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Abstract: This study, we discusses the topological type of nonautonomous systems with peri-

odic solutions when the time variable t increases negatively. When linear approximation holds

near a fixed point of the Poincaré map, we confirm that the bifurcation points where the fixed

point becomes nonhyperbolic are invariant regardless of the time direction however, the sta-

bility of the fixed point is changed. Consequently, we show that two-dimensional bifurcation

diagrams obtained by the brute-force method give different results for positive and reversal-

time variable systems; however, the bifurcation curves are identical. The inverted time variable

system is useful for visualizing the completely unstable fixed point, because the repeller can

be observed as an attractor. Furthermore, in certain models, chaotic attractors with a wide

parameter range exist in reversal time variable systems.
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1. Introduction
Discovering nonlinear systems with chaotic attractors is a significant achievements in the development

of chaos theory. Various types of chaos have been discovered, such as the Duffing-Rayleigh [1] equation

as a differential equation for nonautonomous systems and the Lorenz [2] and Rossler [3] equations

as autonomous systems. Distinguishing between such nonlinear systems is necessary to discuss the

essential components of chaos and its applications. Numerical analysis of the created model is a basic

technique in studying such systems. When performing numerical analysis of differential equations, a

time variable, t, is often chosen as an independent variable. This variable is usually a non-negative,

but it becomes a time reversal if negative. Here, we define the case where the time variable is positive

as a forward time system and the system where the time variable is negative as a reversal-time system.

In previous research on reversal-time, Roberts et al. [4] and Lamb et al. [5] summarized their

research on systems with time-reversal symmetry. Hoover et al. [6] indicated that the symmetry of
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the Lyapunov exponent is broken even in systems with time-reversal symmetry. Huh et al. [7] also

expanded the concept of time-reversal symmetry by creating a loss function that indicates the degree

to which time-reversal symmetry is maintained. Furthermore, Sprott et al. [8] discussed the properties

of the equations corresponding to time reversal for the Lorentz equations. Moreover, Hou et al. [9]

showed that when time reversal occurs, it is topologically inequivalent to a system with positive time

variables, adding that the flow direction is generally not preserved. However, they showed that the

repeller and attractor are chaotic in the limit set where each time variable diverges to infinity.

This study investigates the correspondence between the topilogical types of two systems with dif-

ferent signs of time variables, as discussed by Sprott et al. [8] To achieve this, we first discuss the

case near the fixed point of the Poincaré map. We then discretize these periodic solutions using the

Poincaré map and classify the linear approximation region near the fixed point. From these results,

we discuss the correspondence of topological types between two systems with different signs of time

variables. Next, we define forward time and reversal-time systems for an electric circuit model and

analyze the topological properties of the waveforms through numerical calculations. We then create

bifurcation diagrams for both forward and reversal times, confirming that the contents discussed in

the linear approximated region near the fixed point can be observed.

2. Fixed point and its stability with forward/reversal-time

Let us consider a two-dimensional nonautonomous system:

dx

dt
= f(x, λ) + g(t), (1)

where, x ∈ R2 is a state, f is a C∞ class function, λ ∈ R is a parameter, and g(t) is a periodic

function satisfying g(t) = g(t+ τ) and g(−t) = g(t). By substituting −t for t, we have the following:

dx

dt
= −f(x,λ)− g(t). (2)

We can study Eq. (2) to analyze the reversal-time behavior of Eq. (1). If we define the solution

function of Eq. (1) as x(t) = ϕ(t,x, λ), the periodic solution can be expressed as follows:

ϕ(t+ τ,x∗, λ) = ϕ(t,x∗, λ), ∀t ∈ R, (3)

where x∗ is the initial value of the periodic solution, and τ is the period. Equations (1) and (2)

are two-dimensional nonautonomous systems subjected to periodic external forces with period 2π;

therefore, we define the Poincaré map T as follows:

T : R2 → R2;

xk 7→ xk+1 = T (xk) = ϕ(2π(k + 1),xk, λ), (4)

where xk ≡ x(2πk) = ϕ(2πk,x, λ), k = 0, 1, 2, · · · are the discretized state variables.

If one observes a periodic solution for Eq. (1), we obtain

xk+1 = T (xk) (5)

by applying the Poincaré mapping, whose period is 2π. The fixed point of Eq. (1) is also the fixed

point of Eq. (2). Because for Eq. (5), we derive x(k − 1) = T−1(x(k)), i.e., x∗ = T (x∗) = T−1(x∗).

Here, we discuss the topological types of the difference equation by the Poincaré map. For the

subspace obtained by the Poincaré map, the state variables around the fixed point are set as ξk =

(ξk,1, ξk,2). The characteristic multipliers of each eigenvector are set as µ1 and µ2. Table I shows all

topological types of fixed points for Eq. (5). The leading number of the symbol shows the number of

multipliers whose absolute value is bigger than unity. 1D has an unstable manifold whose mapping

direction is preserved, and 1I has an unstable manifold whose mapping direction is flipped for each

iteration. For a more detailed explanation of the topological classification of the fixed point, see

Kawakami [10].
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Table I. Stability of fixed points in Eq. (5).

