000). In a real fluid mechanical engineering problem, the scenario is similar to that of a pump 

and a blower, where the mean velocity distribution and turbulence intensity profile are critical for determining skin 

friction. 

On the other hand, boundary layer problems are important not only for mechanical and aeronautical engineering but 

also for very tall building architecture, large suspension bridges, and environmental problems. In such problems, we must 

have not only the knowledge of skin friction but also the spatiotemporal varying structure of wind, which has widespread 

scales from the Kolmogorov dissipation scale to the Tayler integral scale. These problems are described in detail in the 

large book “Structure Endure Engineering to Wind (1997)”. The recent development of large-scale wind turbines has 
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created a demand to improve the efficiency of wind farms (Goit and Meyers, 2014). Then, it is important to analyze the 

atmospheric boundary layer’s spatiotemporal structure for the design of wind turbines. 

In the present-day world, wind farms are constructed as a solution to decreasing carbon dioxide concentration in the 

atmosphere to prevent global warming. In such a problem we must know the horizontal turbulent structure of the 

atmospheric boundary layer, which is discussed in great detail in Garratt (1992) and Wyngaard (2010). 

 

1.2 The spatiotemporal structure description of the turbulent boundary layer 

In this study, we performed experiments about a flat plate turbulent boundary layer using two hot-wire anemometers, 

as shown in Fig.1. This boundary layer is so fundamental. It is very important to understand its spatiotemporal structure 

not only on the physical side but also in various fields such as aeronautical, mechanical, architectural, and environmental 

engineering. For the sake of obtaining such a complicated structure, it is important to have an insight into the pattern of 

the hot-wire output time series signal which indicates glimmered turbulent velocity. As a result, in the following, we will 

present the time series records of hot-wire signals and explain their behaviors. Then, graphs of the structure function of 

turbulence in the boundary layer, which was introduced by Kolmogorov (1941), will be shown. 

Kolmogorov’s paper, published in 1941, is very frequently cited among turbulence researchers. It is cited in 

abbreviated, very compact form as K41 and has the name of a seminal paper. His structure function is very intricate 

quantity, so we try to explain its physical significance somewhat in detail. Within our survey, we have not found any 

paper that explains the physical meanings of the structure function. 

The spatial structure of turbulent flow was first analyzed in Taylor’s series of papers (Taylor, 1935), which introduced 

the correlation of the two spatial points. Von Kármán and Howarth (1938) obtained its equation, which has the name 

Kármán-Howarth equation, but the equation is not closed. Then, the notorious closure problem appeared because of the 

nonlinearity of Navier-Stokes equations.  

In K41, a very new and strange quantity was introduced to discuss the spatiotemporal structure of turbulence, that is, 

to set two spatial points, A and B, as shown in two hot-wire probes used in our experiment (Fig. 1(a)), and two different 

times t and t(0) at these two spatial points. Then, the instantaneous velocity difference was considered. They have two 

components, one of which is directed from A to B, and the other is orthogonal to it. In Kolmogorov’s field, a point has 

coordinated components as (x1, x2, x3, t), i.e., four-dimensional space is set. Note that the usual velocity measuring time 

is the same for every space point, but if the space point in K41 is different, then each velocity measuring time may differ. 

This physical quantity has no name in K41, but the following papers used the name of structure function, see Anselmet 

et al. (1984), Hill (2001), and Gatti et al. (2020) for this term. However, some authors use the name of velocity difference 

or velocity increment. 

K41 proposes the constraint of local homogeneity and local isotropy condition on the structure function, then the 

first and second similarity assumptions are set down. After that, in the case of a very large Reynolds number, K41 

considers the probability distribution of the structure function expressed as, 

 

w(P) = u(P)－u(P(0)),  = 1, 2, 3,        (1) 

 

where  means coordinate directions as usual. P and P(0) are defined as P = (x1, x2, x3, t), P(0) = (x1(0), x2(0), x3(0), t(0)), 

so the structure function in K41 has special meaning. Moreover, velocity measuring time is different between two spatial 

points. Then the study is carried out using a coordinate system of (x1, x2, x3, t) in four dimensions. 

Kolmogorov did not use any figures or graphs. We employ Fig. 2, which we created, to provide an understandable 

explanation of the structure function's physical importance. Set a material point A as indicated in the figure. The A is a 

point in an eddy, which means a material lump of turbulent fluid, and we define an orthogonal coordinate (x1, x2, x3) 

which has the origin at A as shown. The uA is the velocity vector measured at A at the time t. It has xi
 -component as uAi. 

The second point, B, is set as shown in Fig. 2. The position vector r of B relative to A is that, 

 

r = (r1, r2, r3),  (2) 

 

and then the velocity vector at B at time t +  is written as uB, i.e., 
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uA = u(x, t) = u(x1, x2, x3, t),         (3-1) 

uB = u(x + r, t + ) = u(x1 + r1, x2 + r2, x3 + r3, t + ).        (3-2) 

 

In K41, the coordinate (x1, x2, x3, t) is defined as above, and then a very new coordinate y is introduced as follows, 

 

y = x－x
(0)－u(P(0))(t－t(0)), s = t－t(0).        (4) 

 

Since coordinate y of point P depends on the random variable u(P(0)) as shown in Eq. (4), then the coordinate y is also 

a random variable. This attention is paid to K41, but standard textbooks of turbulence written by Hinze (1975a), Pope 

(2000), and Davidson (2015a) do not use this random coordinate system. Moreover, in K41, the reason why this 

coordinate is used is not explained. 

