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Abstract
Probabilistic tsunami inundation assessment ordinarily requires many inundation simulations that consider various

uncertainties; thus, the computational cost is very high. In recent years, active research has been conducted to reduce the

computational cost. In this study, the number of random tsunami sources was reduced to 20% of the original number by

applying proper orthogonal decomposition (POD) to tsunami inundation depth distributions obtained from random tsunami

sources. Additionally, the failure degree of seawalls was stochastically assessed, and its impact was incorporated into the

evaluation model for tsunami inundation hazards because this factor has a significant impact on the tsunami inundation

depth assessment for land areas. Although the randomness of the slip distribution in tsunami sources has been studied

extensively in the past, the idea of simultaneously modelling the failure degree of seawalls is a novel feature of this study.

Finally, tsunami inundation distribution maps were developed to represent the probability of occurrence of different

inundation depths for the next 50 years and 10 years by using a number of tsunami inundation distributions that consider

the randomness of the tsunami sources and the failure probability of the seawalls.

Keywords Probabilistic tsunami hazard assessment � Inundation simulation � Proper orthogonal decomposition �
Gaussian process regression � Failure degree of seawall

1 Introduction

Probabilistic tsunami hazard assessment (PTHA) is an

important concept in dealing with tsunami hazards and

must consider factors such as inundation depth and

velocity, which have large uncertainties. PTHAs have

made remarkable progress in the past few decades, and

particularly in recent years, an increasing number of study

cases of probabilistic tsunami inundation assessment have

been conducted on land (e.g., Gonźalez et al. 2009; Mueller

et al. 2014; Lorito et al. 2015; Goda and Song 2016; Park

and Cox 2016; Fukutani et al. 2021; Davies et al. 2022).

Probabilistic tsunami inundation assessment on land

requires many inundation simulations that consider various

uncertainties; thus, the computational cost is much higher

than that for offshore evaluations. In recent years, many

methods have been proposed to reduce the cost of tsunami

simulations. Lorito et al. (2015) and Volpe et al. (2019)

applied a two-stage filtering procedure to select a reduced

set of sources and calculate nonlinear probabilistic inun-

dation maps. They proposed a unique and effective method

to evaluate the probabilistic tsunami inundation depth.

Rohmer et al. (2018) proposed a Bayesian procedure to

infer the probability distribution of the source parameters

of an earthquake to overcome the high computation time of

the numerical simulator. Sepúlveda et al. (2017) used the

stochastic reduced-order model (SROM), which enables

the selection and weighting of a subset of random scenar-

ios. They suggested that the proposed method provided a

more efficient representation of tsunami variability than

that derived from Monte Carlo sampling. Williamson et al.

(2020) proposed sampling techniques to adequately sample

the tails of the distribution and properly reweight the
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probability assigned to the resulting realizations and by

grouping the realizations into a small number of clusters

that will give similar inundation patterns in the region of

interest.

In recent years, there has also been active research on

methods to reduce computational costs for probabilistic

tsunami hazard assessment by constructing an emulator

that uses a surrogate model to approximate a deterministic

response by a physical model (e.g., Sarri et al. 2012; Sraj

et al. 2014; Behrens and Dias 2015; de Baar and Roberts

2017; Guillas et al. 2018; Denamiel et al. 2019; Gopinathan

et al. 2020, 2021; Snelling et al. 2020; Ehara and Guillas

2021; Fukutani et al. 2021; Giles et al. 2021; Salmanidou

et al. 2021; Tozato et al. 2022). de Baar and Roberts (2017)

used multifidelity sparse grid interpolation to propagate the

uncertainty in the shape of the incoming wave. They pro-

posed a method to combine results from a small number of

accurate high-fidelity simulations with a large number of

less accurate low-fidelity simulations. Guillas et al. (2018)

developed a functional emulator that efficiently and par-

simoniously approximates tsunami wave forms, making

use of functional principal component analysis (FPCA).

Giles et al. (2021) approximated functionally complex and

computationally expensive high-resolution tsunami simu-

lations with a simple and inexpensive statistical Gaussian

process emulator (GPE). Salmanidou et al. (2021) used the

efficient mutual information for computer experiments

(MICE) by Beck and Guillas (2016) for construction of a

GPE of the tsunami model. Gopinathan et al. (2020, 2021)

also created a GPE of the tsunami model. To reduce the

computational burden, they used a localized nonuniform

unstructured mesh. Ehara and Guillas (2021) presented the

multilevel adaptive sequential design of computer experi-

ments (MLASCE) in the framework of GPE to model

tsunami risk. They succeeded in efficiently allocating

limited computational resources over simulations of dif-

ferent levels of fidelity. However, none of these approaches

have been applied to wide two-dimensional tsunami runup

simulations that target land inundation. Tozato et al. (2022)

and Fukutani et al. (2021) achieved a significant reduction

in the number of required tsunami simulations for proba-

bilistic tsunami inundation assessment by extracting spatial

correlations of inundation depth distribution with proper

orthogonal decomposition (POD).