Symbol condition name stability

0D |µ1| < 1, |µ2| < 1 sink completely stable

1D 0 < µ1 < 1 < µ2 saddle one dimensionally unstable

1I µ1 < −1 < µ2 < 0 saddle one dimensionally unstable

2D |µ1| > 1, |µ2| > 1 source completely unstable

Suppose that both multipliers are real. Then, the local activity about the fixed point is written by

ξk+1,j = µjξk,j , where, ξk,j is an eigenvector correspoinding to the eigenvalue µj , j = 1, 2. An activity

on a subspace ξ is written by ξk+1,j = µ1ξk,j . For the reversal-time, this leads to ξk+1,j = µ−1
1 ξk,j ,

i.e., the stability of the subspace is flipped. If the multipliers are a± ib, where i =
√
−1, a and b are

real numbers. The linearized space about the fixed point can be described as(
ξk+1,1

ξk+1,2

)
=

(
a −b

b a

)(
ξk,1
ξk,2

)
= r

(
cos θ − sin θ

sin θ cos θ

)(
ξk,1
ξk,2

)
,

where, r =
√
a2 + b2 > 0, and θ = arctan(b/a). Thus, we have(

ξk−1,1

ξk−1,2

)
= r−1

(
cos θ sin θ

− sin θ cos θ

)(
ξk,1
ξk,2

)
.

The stability is flipped against r = 1; therefore, 0D in the forward time corresponds to 2D in the

reversal-time. While, 1D and 1I in the forward time are still saddled toward the reversal-time;

however, the stabilities of both eigenspaces are exchanged.

Furthermore, a bifurcation of a periodic solution in Eq. (1) is also the same bifurcation in Eq. (2).

Because, for the period-doubling or the tangent bifurcation, one of the multipliers should be µ = −1

or µ = 1, respectively. The inverse values of them are identical. For the Neimark–Sacker bifurcation,

complex conjugate multipliers are on the unit circle (i.e., e±iθ, where θ ̸= 0 or θ ̸= π), and they are

involutive of each other.

Since the fixed point remains the same regardless of the direction of time, tracking bifurcation

sets for both positive and reversal time is very important to grasp the dynamical properties of the

given system; however, only the forward time dynamics are usually analyzed. This paper provides an

example that shows a wide variety of bifurcation structures for reversal-time dynamics. The structure

deeply affects also forward time dynamic properties.

3. Topological classification of fixed points in a forward time system

and their correspondence with reversal-time system
Here, we discuss topological classifications around fixed points in forward and reversal time. For

simplicity, we discuss the bifurcation phenomena of codimension one.

3.1 Tangent bifurcation of fixed point
This bifurcation is one in which two pairs of fixed points collide and either disappear or are created.

If the tangent bifurcation point is λt, the topological type of the pair of fixed points around the

bifurcation point can be described as follows:{
0D + 1D if µ < 1

∅ if µ > 1.{
1D + 2D if µ < 1

∅ if µ > 1.

(6)

Here, ∅ denotes the disappearance of two pairs of fixed points. µ represents either µ1 or µ2, which

is an arbitrary characteristic multiplier at which bifurcation occurs. The hyperbolicity is lost when

µ = 1, so we will not discuss it here.
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Table II. Stability of fixed points in time-reversed Eq. (5).

Symbol condition name stability

2D |µ1| < 1, |µ2| < 1 source completely unstable

1D 0 < µ2 < 1 < µ1 saddle one dimensionally unstable

1I µ2 < −1 < µ1 < 0 saddle one dimensionally unstable

0D |µ1| > 1, |µ2| > 1 sink completely stable

Consider the case of the above topological type in reversal-time. From the discussion in Chapter 2,

the fixed point changes as µ−1
i ; Table II presents the stability of the fixed point changes, confirming

that the sink and source are swapped. Note that the topological type of the hyperbolic fixed point

does not change, but the stability of the characteristic multiplier is swapped; therefore, the state

before and after bifurcation in Eq. (6) is swapped.{
1D + 2D if µ > 1

∅ if µ < 1.{
0D + 1D if µ > 1

∅ if µ < 1.

This situation means that the nature of the characteristic multipliers is swapped: the bifurcation of

0D + 1D changes to 1D + 2D, and the converse is also true.

3.2 Period doubling bifurcation of fixed point
This bifurcation occurs when one of the characteristic multipliers crosses −1 due to a parameter

change. Since this can occur in various topological types, the patterns of change are also diverse.