As noted above, in K41, the velocity vector at points A and B is measured at time t and t + , respectively, Then, it is 

resolved in the r-component, which has the direction from point A to point B, and it has another component perpendicular 

to it. Finally, the difference between these components is discussed; namely, K41 introduced very new physical quantities. 

Let us consider the physical meaning of this velocity difference in the case of a flat plate turbulent boundary layer, 

as shown in Fig. 3. Where Z is a name that indicates a material lump that includes material point A and moves following 

the flow field between time t and t + Δt as shown in Fig. 3. The eddy name Z is invariant since it indicates the lump of 

fluid which moves. Z has a Lagrangian coordinate nature of the flow. Then the lump of eddy Z moves, and material point 

A in Z also moves to A’ after Δt. In K41, the time difference, s appeared in Eq. (4), is not necessarily small, but in Fig. 3, 

the time difference Δt is taken to be small for the sake of the meaning of the figure to be clear physically. Then, the 

velocity difference used in K41 is evident from the figure that the idea comes from Prandtl’s mixing length model 

(Prandtl, 1925), which is also based on the concept of fluid material lump Z’s movement during time Δt conserving its 

momentum. In the mixing length model, Z moves along the mixing length l with constant momentum After the motion, 

it mixes with the surrounding new fluid instantaneously. Then, it produces a change in the momentum of the Eulerian 

field. In K41, Kolmogorov cites Prandtl’s theory but gives no physical explanation described above. 

The concept of a fluid lump in turbulence appears in the book of Townsend as “eddy.” In his book, “The Structure 

of Turbulent Shear Flow” (Townsend, 1956, 1976a), the word “eddy” appears frequently but no clear definition is given. 

The name of the book has the word “structure,” but the concept of the structure function of K41 is not used in the book. 

Numerical data of DNS of the turbulent boundary layer can be used to examine the arbitrary two spatial points and 

two times velocity component in the direction of two points. However, measurements of such a quantity in experiments 

are almost impossible. On the other hand, the turbulent boundary layer has a directional nature. For example, wall-normal, 

streamwise, and spanwise directions have different physical characteristics, respectively. The mean and fluctuating 

velocity data obtained in our measurements with two hot-wires shows the relationship between two spatial points and 

two times, as discussed in the following. 

Fig. 2  Schematic of two-point velocity. 

Fig. 1  Photographs of two hot-wire probes with a caliper 

for separation adjustment are (a) visible and (b) 

wrapped in a streamlined cover. 
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They have a crucial relationship to the vorticity vector , which is defined as, 

 

𝝎 = (
𝜕𝑢3

𝜕𝑥2
−

𝜕𝑢2

𝜕𝑥3
,

𝜕𝑢1

𝜕𝑥3
−

𝜕𝑢3

𝜕𝑥1
,

𝜕𝑢2

𝜕𝑥1
−

𝜕𝑢1

𝜕𝑥2
). (5) 

 

In our experiment, the case of two hot-wires are disposed vertically to the wall, and the distance between them is 2. 

Since the flat plate turbulent boundary layer is almost two-dimensional, the most important component of  in this case 

is 3, and then, 

 

𝜔3 =
𝜕𝑢2

𝜕𝑥1
−

𝜕𝑢1

𝜕𝑥2
 ~  −

𝜕𝑢1

𝜕𝑥2
 ~  −

𝑢𝐵−𝑢𝐴

Δ2
, (6) 

 

where orthogonal coordinates x1, x2, and x3 indicate the streamwise, wall-normal, and spanwise direction of the boundary 

layer, respectively. Morton (1984) and Terrington et al. (2022) have conducted related studies that are pertinent to this 

experiment. 

Then, in our experiment, the simultaneous signals of two hot-wires’ A and B, separated by wall-normal distance 2, 

correspond to the x3-component of vorticity. Similarly, in the case of two-wire distance 3, their output difference 

corresponds to the x2-component of , as seen in,  

 

𝜔2~
𝜕𝑢1

𝜕𝑥3
 ~ 

𝑢𝐵−𝑢𝐴

Δ3
. (7) 

 

Subsequently, the structure function introduced in K41 corresponds to vorticity in the absence of time difference 

consideration, or it can be associated with circulation along a micro-rectangular path when Stokes' theorem is applied. 

Since in the turbulent boundary layer, the velocity gradient is very large in the x2-direction, we must arrange the hot-wire 

itself parallel to the wall, and considering the structure of the hot-wire probe and the velocity gradient of the flow, the 2 

cannot be so small in real experiments, and also, the structure of the probe makes the horizontal distance 3 not so small. 