When considering the hazard assessment of tsunami

inundation depths on land, the treatment of coastal seawalls

is not straightforward because the inundation depth and its

distribution due to runup tsunamis change dramatically

depending on whether the seawalls are destroyed. If they

are destroyed, the inundation situation will also change

depending on the extent of seawall failure. In the 2011

Tohoku tsunami, the tremendous tsunami wave force col-

lapsed and destroyed many of the seawalls along the

Pacific coast of the Tohoku region (e.g., Kato et al. 2012;

Mase et al. 2013; Yeh et al. 2013). In Japan, it is common

to assume that seawalls are destroyed after a tsunami

overtops them when the maximum class of tsunamis is

assessed, as in the case of drawing hazard maps that are

intended to provide information for the evacuation of res-

idents. Thus, when conducting PTHA that considers vari-

ous types of uncertainties for tsunami hazards, it is

important to evaluate the uncertainty of seawall failure in

the event of a large earthquake and tsunami by setting a

failure probability for the seawalls. This perspective is very

important when considering tsunami hazard assessment in

areas where seawalls have been installed. However, there

have been no studies in which PTHA has been conducted

by incorporating the failure probability of seawalls.

This study proposes a method to improve the efficiency

of probabilistic tsunami inundation assessment by decom-

posing the tsunami inundation distribution using POD,

considering the randomness of the tsunami sources and the

uncertainty of the seawall height in the event of a large

earthquake and tsunami, which has a particularly substan-

tial impact on the tsunami inundation depth distribution.

Based on the methods of Tozato et al. (2022) and Fukutani

et al. (2021), a new probabilistic evaluation method is

proposed in the present study that additionally considers

the uncertainty of random tsunami sources and seawall

height.

The remainder of this manuscript is organized as fol-

lows: an overview of the proposed methodology and a

flowchart of this study are presented in Sect. 2. Section 3.1

describes the random tsunami sources and tsunami

numerical simulation process. POD for the tsunami inun-

dation depth distribution is introduced in Sect. 3.2. Sec-

tion 3.3 presents Monte Carlo sample generation using

tsunami inundation modes. The number of tsunami sources

to be evaluated in PTHA is considered in Sect. 3.4. Sec-

tion 4.1 describes the seawall setting for tsunami numerical

simulations. Tsunami inundation distributions using inun-

dation modes considering random tsunami sources and the

seawall failure probability are examined in Sect. 4.2.

Section 4.3 presents the results and discussion. The prob-

abilistic tsunami inundation assessment is described in

Sects. 5.1 and 5.2. Finally, the study concludes in Sect. 6.

2 Flowchart of the probabilistic tsunami
inundation assessment method

Figure 1 shows a flowchart of the probabilistic tsunami

inundation assessment method proposed in this study. The

numbers within the two lines in Fig. 1 represent the section

numbers.
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Initially, N tsunami sources are used at each moment

magnitude (hereafter Mw) in accordance with Goda et al.

(2016), which are randomly placed slip distributions of

megathrust earthquakes, and the corresponding tsunami

inundation depth distribution is obtained for a target area

by solving nonlinear shallow water equations. To examine

whether the number of assumed tsunami sources can be

reduced when considering these many distributions of

tsunami inundation depths, singular value decomposition

(SVD) derived from POD is applied to the inundation
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Fig. 1 Flowchart of the probabilistic tsunami inundation assessment method. The numbers within the two lines represent the section numbers
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distribution obtained by reducing the number of tsunami

sources; many inundation distributions are regenerated by

applying random numbers to the right-singular vector W;

then, the statistics of the generated inundation distribution

are compared with those of the original distributions. The

statistical preconditioning method is applied to generate the

random right-singular vector.

Next, M tsunami sources are selected that can accurately

reproduce the original inundation depth distribution, and

then the inundation distribution that considers the uncer-

tainty of seawall failure is evaluated. First, the inundation

distributions with no artificial structures and the inundation

distribution assuming multiple heights of seawalls are

simulated by nonlinear shallow water equations. To obtain

pseudo inundation depth distributions by mode decompo-

sition and mode coupling of the inundation depth distri-

butions as implemented above, a failure probability of

seawalls is introduced, and the coefficients are estimated by

Gaussian process regression (GPR). Then, a Brownian

passage time (BPT) distribution with nonstationary occur-

rence probability is applied for the assumed megathrust

earthquakes, which is used to determine whether an

earthquake can occur every year; then, based on the

Gutenberg-Richter law, the Mw of any earthquake that will

occur is predicted. Monte Carlo simulations are performed

to repeat this process, and finally, the evaluation results of

the probability distribution of tsunami inundation depths

greater than 1.0 m are presented for the next 50 years and

for the next 10 years.

3 Investigating a reduction in the number
of assumed tsunami sources using
inundation distribution modes

This section examines, through the results of mode

decomposition and coupling, whether the number of

assumed tsunami sources can be reduced when considering

the areal distribution of many inundation depths obtained

from the assumed tsunami sources.