Below, we specifically enumerate the topological types around bifurcation points in a 2-dimensional

nonautonomous system: {
1I + 20D

2 if µ > −1

0D if µ < −1{
1I + 22D

2 if µ > −1

2D if µ < −1{
2D + 21D

2 if µ > −1

1I if µ < −1{
0D + 21D

2 if µ > −1

1I if µ < −1.

Here, kD
2, k = 0, 1, 2 denotes a 2-periodic point of topological type D with unstable dimension k.

The coefficient 2 indicates that two periodic points occur. These topological types are interchanged

in the forward-time system (2) in the same way as in the case of tangent bifurcation.

3.3 Neimark–Sacker bifurcation of fixed point
A characteristic multiplier expressed as a ± ib indicates a bifurcation that crosses the unit circle in

the complex plane. The topological type around the bifurcation point is{
2D + ICC if |µ| > 1

0D if |µ| < 1{
2D if |µ| > 1

0D + ICC if |µ| < 1.
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Here, ICC represents an invariant closed curve, representing a torus in a continuous-time response.

The former corresponds to a supercritical Hopf bifurcation at a fixed point, and the latter to a subcrit-

ical Hopf bifurcation. In the reversal-time system, the supercritical and subcritical are interchanged,

as in the case of tangent bifurcation and period-doubling bifurcation.

In this way, the stability of the characteristic multiplier is switched in the reversal-time system,

and the behavior on the Poincaré map changes to correspond to that of the forward time system.

Therefore, the behavior of the forward time system can be predicted to some extent by analyzing

the reversal-time system. Furthermore, since the fixed points are common, it is expected to be useful

when obtaining bifurcation diagrams using the brute-force method.

4. Example of inverse time analysis: RLC circuit with inverse charac-

teristic diode connected
In Section 3, we confirmed that although the bifurcation parameter remains the same between the

forward and reversal-time systems, the topological properties are swapped around this parameter.

This section confirms that the properties of Section 3 are indeed observed by visualizing the bifurcation

sets for the forward and reversal-time systems defined in Section 2 with concrete examples.

A diode is modeled with an exponent function (Shockley ideal diode), a piecewise linear function,

an ON/OFF switch, and so on. These models look simple; however, they contain many higher-order

nonlinear terms. We expect this fact to cause nonlinear behavior, including various bifurcations and

chaotic solutions.

Tanaka and Matsumoto [11] studied a forced RL-diode serial circuit. The parasite capacitance is

modeled as a piecewise negative linear function, and charge and voltage of the capacitor are chosen

as the state variables. Chaotic solutions via a period-doubling cascade are confirmed, and a one-

dimensional map with suitable simplifications explains a chaotic behavior.

Against this, we use a plain capacitor and attach a diode in parallel to the capacitor, and the

current and voltage of the capacitor are the state variables. This forced RLC-diode circuit does not

have remarkable phenomenon because of the lack of active elements.

Figure 1 presents the target circuit, where a shaded area shows an inverted diode. An operational

amplifier with this configuration inverts the characteristics of a diode located in the right corner.

Therefore, suppose the diode is written by I = Is exp
qv
κT , where, Is is the reverse-bias saturation

current, q is an elementary charge, κ is the Boltzmann constant, T is the absolute temperature. In

this case, the current of the shaded region gives I = −Is exp
qv
κT . The circuit equation is obtained

from Kirchhoff’s Current Law and Kirchhoff’s Voltage Law as follows:

C
dv

dt
= i+ Is exp

qv

κT
,

L
di

dt
= −v −Ri+ E0 + E cosωt (7)

By applying appropriate transformations, we have the normalized equation:

ẋ = y + exp γx

ẏ = −x− ky +B0 +B cos τ, (8)

where a dot means d/dτ . We fix B0 = −0.3 and B = 0.4. The corresponding reversal-time system is

obtained by t → −t:

Fig. 1. An RCL circuit with an inverted diode.
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Fig. 2. Phase portraits of (a): Eq. (8), γ = 0.42, k = 0.9398. (b): Eq. (9),
γ = 0.501, k = 0.8. The red circle is the Poincaré map of Eq. (4).

Fig. 3. Bifurcation diagram for a forward time system using only the brute-
force method.

ẋ = −y − exp γx

ẏ = x+ ky −B0 −B cos τ. (9)

Figure 2 shows the respective phase diagrams. The red circle represents the Poincaré map of

Eq. (4). Both systems exhibit chaos, but their stable regions are significantly different. Figure 3

shows a bifurcation diagram for forward-time systems using the brute-force method. The initial value

is obtained by referring to the 1-periodic solution at the bottom left of the figure. A solution is found

by shifting the value of γ by the increment, and then using the converged point as the initial value to

find the adjacent point again. If it diverges, the previous initial value is inherited. When it reaches the

right end, the value of k is increased, the initial value is inherited, and a similar search is performed

from the left. Notably, due to these procedures, existing periodic solutions may not be drawn. The

x-axis is the parameter γ, and the y-axis is the parameter k. The period of the periodic solutions is

color-coded, and black regions are divergent or non periodic, including torus and chaos. At the same

time, non-periodicity arises in forward time systems only in a small part of the areas where periodic

solutions with periods of 2 or more are found, and most systems are divergent regions.