In the research works on the turbulent boundary layer flow from the viewpoint of two spatial points, Favre et al. 

performed a very large amount of experimental work, and he summarized them in a review paper (Favre, 1965). They 

consider the wake effect of the upstream probe to the downstream probe, and then probes are distributed on the same 

streamline. Many years later, Hill (2001) obtained partial differential equations of all order structure functions. These 

equations were so complicated that he developed computer algebraic software to obtain the many equations. Moreover, 

Fig. 3  Schematic of velocity component difference in the case of a flat plate turbulent boundary layer. Where Z is a name 

that indicates a material lump that includes material point A and moves following the flow field. The point A in Z 

also moves to A’ after t. 
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the software is registered on the editorial board of the Journal of Fluid Mechanics for researchers to use. However, Hill 

did not analyze any concrete real turbulent flow field. After Hill’s work, there are studies by Tomkins and Adrian (2003) 

and Gatti et al. (2020), as mentioned before. In the Annual Review of Fluid Mechanics, two review papers about the 

coherent structure of turbulence were published (Cantwell, 1981; Robinson, 1991), but note that they did not cite 

important studies of Favre’s. The relationship between Townsend's wall-attached eddies (Cheng et al., 2020) and the 

present two-point correlations will be considered in the future report. With respect to the correlation between two points 

in the wall-normal direction, see Baars et al. (2017a, 2017b). However, it appears that no measurements have been made 

of the structure function of the two-point velocity difference in the wall-normal direction in a turbulent boundary layer, 

based on the author's search. 

In the field of information research, a concept named Kolmogorov's structure function appears. For example, 

Vereshchagin and Vitányi (2004) describe the nature of data series. The relationship between the informational structure 

function of the data series and the structure function of turbulence used in the present paper is not evident. 

The present authors analyzed the analog hot-wire’s digitized data output using Shannon’s entropy (Shannon, 1948), 

Bandt and Pompe’s permutation entropy (Bandt and Pompe, 2002) and studied it using Kolmogorov’s complexity 

(Kolmogorov, 1965, 1983). Consult our papers (Ichimiya and Nakamura, 2013, 2017, 2020) for more details. 

    

2. Experimental apparatus, measurement methods, and data processing 

2.1 Experimental apparatus and measurement methods 

The wind tunnel used was an Eiffel-type one, and in the rectifying section (1920×1920 mm2) of the wind tunnel, 

five rectifying wire screens were placed. After the rectifying section, the wind passes through a nozzle with a contraction 

ratio of 7.5 before reaching the measurement section. The dimensions of the measurement section are 570 mm in height, 

620 mm in width, and 2,500 mm in length, and the bottom surface is a Bakelite plate for measurements. A turbulent 

boundary layer with zero pressure gradient was achieved by adjusting the opposite plate, which is made up of many 

rectangular plates with long screws. Tripping wires consisting of two cylinders with a diameter of 3 mm are attached 20 

mm and 50 mm from the measurement plate’s leading edge. The measuring section is shown in Fig. 4. For the 

measurement section of 2500 mm, the measurement plate and the opposite plate are parallel, and a turbulent boundary 

layer develops. In the following 500 mm section, the opposite plate linearly approaches the flat plate. Therefore, the flow 

area converges, then the turbulent boundary layer is accelerated, and the boundary layer relaminarizes. For the turbulent 

statistics in the relaminarizing process, see Ichimiya et al. (2022). In most downstream sections of 1000 mm, the opposite 

plate becomes parallel again, and the boundary layer goes to retransition. 

The experiment was conducted with a constant unit Reynolds number Um /  = 2.557×105 m-1 (inlet velocity of the 

measurement section, Um ≈ 3.8 m/s). The turbulence intensity in the free stream is 0.6%. The measurements were made 

at the station where the distance from the flat plate’s leading edge is 1600 mm, i.e., 900 mm upstream from the start of 

the convergence. The boundary layer thickness  is 36 mm. The Reynolds number is based on the velocity at the boundary 

layer’s outer edge, and the momentum thickness, R is 1047 there. The friction Reynolds number based on the friction 

velocity and the boundary layer thickness, R is 422 there. Though the effect of the downstream acceleration starts slightly 

upstream, the pressure gradient is zero, and the relaminarization has not yet begun there. Although this study was 

conducted at a relatively low Reynolds number, we believe that significant knowledge about the structural function 

between two points in the wall-normal direction was obtained, which has not been done previously. 