3.1 Random tsunami sources and tsunami
numerical simulations

Initially, the present study employed the random source

model by Goda et al. (2020) to obtain random slip distri-

butions on the earthquake fault for the tsunami source

region of the Nankai Trough megathrust earthquake pub-

lished by the Central Disaster Management Council of the

Japanese Cabinet Office (2013). The study by De Risi and

Goda (2016) discussed a sufficient number of random

earthquake faults based on estimated tsunami wave height

as a function of the number of tsunami simulations and

indicated that the 50th percentile curves are stable after 100

numerical simulations for all the considered magnitude

values. The present study followed their study and gener-

ated 100 tsunami sources with random slip distributions at

each Mw (9.0, 8.8, 8.6, 8.4, 8.2, and 8.0) for a total of 600

earthquake faults.

Figure 2 shows the domains of tsunami numerical sim-

ulations for the case analysis targeting a town in Japan. The

town faces the Pacific Ocean side of the Japanese islands

where the Nankai Trough megathrust earthquake is located

and is thus considered a town with high tsunami risk.

Figure 2c shows the target area for the probabilistic tsu-

nami inundation assessment. A river flows through the

centre of the town, and there are hills with elevations of 5

to 10 m from the coastal area in the north to the inland area

and mountains with elevations exceeding 150 m in the

south. Tsunamis from the coast mainly flow upstream from

the rivers in the centre of the town. Table 1 shows the

numerical simulation conditions. With the initial water

level as input data evaluated using the theory of Okada

(1985), tsunami numerical simulations were performed via

the continuity equation and nonlinear shallow water

equations with grid spacings of 810 m–270 m–90 m–

30 m–10 m. The time interval for 810 m is set to 1.2 s, and

then the interval is divided into thirds as the mesh becomes

finer. The spatial grids and the time interval were set up to

satisfy the Courant–Friedrichs–Lewy (CFL) condition. The

tide level in the coastal area of the town was set at ? T.P.

0.92 m, which is the mean monthly highest water level

around the area. T.P. is the abbreviation for Tokyo Peil,

which is the mean sea level in Tokyo Bay. The topographic

and Manning coefficient data published by the Central

Disaster Management Council of the Japanese Cabinet

Office (2013) were used in numerical simulations, and

tsunami numerical simulations were performed for the first

4 h after earthquake generation so that the maximum tsu-

nami inundation depth could be properly evaluated while

considering the effects of tsunami reflection and amplifi-

cation. With random tsunami sources and tsunami numer-

ical simulations, 100 inundation depth distributions at each

earthquake Mw were obtained for the target area.

3.2 Tsunami inundation modes

The inundation depth matrix at each mesh point i calcu-

lated by the nonlinear shallow water equations was defined

as x ¼ xi
Tði ¼ 1; . . .; IÞ. In this study, the finest area for

which the tsunami inundation depth was simulated is a

10 m mesh, which is 200 � 250 in size; thus, I = 50,000.

The following inundation data matrix X is generated con-

sidering the randomness of the slip distribution of tsunami

sources for each analysis case ðj ¼ 1; . . .; JÞ. The numbers
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Domain 1 (810m)

Domain 2 (270m)

Domain 3 (90m)

Domain 4 (30m)

Domain 3 (90m)

Domain 5 (10m)

Domain 5 (10m)

(a)

(b) (c)

The Pacific Ocean

150 km

15 km 500 m

Elevation (m
)

Elevation (m
)

Elevation (m
)

A
B

The Pacific Ocean

Lowland
area

Fig. 2 Five tsunami simulation domains for a town in Japan facing

the Pacific Ocean. (a) Domain 1 (810 m mesh)–Domain 2 (270 m

mesh)–Domain 3 (90 m mesh), (b) Domain 3 (90 m mesh)–Domain 4

(30 m mesh)–Domain 5 (10 m mesh). (c) Domain 5 (10 m mesh).

The black and colour shading in the maps indicates topography (m)

Table 1 Calculation conditions for the tsunami numerical simulation

Calculation condition

Governing equation 2D nonlinear shallow water equations (TUNAMI N2 model) (Goto and Ogawa 1982; UNESCO & IUGG/IOC Time

Project 1997)

Numerical integration

method

Staggered leap-frog finite-difference method

Initial condition Initial water level calculated from the earthquake fault parameters using the theory of Okada (1985)

Boundary condition Radiation boundary condition

Coordination system Cartesian coordinate system

Stability criterion Courant–Friedrichs–Lewy (CFL) condition

Tidal setting T.P. ? 0.92 m

Mesh size 810 m (Domain 1)–270 m (Domain 2)–90 m (Domain 3)–30 m (Domain 4)–10 m (Domain 5)

Calculation time 4 h
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of random tsunami sources for each Mw are 100; thus, J =

100:

X ¼ xij ¼
x11 . . . x1J
. . . . . . . . .
xI1 . . . xIJ

0
@

1
A ð1Þ

where, X is an I � J matrix and is often a nonsquare

matrix. Before implementing mode decomposition, the

data matrix X is standardized into a matrix X0 using the

following equation.

X0 ¼
X� lGH

rG
ð2Þ

where H is an I � J matrix whose elements are all one, and

lG and rG are the mean and standard deviation of the J

case, respectively. Then, X0 is decomposed as follows:

X0 ¼ URVT

¼
j . . . j
u1 . . . uJ
j . . . j

0
@

1
A

k1 . . . 0

..