Figure 4 shows bifurcation diagrams of periodic points. By brute-force computations, colored areas

corresponding to the period numbers are superimposed. In Fig. 4, G, I, and NS indicate tangent,

period-doubling, and Neimark–Sacker bifurcations, respectively. The superscript shows the period,

and the subscript is a nominal number. In Fig. 4(a), a period-doubling island exists, composed by

I11 ∪ I12 . This island is connected with NS 1
1, NS

1
2, and NS 2. A set NS 1

1 ∪ I11 ∪ NS 1
2 shows an edge
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Fig. 4. Bifurcation diagrams of Eq. (8): (a) forward time, (b) reversal-time.

for the stable period-1 area. For NS 1, a sink turns to a source, and we generally have a stable ICC

around this point; however, the solution diverges after an ICC-like transient. At the same time, I11
gives two 2-period points and a saddle from a sink. Period-doubling cascades and chaotic solutions are

confirmed in a very narrow parameter area. All stability is flipped in Fig. 4(b), but many entrainment

regions like Arnold’s tongues are obtained. Stable torus and chaos are given in a wide range of the

parameter space.

Figure 6 shows the transient response of the forward and reversal-time systems at γ = 0.47 and

k = 0.75. When the initial values x and y are set to 0.16 and −1.87, respectively, the phase diagram

of the forward time system records the ranges of 0 < t < 500, 100 < t < 500 and 450 < t < 500 from

top to bottom. Figure 6 shows that the fixed point is stable, has a complex eigenvalue, and exhibits

behavior suggesting an unstable ICC outside. Comparing with the bifurcation diagram reveals an NS

bifurcation near this parameter, corresponding to the subcritical Hopf bifurcation of the fixed point in

the forward time system. The right figures from the top two are for 0 < t < 500 and 800 < t < 1000,
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Fig. 5. bifurcation diagram for reversal-time systems.

and the bottom right figure shows the transient response in the 0 < t < 500 range where the initial

value is reset to the vicinity of a stable fixed point in the forward time system. The stable fixed

point becomes an unstable fixed point after NS, a stable ICC is generated outside, and the phase

locking has a period of 10. Therefore, this is an NS bifurcation corresponding to the supercritical

Hopf bifurcation of the fixed point, and the behavior near the fixed point indeed switches between

subcritical and supercritical in forward and reversal-time. We want to pay attention to the fact that

phase locking can be observed in the behavior of the reversal-time system. Figure 5 shows an enlarged

view of Fig. 4(b), showing that an Arnold tongue exists in the bifurcation structure. The phenomenon

of phase synchronization in reverse time is a strange physical phenomenon. but The corresponding

phenomenon in the forward time system has an unstable ICC; thus, using the brute-force method,

the Arnold tongue does not exist near this fixed point and parameters.

Although the stabilities of the fixed points are different, the types of bifurcation are common to the

forward time and reversal-time systems. This situation shows that observations in the reversal-time

system help trace the bifurcation phenomenon of unstable fixed points using the brute-force method.

Even when using the shooting method [10] to obtain bifurcation sets, detailed analysis is required to

discover the existence of completely unstable periodic solutions. Therefore, the reversal-time system,

in which volatile fixed points or unstable ICCs can be observed as stable, is an effective method for

understanding the bifurcation structure of forward time systems.

5. Conclusion
This study used concrete analytical results to discuss the correspondence between forward time and

reversal-time systems. We confirmed that the forward time and reversal-time systems share the fixed

points corresponding to the discretization of the periodic solutions. Furthermore, the derivation of the

bifurcation curves is equivalent to finding the fixed points of the forward and reversal-time systems.

We also organized the topological types around the fixed points and organized the correspondence

between the forward and reversal-time systems. These results showed that using the reversal-time

system is helpful for simple analytical methods such as the brute-force method and that there are

cases in which unstable fixed points can be visualized.

We also confirmed that chaos not observed in the forward time system might exist in the reversal-

time system. These results show that the analysis of the reversal-time system is sometimes effective as

an analytical method. In future work, we would like to analyze the topological types of the reversal-

time system other than those fixed points and consider the reversal-time system in more general

systems.
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Fig. 6. Transient response of the phase diagram at γ = 0.47, k = 0.75.
The red circle is the Poincaré map of Eq. (4). The left side corresponds to
the forward time system, and the right side corresponds to the reversal time
system.
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