Fig. 4  Schematic of the flow field and coordinate system. The turbulent boundary layer develops in the upstream parallel 

section. The measurement station is 1600 mm downstream from the leading edge of the flat plate.  
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The measurement was carried out using two hot-wire probes shown in Fig. 1. Each wire is a single type made of 

tungsten with a diameter of 5 m and a length of 1 mm. The ratio of the sensor length and the Kolmogorov length, l/K, 

is approximately 0.5 near the wall. The frequency characteristic of each hot-wire is similar to that of a regular cross-type 

probe. The calibration of the hot-wire was performed at the same streamwise station but in the free stream. In the 

calibration, the hot-wire output voltage was linearized to the velocity. The free stream velocity was obtained from the 

Pitot tube installed at different stations so as not to disturb the flow at the measurement station. The relationship between 

the free stream velocity and the Pitot tube had been obtained before calibration. In the linearization process, the tangential 

and binormal velocity components to the sensing element were ignored as small. The two wires are separated in the wall-

normal direction. The probe closer to the wall and the one farther from the wall are called the probe-A and the probe-B, 

respectively. The separation (distance between the two wires), ry, was adjusted by a caliper (Fig. 1(a)). After the 

adjustment, the caliper was wrapped in a streamlined cover (Fig. 1(b)). The blockage ratio of the probe support cover is 

0.8%. It was confirmed by flow visualization that the cover did not affect the sensing element. The wall-normal position 

of the probe itself is determined by placing a metal piece on the wall, electrically connecting one end of the probe to the 

metal, and approaching the metal in 0.01 mm increments. When a current flows between the other end of the probe 

(sensing element) and the metal, the distance between the two is measured with an accuracy of 0.01 mm. The output 

voltage of each wire was A/D converted. The data time interval was adjusted according to the acceleration of the free 

stream to compare with the results at downstream accelerating relaminarization locations for future study. At this 1600 

mm downstream station from the leading edge, the time interval was 0.31 ms, and the data number was 84,685.  

 

2.2 Data processing 

In the experiment, the caliper of the hot-wire probe was adjusted, and then the separation ry, was fixed before inserting 

the probe into the measuring section. Nine separations were used: 0.205, 0.505, 1.005, 2.005, 3.005, 5.005, 10.005, 

20.005, and 30.005 mm. (Normalized separations with the viscous length, ry
+ = 2.5, 6.1, 12.2, 24.4, 36.6, 60.9, 122, 243, 

and 365.) The friction velocity was estimated using the Clauser-chart method. Then, the output voltage of both probes 

was made proportional to the wind velocity. The probes were traversed in the wall-normal direction in 24 to 25 positions 

(24 to 25 pairs). In other words, in total, approximately 220 locations (220 pairs) were measured. There are no duplicate 

pairs within these 220 pairs. This is due to the fact that, throughout the nine separations, probe-A's height (yA) from the 

wall is constant at 24~25. Consequently, probe-B's height (yB) varies For the normalization of the heights from the wall, 

the boundary layer thickness measured by the probe-A in each experiment, A is used. 

 

3. Experimental results and considerations  

3.1 Flow fluctuations’ aspects 

The time trace of the fluctuating velocities themselves, uA and uB, and the velocity difference between them are shown 

at several pairs here.  

First, the pairs in which yA is within the linear sublayer (yA
+ ≲ 5) are shown. A total of 4 pairs are shown: (a)(yA

+ = 

2.4, yB
+ = 4.9) (yB is also within the linear sublayer), (b)(4.9, 41.4) (yB is within the buffer layer, 5 ≲ yB

+ ≲ 40), (c)(4.9, 

127) (yB is within the log-law region, 40 ≲ yB
+), and (d)(4.9, 370) (yB is within the velocity defect region, (0.1~0.2)  ≲ 

yB). The fluctuating velocity themselves, uA and uB, and the velocity difference of the instantaneous velocity are shown 

in Fig. 5 and 6, respectively. In both figures, velocities are normalized by the velocity at the edge of the boundary layer 

measured by probe-A, UeA. Subtracting the red signals from the black ones in Fig. 5 corresponds to the signals in Fig. 6. 

The time range drawn is 0.40 seconds. This corresponds to 845 and 43 times the inner and outer time of the boundary 

layer there, respectively. 

In Fig. 5(a) (2.4, 4.9), both probe heights are close, so both signals also match quite well. Moreover, since the velocity 

fluctuations themselves are mild in the linear sublayer, the velocity difference signal in Fig. 6(a) is also mild. Signals, 

however, in the buffer layer and the log-law region (b) and (c) fluctuate finely. Finally, in Fig. 5(d), the fluctuation of uB 

within the defect region may be fine. However, since its absolute value is small, it does not contribute much to the velocity 

difference (uB－uA) in Fig. 6(d), and the difference reflects the mild fluctuation of uA. 

To verify the above conjecture, we drew the power spectrum of the fluctuating velocity uA. In addition to the ones 

that have appeared in Fig. 5 and 6, yA
+ = 2.4, 4.9, 42.6(instead of 41.4), 146(instead of 127), and 365(instead of 370), a 

total of six locations, including 15.8 that will appear later, are shown in Fig. 7. In the legend, the local Reynolds number 

based on the Taylor microscale, (estimated from local mean velocity times Taylor micro timescale) and rms turbulence 
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intensity was also written. The frequency range drawn is below the Kolmogorov frequency, fK.  