. . .
. ..

.

0 . . . kJ

0
B@

1
CA

� v1 �
..
. ..

. ..
.

� vJ �

0
B@

1
CA

T

ð3Þ

where, U is an I � J orthonormal matrix containing the

left-singular vectors uj, R is an J � J pseudodiagonal and

semipositive definite matrix with diagonal entries con-

taining the singular value kj, and V is an J � J ortmal

matrix containing the right-singular vector vj. Figure 3

shows the spatial distribution of the left-singular vectors uj

(j = 1, …, 6) for the Mw 9.0 case only, while 100 mode

distributions corresponding to the numbers of tsunami

inundation simulations can be identified. The distribution

of the first mode (Mode 1) shows that coastal areas and

lowland areas around rivers have positive values, while

other areas have negative values. Thus, in Mode 1, the

inundation depth is positively correlated between the

coastal areas and the lowland areas around rivers, as well

as between the other areas. The distribution of the second

mode (Mode 2) shows that the values are negative in

coastal areas and positive in the other areas; thus, there is

an inverse correlation between the coastal areas and other

areas. The spatial distributions from the third mode (Mode

3) onwards are complex, with sparsely distributed positive

and negative values.

3.3 Monte Carlo sample generation using
tsunami inundation modes

The left-singular vectors U have information on the spatial

correlation of each inundation mode. Retaining the left-

singular vector U and singular vectors R and replacing the

right-singular vector V with another J-dimensional vector

allows a new sample of tsunami inundation distributions to

be generated while keeping information on the spatial

correlation of the original inundation depths. Defining the

number of trials as N and the matrix Y0 obtained by

replacing the J 9 J matrix V in Eq. 3 with the N � J

matrix W yields

(a) (b) (c)

(d) (e) (f)

Mode 1 ( ) Mode 2 ( ) Mode 3 ( )

Mode 4 ( ) Mode 5 ( ) Mode 6 ( )

Fig. 3 Spatial distributions of the left-singular vectors uj (j = 1, …, 6)

for only the Mw 9.0 case corresponding to each mode. Positive values

are shown in red, and negative values are shown in blue, which means

positive correlations of the inundation depth between meshes of the

same sign and a negative correlation of the inundation depth between

meshes of different signs
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Y0 ¼ URWT ð4Þ

W ¼
w1

..

.

wN

0
B@

1
CA ¼

w11 � � � w1J

..

. . .
. ..

.

wN1 � � � wNJ

0
B@

1
CA ð5Þ

Here, the condition that the matrix W must satisfy in

relation to the covariance matrix is given in the following

equation (Nojima and Kuse 2018):

WTW

N
¼ E

J
ð6Þ

E is a J 9 J identity matrix. The matrix W satisfying Eq. 6

can be generated by statistical preconditioning to obtain

many samples of the inundation distribution. Statistical

preconditioning is a method of obtaining a given covari-

ance matrix with a small number of samples by systematic

sampling using the periodicity and orthogonality of the

cosine function. Specifically, the matrix W is generated

using the following equation (Yamazaki and Shinozuka

1990):

W ¼ wij ¼
ffiffiffiffiffi
2

Nf

s XNf

m¼1

cos ðxkiþ wkÞ=
ffiffiffi
J

p

i ¼ 1; . . .N; j ¼ 1; . . .; Jð Þ
ð7Þ

N ¼ 4JNf ð8Þ

xk ¼
2pk
N

k ¼ m� 1ð ÞJ þ jð Þ ð9Þ

where, Nf = the number of cosines to be added, wk = a

random phase angle uniformly distributed between 0 and

2p, and xk = the kth circular frequency. Finally, the pseudo

tsunami inundation distribution Y is obtained using the

mean value lG and standard deviation rG used in the

standardization:

Y ¼ lGH
0 þ rGY0 ð10Þ

where, H0 is an I � N matrix whose elements are all one.

Applying the above procedure to the tsunami inundation

distributions obtained from 50, 20, and 10 tsunami sources

and comparing the statistics of the generated inundation

distribution samples with those obtained from the original

100 tsunami sources provides the information needed to

reduce the number of tsunami sources to be considered in

the target area. Figure 4 shows the mean tsunami inunda-

tion depth distribution of the original and Monte Carlo

samples for earthquake magnitudes Mw 9.0 and Mw 8.4,

assuming Nf ¼ 16 in the statistical preconditioning. The

original means (Fig. 4(a) and (a’)) are the averages of 100

analyses, and the sample means (Fig. 4(b, c, d) and 4(b’, c’,

d’)) are the averages of 6,400 analysed values from Eq. 8.

In the Mw 9.0 results, the results with 50 tsunami sources

(N = 50) are slightly overestimated overall, and the results

with 10 tsunami sources (N = 10) are slightly underesti-

mated overall. Figure 5 shows the results of the two-sam-

ple t test (p values) based on the null hypothesis that the

frequency distribution of the original inundation depth and

that of the inundation depth generated via POD are equal in

each mesh. It can be observed that the p values are small at

many mesh points for N = 50 and N = 10, and the null

hypothesis can thus be rejected. However, the p values are

large overall, and the null hypothesis cannot be rejected for

N = 20, indicating that the frequency distribution of the

generated inundation depth for N = 20 is similar to that of

the original inundation depth. In contrast, the results for

Mw 8.4 are not significantly different among the 50, 20,

and 10 tsunami sources, and all of them obtain an inun-

dation distribution that is close to the original mean.