In the next height, signals of a pair where yA is within the buffer layer are shown. A total of 3 pairs with yA
+ = 15.8: 

(e)(yA
+ = 15.8, yB

+ = 40.2) (yB is also within the buffer layer), ( f )(15.8, 138) (yB is within the log-law region), and (g)(15.8, 

381) (yB is within the velocity defect region) and a total of 2 pairs with yA
+ = 42.6: (h)(42.6, 103) (yB is within the log-

Fig. 5  Time trace of the fluctuating velocity of two points, 

uA(red) and uB(black), where yA is within the linear 

sublayer. (a)(yA
+ = 2.4, yB

+ = 4.9), (b)(4.9, 41.4), 

(c)(4.9, 127), (d)(4.9, 370). 

Fig. 6  Time trace of the velocity difference between two 

points where yA is within the linear sublayer. Values 

of yA
+ and yB

+ from (a) to (d) are as Fig. 5. 
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law region), and (i)(42.6, 408) (yB is within the defect region) are drawn in Fig. 8 and 9. In (e)(15.8, 40.2), since the 

heights of both probes are also close, both signals in Fig. 8(e) overlap well when shifted slightly in time. The events of 

uB come slightly earlier than that of uA. For the quantification of this time difference, a spatiotemporal correlation 

Fig. 8  Time trace of the fluctuating velocity in two points, 

uA(red) and uB(black), where yA is within the buffer 

layer. (e)(yA
+ = 15.8, yB

+ = 40.2), ( f )(15.8, 138),  

(g)(15.8, 381), (h)(42.6, 103), (i)(42.6, 408). 

Fig. 9  Time trace of the velocity difference between two 

points where yA is within the buffer layer. Values of 

yA
+ and yB

+ from (e) to (i) are as Fig. 8. 
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Fig. 10  Time trace of the fluctuating velocity in two points, 

uA(red) and uB(black), where yA is within the log-

law region. (j)(yA
+ = 97.3, yB

+ = 219), (k)(97.3, 

341), (l)(97.3, 462). 

Fig. 11  Time trace of the velocity difference between two 

points where yA is within the log-law region. Values 

of yA
+ and yB

+ from (j) to (l) are as Fig. 10. 
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coefficient between the two signals is useful. We estimated it previously (Ichimiya et al., 2022) and showed that the 

coherent structure in the turbulent boundary layer tilts downstream as it moves away from the wall.  

Finally, signals of a pair where yA is within the log-law region are shown. A total of 3 pairs: (j)(yA
+ = 97.3, yB

+ = 219) 

(yB is also within the log-law region or defect region), (k)(97.3, 341) (yB is within the defect region), and (l)(97.3, 462) 

(yB is within the defect region) are drawn in Fig. 10 and 11. When both heights are not so far ( j) (97.3, 219), both signals 

in Fig. 10( j) are also close in time, i.e., the deviation in the horizontal direction is small. On the other hand, since a 

difference between the same time is recognizable, the velocity difference is not zero in Fig. 11( j). 

To show the magnitude of the fluctuating velocity difference shown above quantitatively, the distribution of its root 

mean square (rms) value, (uB－uA)’ is shown in Fig. 12. Where the prime means rms value. The values are normalized 

by the velocity at the boundary layer’s edge, measured by each probe.  

Figure. 12(a) shows the separation between two probes as a parameter. Values are shown at the midpoint of both 

probes. Tracing a certain colored distribution in the right direction in the figure means the heights of both probes increase 

simultaneously while keeping the separation between them fixed. In addition, as a guide for the separation, the two points 

closest to the wall (yA
+ = 2.4, yB

+ = 2.4 + ry
+) are connected with an arrow of the same color. That is, the mathematical 

midpoint at both ends of the arrow (which is different from the midpoint on the diagram because of a logarithmic display) 

corresponds to the leftmost point of each distribution. 

When the separation is small (ry
+ ≦ 12.2), the rms value decreases monotonically with the distance from the wall. 

The reason for this is that since the separation is small, the “phases” of both fluctuation match, as shown in Fig. 5(a) and 

6(a), so the velocity difference becomes smaller. In this condition, when both probes move away from the wall while 

maintaining phase matching, the fluctuating velocity initially drops. 

On the other hand, when the separation increases and becomes more than 24.4 (yellow), the fluctuating velocity 

difference increases at first, reaches a maximum, and then decreases. The reason why it increases at first is that, as inferred 

above, in this condition, yB is large, so its fluctuating velocity is small, and as Fig. 5(d), the difference (uB－uA) is 

approaching (0－uA) = －uA. When both probes move away from the wall in this condition, yA approaches the maximum 

position of the fluctuating velocity distribution (y+ = 10 ~ 15) (see, e.g., Spalart, 1988, Fig. 13), so the difference (uB－

uA) increases. In fact, the yA
+ position of the maximum values in Fig. 12(a) (ry

+ = 243 (purple), (yA + yB)+/2 = 133) is = 

10.9. Which is close to the maximum position (y+ = 10 ~ 15). When yA exceeds the maximum position, the velocity 

difference decreases.  