Figure 6 shows the frequency distribution of inundation

depths and the mean, standard deviation, and maximum

values at coastal point A (Matsubara Beach). Figure 7

shows inland low-lying point B. The locations of points A

and B are shown in Fig. 2(c). The objective here is to

construct a model that can reproduce the inundation depth

distribution in the target area and the shape of the original

probability distribution of the inundation depth at each

point, rather than to precisely assess representative values

such as the mean, standard deviation and maximum value

at each point. However, the inundation depth distributions

could be reproduced relatively well in all cases, represen-

tative values such as the mean, standard deviation and

maximum value were identified for only two points,

namely, coastal point A and inland low-lying point B, and

cases that yielded values close to these representative

values were adopted for analysis. It should be noted that

the representative values at each point may be subject to

errors that occur with the acquisition of Monte Carlo

samples. Future research should model these errors and

correct the POD results. At coastal point A, the results for

N = 50, 20, and 10 all reproduce the mean, standard

deviation, and maximum values of the original well.

However, the original shows that the maximum value

decreases as Mw also decreases when considering the

maximum value, but this trend is captured only in the

results for N = 20. The same is true for point B. The basic

trend is well reproduced. These results illustrate that the

original results could be reproduced well when pseudo

inundation distributions are generated, even with the

number of tsunami sources N = 20.

3.4 Target tsunami sources for PTHA

The previous section confirmed that the original results can

be reproduced even if the number of tsunami sources is 20,

which was equivalent to 1/5 of the original number of
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tsunami sources. The results of the analysis for the 20 fixed

predetermined tsunami sources were shown, but the results

are expected to vary depending on which 20 sources are

selected. The effects of randomly selecting these 20 sour-

ces are discussed below.

Although the number of all combinations of 20 sources

selected from 100 sources is 100C20, only 1,000 trials of

selecting 20 sources at random are performed, and the

results are examined. Figure 8 shows the mean, standard

deviation, and maximum results at points A (Fig. 8(a, b))

and B (Fig. 8(c, d)) for Mw 9.0 and Mw 8.4. The dots are

the results of 1,000 trials, and the solid line is the original

value. All 1,000 trials are found to vary around the original

value, but the variation in the mean and standard deviation

is relatively small, while the maximum value varies rela-

tively widely. The results for Mw 8.4, the maximum value

at point B, show that the original is close to the upper limit

of variation for the trials, suggesting that the simulation

results of this model are likely to be evaluated lower than

the original inundation depth at relatively low inundation

depths. The results for Mw 8.2 and Mw 8.0 at point B

showed a similar trend.

The same analysis was performed for all Mw cases, and

20 sources that could generate values close to the mean and

standard deviation of the original data for each Mw were

selected. In other words, the computational cost was

reduced to 20% of that in the case of the original 100

tsunami sources. This was achieved because the spatial

correlation of the inundation depth distribution in the target

area was successfully extracted via POD and SVD. If a

single tsunami source (an earthquake) were assumed and

nonlinear long wave theory were used to calculate 4 h of

land runup, it would take more than one day on a single

CPU with the current typical approach. Therefore, a cal-

culation involving 600 cases (100 cases/Mw 9 6 Mw), as

in this study, would require 600 days. Naturally, the

M
w

 9
.0

Original means (N = 100) Sample means (N = 50) Sample means (N = 20) Sample means (N = 10)
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Fig. 4 Comparison of tsunami inundation depth distributions between

the original means and the Monte Carlo sample means. The upper

panel shows the results for Mw 9.0, and the bottom panel shows the

results for Mw 8.4. (a) and (a’) indicate the original means derived

from the tsunami simulation results using 100 random tsunami

sources, (b) and (b’) the Monte Carlo sample means using 50 tsunami

sources (N = 50), (c) and (c’) using 20 tsunami sources (N = 20), and

(d) and (d’) using 10 tsunami sources (N = 10)
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Fig. 5 Results of the two-sample t test (ip values) for (a) N = 50, (b) N = 20 and (c) N = 10
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computation time could be reduced if multiple CPUs were

used to perform parallel computations. POD and SVD are

methods that apply Eqs. 3 and 4, respectively, to the tsu-

nami numerical simulation results, which could be per-

formed instantaneously, as long as calculation results are

available. In this case, tsunami numerical simulations must

still be performed, but if the number of original tsunami

sources assumed could be reduced to 20% of the original

assumption, the computational cost of the numerical sim-

ulations could be correspondingly reduced to 20% of the

original cost.

4 Probabilistic tsunami inundation
assessment considering random slip
and seawall failure

A probabilistic tsunami inundation assessment using the 20

tsunami sources selected was performed in Sect. 3, con-

sidering the randomness of the slip distribution of the

tsunami sources as well as the uncertainty of the seawall

failure, which is very important for the assessment of tsu-

nami inundation depths on land.