Figure 12(b) shows the probe separation changes in the fluctuating velocity difference with the height of probe-A as 

a parameter. In this type, tracing a certain colored distribution in the right direction in the figure means moving the probe-

B away from the wall while keeping the probe-A fixed. Eight values of yA were used as examples. 

For any parameter yA, as the separation increases, the fluctuating velocity difference increases, then peaks, and finally 

decreases. The reason for this is that when the separation is small, the fluctuation “phases” between both fluctuating 

velocities match as described above, so the fluctuating velocity difference becomes small. On the other hand, as the 

Fig. 12  Fluctuating velocity difference between two points as a function of (a) wall-normal distance and (b) two-point 

separation. Horizontal arrows with respective colors in (a) represent the range between probe-A and B when probe-

A is the nearest height from the wall, yA
+ = 2.4. In (a), tracing a certain colored distribution in the right direction in 

the figure means the heights of both probes increase simultaneously while keeping the separation between them 

fixed. In (b), tracing a specific colored distribution in the right direction in the figure entails moving probe-B away 

from the wall while keeping probe-A stationary. 
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separation increases, the “phases” do not match as shown in Fig. 5(b), 5(c), 6(b), and 6(c). So, the fluctuating velocity 

difference increases. When these out-of-phase units, uA and uB, are combined, they attain their maximum value. As the 

separation increases further, the amplitude of uB becomes smaller, as described above, and (uB－uA) approaches －uA, so 

it decreases. Then, since the velocity difference in the rightmost point of each parameter is closest to the single uA’, the 

parameter yA
+ for which the rightmost point is maximum among the eight rightmost points, yA

+ = 10.9 (orange) is the 

maximum position of the fluctuating velocity distribution (y+ = 10 to 15). 

As discussed above, when yB is extremely far from the wall, as shown in Fig. 5(d), it is expected that the velocity 

difference (uB－uA) will be close to the single value －uA. We will verify it here. Take yA
+ = 2.4 (red) and 42.6 (green) as 

examples, which are shown in Fig. 13. 

For both yA, at first (when yB is small), (uB－uA)’ is smaller than uA’ alone. In other words, it is validated that the 

“phases” of fluctuations of uA and uB almost match and cancel each other out. As ry, i.e., yB increases, however, (uB－uA)’ 

increases, demonstrating that uA and uB are out of phase. As ry further increases, (uB－uA)’ exceeds uA’ in ry
+ > 10 and 48 

at yA
+ = 2.4 and 42.6, respectively. This is because both positions are far enough away that there is no correlation between 

them. Therefore, the long-time average of (uB－uA) is almost the same as that of (uB + uA), so it is larger than uA’ alone. 

This is further demonstrated by estimating the change in the spatial correlation coefficient between uA and uB as a function 

of the separation. This will be clarified in a later section. 

Further, as ry increases, ry
+ ≳ 61 and 122 at yA

+ = 2.4 and 42.6, respectively, (uB－uA)’ decreases because of the 

decrease of uB, it becomes approximately equal to uA’. The decrease of uB can be confirmed by the rms distribution 

(triangle symbols).  

The distribution of the probability density function (pdf) of the fluctuation velocity difference (uB－uA) is shown in 

Fig. 14 for 12 pairs: The pairs are the same as Fig. 6(a)~(d), Fig. 9(e)~(i), and Fig. 11( j)~(l). The abscissa and ordinate 

are made dimensionless by the rms value. The range of the abscissa is divided by 100 between the maximum and 

minimum values. Values of the skewness and flatness factors of the fluctuating velocity difference, 

(𝑢𝐵－𝑢𝐴)3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑢𝐵－𝑢𝐴)′3 ⁄ and (𝑢𝐵－𝑢𝐴)4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑢𝐵－𝑢𝐴)′4⁄ , respectively, are also shown in the legend. The distribution area in any figure 

equals unity since the same quantity renders both axes dimensionless 

In the fluctuating velocity difference signals (Fig. 6, 9, and 11), in cases (b) and (c) where the distribution shape and 

absolute values on the positive and negative sides are almost the same, the pdfs in Fig. 14 are also almost symmetrical 

between the positive and negative sides and the skewness factor is small. In cases (a), (e), ( f ), (g), (h), and (i), where the 

appearance time is short, but the absolute value is large on the positive velocity side, the pdf tails on the positive velocity 

side are long, and the skewness factors are positive. On the other hand, in case (d), where the appearance time is short, 

but the absolute value is large on the negative velocity side, the tail on the negative velocity side is long, and the skewness 

Fig. 13  Fluctuating velocity difference between two points, (uB－uA)’, and fluctuating velocity at a point, uA’ and uB’. yA
+ = 

2.4(red), 42.6(green). Open circle; (uB－uA)’, closed circle; uA’, triangle; uB’. At first, (uB－uA)’ is smaller than uA’ 

alone. As ry increases (uB－uA)’ increases and exceeds uA’. Further, as ry increases, (uB－uA)’ decreases because of 

the decrease of uB. 
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factor is negative. In cases ( j), (k), and (l), where the probes are in the logarithmic region, or the defect region, the 

difference between similar fluctuating velocities causes the distribution shape to be symmetrical and close to the Gaussian 

distribution. Therefore, the skewness factor is small, and the flatness factor is close to 3. 

 

3.2 Fluctuating vorticity and structure function 

The difference in the streamwise instantaneous velocity, 𝑢̃, at the same time between two close points separated in 

the y direction, -Δ𝑢̃/Δy, is approximated to the instantaneous vorticity, 𝜔̃𝑧 as Eq. (5). This fluctuation is obtained in 

this section. First, the expressions for instantaneous, time-averaged, and fluctuating vorticities are listed below. 

 

𝜔̃𝑧 =
𝜕𝑣̃

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
~ −

𝜕𝑢

𝜕𝑦
~ −

∆𝑢

∆𝑦
= −

𝑢𝐵−𝑢𝐴

𝑦𝐵−𝑦𝐴
= −

(𝑈𝐵+𝑢𝐵)−(𝑈𝐴+𝑢𝐴)

𝑦𝐵−𝑦𝐴
 , (8) 

∴ Ω𝑧 = 𝜔̃𝑧
̅̅̅̅ ~ −

(𝑈𝐵+𝑢𝐵)−(𝑈𝐴+𝑢𝐴)

𝑦𝐵−𝑦𝐴

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= −

𝑈𝐵−𝑈𝐴

𝑦𝐵−𝑦𝐴
 , (9) 

∴ 𝜔𝑧 = 𝜔̃𝑧 − Ω𝑧~ −
𝑢𝐵−𝑢𝐴

𝑦𝐵−𝑦𝐴
 , (10) 

∴ 𝜔𝑧
′ = √𝜔𝑧

2̅̅ ̅̅  ~ 
√(𝑢𝐵−𝑢𝐴)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑦𝐵−𝑦𝐴
=

(𝑢𝐵−𝑢𝐴)′

𝑟𝑦
=

√𝐵(𝑦𝐴,𝑟𝑦)

𝑟𝑦

 . (11) 

 

Where both overbar and capital letters mean time-averaged quantities and lowercase letters mean fluctuating quantities. 

In this way, the structure function 𝐵(𝑦𝐴, 𝑟𝑦) = [𝑢(𝑦𝐴+𝑟𝑦) − 𝑢(𝑦𝐴)]
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= (𝑢𝐵 − 𝑢𝐴)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and the rms value of the fluctuating vorticity 

are related to each other.  

Figure 15 shows the fluctuating vorticity’s rms value, z’, made dimensionless by the velocity at the boundary layer’s 

edge measured with each probe and the boundary layer thickness measured with probe-A, 

 

𝜔𝑧′𝛿𝐴

√𝑈𝑒𝐴𝑈𝑒𝐵
 ~ 

(𝑢𝐵−𝑢𝐴)′ √𝑈𝑒𝐴𝑈𝑒𝐵⁄

𝑟𝑦 𝛿𝐴⁄
. (12) 

 

Fig. 14  The probability density function of fluctuating velocity difference(red) and Gaussian distribution(black). The values 

of yA
+ and yB

+ are shown in Fig. 6 for (a) to (d), Fig. 9 for (e) to (i), and Fig. 11 for (j) to (l).  
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In Fig. 15, if the value of the parameter ry
+ is increased while the position on the abscissa is fixed, this is equivalent 

to moving probe-A closer to the wall and moving probe-B away from the wall while keeping the center position between 

the two probes fixed. At this point, the vorticity diminishes, reflecting a decrease in accuracy as the separation increases. 

For the minimum separation, ry
+ = 2.5, the vorticity decreases monotonically with the distance from the wall. This trend 

is reasonable because it is qualitatively the same as the fluctuating velocity distribution.  

Figure 16 shows the distribution of the structure function, 𝐵(𝑦𝐴, 𝑟𝑦) = [𝑢(𝑦𝐴+𝑟𝑦) − 𝑢(𝑦𝐴)]
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= (𝑢𝐵 − 𝑢𝐴)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . They are shown 

in two ways, as Fig. 12(a) and (b). Figure 12 shows the distributions equivalent to the square of the structure function 

made dimensionless by the boundary layer edge velocity. On the other hand, in Fig. 16, the structure function itself is 

made dimensionless by the rms value of the local fluctuating velocity of both probes. Since the fluctuating velocity is a 

representative value of the turbulence intensity, this style can be considered as a relative value that the physical value of  

the structure function has with respect to the representative value of the turbulence intensity. Away from the wall, since 

the denominator, i.e., the fluctuating velocity decreases, the structure function becomes large. 

 

3.3 Spatial correlation coefficient  

From the velocity measurements at two spatial points, we can find a spatial correlation. Here, a simultaneous two-

point spatial correlation coefficient is shown. 

Figure 17(a) shows the separation between two points as a parameter. The correlation coefficient increases with the 

distance from the wall. This means that as one moves away from the wall while keeping the separation constant, the 

length over which the correlation is maintained increases. That is, the large eddy prevails, and vice versa. Only with the 

non-dimensional separation of 2.5 (red), however, the correlation is always about 0.99.  