4.1 Seawall setting for tsunami numerical
simulations

The existence of 10 m high seawalls on the coast of the

target area is assumed, and the uncertainty of seawall

failure is considered. The previous section described tsu-

nami numerical simulations performed using simple

ground elevation data without considering any artificial

structures, such as seawalls. This section additionally

simulates the inundation distribution on land using non-

linear shallow water equations, assuming 10 m and 5 m

high seawalls. That is, three cases of tsunami numerical

simulations for a tsunami source are investigated: a 10 m

seawall, a 5 m seawall and no seawall. Seawalls are simply

set by modifying the elevation data of the coastal area.

Figure 9 shows the tsunami numerical simulation results

with and without setting seawalls. The inundation area

behind the seawalls slightly decreases, and the inundation
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Fig. 6 Comparison of tsunami inundation depth at coastal point A in

Fig. 2(c) between the originals and the Monte Carlo samples. The

upper histograms show the tsunami inundation depth frequencies

derived from Mw 9.0 tsunami sources for (a) the originals (N = 100),

(b) samples (N = 50), (c) samples (N = 20), and (d) samples

(N = 10), and the bottom histograms show the tsunami inundation

depth frequencies derived from Mw 8.4 tsunami sources for (a’) the
originals (N = 100), (b’) samples (N = 50), (c’) samples (N = 20),

and (d’) samples (N = 10). The bar charts below show (e) means,

(f) standard deviation and (g) maximum tsunami inundation depth for

each earthquake magnitude
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depth clearly decreases as the seawalls are installed and

their height increases. The results for the 10 m seawall in

Fig. 9(c) show that the maximum inundation depth along

the river as well as behind the seawall is reduced since the

tsunami flow into the river is reduced, which clearly indi-

cates that the influence of the presence of seawalls cannot

be ignored in assessing the inundation area of tsunamis. It

should be noted, however, that the effect of seawalls is

significant for tsunamis of smaller magnitude but limited

for tsunamis of larger magnitude. This means that tsunamis

of smaller magnitude are more likely to be obstructed by

coastal seawalls, while tsunamis of larger magnitude will

overtop them, making their presence of little relevance.

There are 20 cases of random tsunami sources for each

Mw and 3 cases of seawall height; thus, it is necessary to

calculate 60 cases for each Mw. As this needs to be cal-

culated for all Mw values, it is necessary to calculate a total

of 360 cases. If the number of assumed tsunami sources in

each Mw is 100 cases, then a total of 1,800 cases must be

calculated. Thus, the computational cost can be greatly

reduced by reducing the number of tsunami sources by a

factor of five.

4.2 Generating tsunami inundation distributions
considering random slip and seawall failure

The inundation depth distribution is assessed considering

the randomness of tsunami sources and the uncertainty of

seawall failure. From Eq. 3, the column vector xj of

inundation depths for a case j can be transformed as fol-

lows (e.g., Fukutani et al. 2021; Tozato et al. 2022):

xj ¼
XN

k¼1
uk kkv

T
kj

� �
¼
XN

k¼1
kkvjk
� �

uk

¼
XN

k¼1
ajk
� �

uk ð11Þ

where N is the number of all modes and ajk is expressed as

the coefficient of the jth case for mode k multiplied by the

singular value and the right-singular vector. Equation 11

demonstrates that the column vector xj of the inundation

depth can be represented as a linear sum of the coefficients

in each mode multiplied by the left-singular vector. uk is

retained as computed by the SVD in Eq. 3 using the 60

numerical simulation results at each Mw. The coefficients

ajk are estimated for the parameters (random slip and

seawall height) using the Bayesian estimation method with

GPR. Using Bayesian inference, the predictive posterior
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Fig. 7 Comparison of tsunami inundation depth at point B in Fig. 2(c) between the originals and the Monte Carlo samples. The objects shown in

the histograms and the bar charts are the same as those in Fig. 5
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distribution f�jf that follows the prediction f� given the

training function f is

pðf�jf; X�; XÞ ¼ N ðf�jm�; V�Þ ð12Þ

m� ¼ K x; x�ð ÞTK x; xð Þ�1f ð13Þ

V� ¼ K x�; x�ð Þ � K x; x�ð ÞTK x; xð Þ�1K x; x�ð Þ ð14Þ

where, m� is the expected value and V� is the covariance

function of the posterior distribution. Kðx; xÞ is a matrix of

the Gaussian kernel. The distribution values f� can be

generated from the joint posterior distribution by evaluat-

ing the mean and covariance function from Eqs. 12, 13, 14

and generating the samples accordingly. The details of the

derivation of GPR have been provided in many past studies

(e.g., Kuss 2006; Rasmussen and Williams 2006).