Figure 17(b) shows the probe separation changes. The correlation coefficient has a typical distribution shape, 

decreasing from unity as the separation increases. With large yA, as the separation increases, i.e., yB moves away from yA, 

the decrease from unity becomes slower. This means that as moving away from the wall, the large eddy prevails as above. 

In Fig. 17(a), when the separation is large, the correlation reaches a minimum at (yA + yB)+/2 ≈ 400. This corresponds 

Fig. 16  Structure function as a function of (a) wall-normal distance and (b) two-point separation. Away from the wall, the 

structure function becomes large. 
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Fig. 15  Fluctuating vorticity as a function of wall-normal distance. The vorticity decreases monotonically with the distance 

from the wall.  
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to a situation in Fig. 17(b). For example, in the region of 30 ≲ ry
+ ≲ 150, the distribution with yA

+ = 401 (purple) is 

smaller than that with yA
+ =219 (blue). In this situation, probe-A is located within the boundary layer, and probe-B is 

located within the free stream. As a result, the correlation between the two positions is reduced. 

In §3.1, the fluctuating velocity difference (uB－uA)’ became larger than uA’ alone while moving away from the wall 

(Fig. 13). It was assumed that since both points were so far, the correlation became small. This assumption is verified 

now. At the inverted positions, i.e., ry
+ = 10 and 48 at yA

+ = 2.4 and 42.6, respectively, in Fig. 17(b), the correlation 

coefficients are indeed 0.8 and 0.4, respectively, demonstrating that the correlation is getting worse.  

 

4. Discussions 

 

In the following, we will discuss the nature of turbulence research. Every turbulence researcher, irrespective of the 

theoretical, experimental, and computational field, knows that the physical insight into turbulence has a central 

importance in understanding the turbulent flow field since the randomness of its space-time compels us to summarize the 

structure. Without that notion, we meet intractable information of the sensor’s output or computed array numbers from a 

computer that solves Navier-Stokes equations directly. 

Historically, Prandtl’s intuition introduced the mixing length assumption, which means a lump of fluid moves, 

holding its momentum perpendicular to the main flow (Prandtl, 1925). In the classical book of turbulence, Hinze (1975b) 

proposed his conceptual physical model of wall turbulence. Davidson (2015b) shows many cartoons of turbulent flow to 

aid the readers of his book in obtaining the physics of turbulent fields. 

Recently, Townsend’s attached eddy model presented in his book (Townsend, 1976b) has been extensively discussed 

in a review paper (Marusic and Monty, 2019), in which Townsend’s conical eddy attached to the wall is drawn. These 

various concepts proposed by many authors help our insight into turbulence, but they are qualitative in nature. The results 

obtained by the use of two hot-wire probes in the present paper are essentially dynamic and quantitative measures of 

turbulence. This research character helps us to obtain a deep understanding of turbulence.  

 

5. Conclusions 

 

The streamwise velocity between two points separated in the wall-normal direction in a turbulent boundary layer 

under zero pressure gradient was measured, and signals of the fluctuating velocity difference at the same time, probability 

density function, fluctuating vorticity, structure function, and spatial correlation coefficient were obtained. The following 

conclusions were obtained. 

(1) When the spatial separation between two points is small, the fluctuating velocity difference decreases 

monotonically as the two points move away from the wall. On the other hand, as the spatial separation increases, the 

similarity between the two fluctuating velocities decreases. In addition, the fluctuating velocity at the nearer point from 

the wall becomes dominant. When moving away from the wall, the fluctuating velocity difference first increases, then 

reaches a maximum, and finally decreases. 

Fig. 17  Spatial correlation coefficient as a function of (a) wall-normal distance and (b) two-point separation. The correlation 

coefficient increases with the distance from the wall and decreases with the two-point separation.  

5 10 50 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ry
+

u
A

 u
B

  /
  
u

A
' u

B
'

(b)

         yA
+

 2.4
 4.9
 10.9  
 20.7  
 42.6
 97.3
 219
 401

2 4005 10 50 100 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(yA+yB)
+ 

/ 2

u
A

 u
B

  /
  
u

A
' u

B
'

2

(a)

         r y
+

  2.5  
  6.1   
 12.2  
 24.4  
 36.6
 60.9
 122
 243
 365

800

13



2
© 2024 The Japan Society of Mechanical Engineers[DOI: 10.1299/jfst.2024jfst0028]

Ichimiya and Nakamura, Journal of Fluid Science and Technology, Vol.19, No.3 (2024)

 

(2) When both positions are within the logarithmic region or defect region, the velocity difference is made between 

similar fluctuating velocities. Hence, the probability density function distribution shape is symmetrical with respect to 

positive and negative values, close to the Gaussian distribution. 

(3) The fluctuating vorticity decreases monotonically as it moves away from the wall, regardless of the spatial 

separation. 

(4) The structure function increases as the separation increases. 

(5) Away from the wall, the length over which the correlation is maintained increases, resulting in a large eddy.  
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