The coefficients ajk corresponding to each mode were

determined by using random numbers following the prob-

ability distribution of the input parameters (random slip

and seawall height). First, the uncertainty of seawall failure

is assessed by assigning a probability density to the height

of the seawalls, meaning that the probability density that is

set is the uncertainty of the seawall height, which encom-

passes not only the direct destruction of the seawall due to

wave forces from the tsunami but also the physical

destruction or collapse of the seawalls due to the strong

seismic motion occurring before the tsunami as well as the
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weakening of the seawalls due to land subsidence and a

reduction in the height of the seawalls. Specifically, the

probability density for each 1.0 m of seawall height from

1.0 to 10 m is established, as shown in Fig. 10. A discrete

probability density is established for the seawall height in

this study, but a continuous probability density can also be

established. The setting for a 10 m seawall height means

that the original seawall will not be destroyed and will

remain intact in the event of a megathrust earthquake and

tsunami, while the setting of a 0 m seawall height suggests

that the original seawall is completely destroyed and col-

lapses. In this study, two different probability densities of

seawall height are established to identify differences in the

evaluation results in cases with different probability den-

sity settings for seawall height. Figure 10(a) shows an

equal probability density setting for the height of the sea-

walls, while Fig. 10(b) shows a probability density

weighted at the original 10 m height. Compared to the

former, the latter setting involves a seawall that is less

likely to be destroyed and is more resilient. There are no

clear criteria for the probability density that should be

established for any type of seawall. Thus, this is an issue

for future research.

Random numbers that follow these probability densities

were generated by using the inverse transform method to

determine the height of the seawall in each Monte Carlo

calculation. Together with random numbers corresponding

to random tsunami sources, coefficients ajk were generated
based on the GPR results. Once ajk is determined together

with uk, pseudo tsunami inundation depth distributions can

be randomly generated using the surrogate model repre-

sented by Eq. 11.

4.3 Results and discussion

Figure 11 shows the estimation results for the coefficients

ajk corresponding to Modes 1 to 3. The parameters for ajk,
the random tsunami sources and seawall height were nor-

malized to a minimum value of 0.0 and a maximum value

of 1.0. That is, for the random tsunami sources, the case

with the largest area inundated by the tsunami source for

the target area was set to 1.0, and the case with the smallest

area was set to 0.0. For the seawall height, the 10 m height

of seawalls was set to 1.0, and the 1.0 m height of seawalls

was set to 0.0. The red dots show the coefficients derived

from the 60 numerical tsunami simulations and SVD, and

the coloured surfaces show the regression results using

GPR. The parameters used in GPR were set as kernel

length parameter 1=
ffiffiffi
2

p
, kernel vertical variation parameter

1.0, and noise parameter 0.0001. Noise was set to almost
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Fig. 10 Probability density function for evaluating the uncertainty of seawall height in the event of a megathrust earthquake and tsunami

generation. (a) An equal probability density for the seawall height. (b) A probability density weighted at the original 10 m
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Fig. 11 The coefficients ajk corresponding to (a) Mode 1 to (c) Mode

3. The horizontal axis indicates the standardized parameters for the

random tsunami sources and the seawall height. The red dots denote

the coefficients ajk derived from the tsunami numerical simulations.

The colour surfaces indicate the results of Gaussian process

regression (GPR)
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zero. The coloured surfaces are a reasonably good repre-

sentation of the data obtained from the tsunami numerical

calculations and SVD.

Generating random numbers in the range of 0.0 to 1.0

for the two parameters allows the value of ajk to be esti-

mated based on the regression results from the GPR, and

this value can be substituted it into Eq. 11, allowing any

tsunami inundation depth distribution other than the

numerically obtained tsunami inundation distribution to be

estimated. Figure 12 shows the Monte Carlo samples of

only six generated inundation depth distributions. The

figures show that all of them can represent realistic inun-

dation depth distributions.

5 Probabilistic tsunami inundation
assessment

Finally, a probabilistic tsunami inundation assessment is

performed using many inundation depth distributions

generated by considering the randomness of tsunami

sources and the uncertainty of seawall failure, which was

assessed in the previous section.

5.1 Time-dependent occurrence probability
model

It is necessary to consider the generation probability of the

target earthquake to evaluate probabilistic tsunami inun-

dation depth distributions due to earthquake-induced tsu-

namis. The target of this study, the Nankai Trough

megathrust earthquake, has been considered a characteris-

tic earthquake, and its interval of occurrence has been

specified by the Earthquake Research Committee (2013).

Therefore, the following probabilistic time-dependent

generation model, the BPT distribution, is used as the

probability of occurrence of the Nankai Trough megathrust

earthquake:

P tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2pa2t3

r
exp � t � lð Þ2

2la2t

 !
ð15Þ

where, t is the elapsed time since the last earthquake; l and

a are the first- and second-order parameters of the distri-

bution, respectively; and l is defined as the mean interval

between active years for the earthquake.

The BPT distribution for the Nankai Trough megathrust

earthquake is applied with a mean value l of 88.2 years and

an a value of 0.24 for the variability (Earthquake Research

Committee 2013), and random numbers are generated to

determine whether the earthquake can occur every year.

Then, the Mw of any earthquake predicted to occur is

determined based on the Gutenberg-Richter law (Gutenberg

andRichter 1944).MonteCarlo simulations are performed to

repeat this process, and the results of the probability distri-

bution of tsunami inundation depths greater than 1.0 m are

presented for the next 50 years and for the next 10 years.

5.2 Results and discussion

Figure 13 shows the results of the evaluation for the

probability of the inundation depth distribution being

Tsunam
i inundation depth (m

)

Fig. 12 The Monte Carlo samples of only six generated inundation depth distributions using Eq. 11 for the target area
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greater than 1.0 m in the next 50 years (Fig. 13(a) and (b))

and the next 10 years (Fig. 13(c) and (d)), setting the

probability density of the seawall height shown in Fig. 10.

The figure on the left is the equal probability density setting

shown in Fig. 10(a), and the figure on the right is the

probability density setting weighted at the original 10 m

shown in Fig. 10(b). Not surprisingly, the results of the

assessment covering the next 50 years show a wider overall

inundation distribution and a higher probability of tsunami

inundation than the results of the next 10 years. The results

for the next 50 years show that there is a nearly 100%

probability that the entire coastal area will be at least

1.0 m, while the results for the next 10 years show a

probability of 40% at best. The mean value of the BPT

distribution for the Nankai Trough earthquakes is

88.2 years, and as of 2022, 76 years have passed since the

latest earthquake, the 1946 Showa Nankai earthquake (e.g.,

Tanioka and Satake 2001); thus, the next Nankai Trough

earthquake is imminent from a probabilistic point of view.

Therefore, the probability of inundation is assessed to be

several tens of percent over a wide area in the target area

even if only for a short period of time, such as the next

10 years. Additionally, the figure clearly shows that the

inundated area due to tsunamis is reduced when we set the

seawalls with the resilience setting shown in Fig. 10(b). In

lowland areas along the river and behind seawalls, the

inundation probability decreased by approximately

20–30%. Therefore, these findings show that the tsunami

inundation depth distribution can be probabilistically

assessed considering the randomness of the tsunami sour-

ces and the uncertainty of seawall failure by using the

proposed method.

6 Conclusion

This study proposes a PTHA method considering the ran-

domness of the slip distribution of tsunami sources and the

uncertainty of the seawall height during earthquake and

tsunami events, which have a significant impact on the

uncertainty of the evaluation of tsunami inundation depth.

There are two main innovations resulting from this study.

First, the computational cost for PTHA is reduced. By

applying the POD technique to tsunami inundation depth

distributions obtained from tsunami sources with random

slip distributions, the number of tsunami sources to be

considered was successfully reduced to 20% of the original

number. Second, this is the first study to carry out a PTHA

that considers the uncertainties in seawall height. When

assessing tsunami inundation depths on land, the failure

degree of seawalls has a significant impact, and this impact

is considered in the present study by treating the failure

degree of seawalls probabilistically and incorporating it

into the tsunami inundation assessment model. Although

Fig. 13 Tsunami inundation

probability distribution for

inundation to a depth of 1.0 m

or more (a) in the next 50 years

with the failure degree

probability of the seawall in

Fig. 10(a), (b) in the next

50 years with the failure degree

probability of the seawall in

Fig. 10(b), (c) in the next

10 years with the failure degree

probability of the seawall in

Fig. 10(a), and (d) in the next

10 years with the failure degree

probability of the seawall in

Fig. 10(b)
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the randomness of earthquake slip distributions has been

studied extensively in the past in the research field of

PTHA, there has been no assessment model that can

simultaneously consider the failure degree of seawalls.

Finally, the present study successfully generated an inun-

dation distribution map that represents the probability of

the occurrence of inundation depths within the next

10 years and 50 years, considering the randomness of the

earthquake slip distributions and the uncertainty of the

seawall height at the time of the earthquake and tsunami.

Using this methodology, probabilistic hazard maps can be

efficiently produced in each region, which is the first step

for tsunami disaster countermeasures and may help to

promote various countermeasures.

Finally, the future research tasks are described. This

study assessed the uncertainty of seawall height assuming

only two cases, but in actual application, the probability

density of seawall height should be set according to the

situation of the seawalls. Currently, there are no clear cri-

teria for what probability density should be set for any type

of seawall; thus, this is an issue for the future. In addition,

there are many parameters that affect tsunami inundation

depths on land during the generation, propagation, and

runup phases of a tsunami. In the tsunami generation pro-

cess; the location and geometry of the earthquake fault

(fault parameters); the starting point, propagation velocity

and rise time of the fault rupture; and the calculation

method of the initial water level affect the simulation

results of tsunami hazards. Fault parameters that determine

the location and geometry of an earthquake fault include

the slip amount, fault depth, slip angle (rake), strike, and

dip angle; thus, spatiotemporal changes in all these

parameters affect the results. In the tsunami propagation

process, governing equations for the tsunami phenomena,

tide level, and bottom topography data affect the results. In

the tsunami runup process, setting artificial structures

(buildings and seawalls) and bottom roughness data affect

the results. However, the present study dealt only will

uncertainties arising from the randomness of the earth-

quake slip distributions during the tsunami generation

phase and the uncertainty of seawall heights in the tsunami

runup process; future analyses should consider the vari-

abilities in many other parameters. Since POD and GPR are

multivariate applicable, future analyses can consider the

variabilities in several other parameters involved in tsu-

nami inundation hazard assessment.
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