WEKO3
-
RootNode
アイテム
A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 文献 / Documents(1) | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2020-02-21 | |||||||||||||||||||||||||||||
アクセス権 | ||||||||||||||||||||||||||||||
アクセス権 | open access | |||||||||||||||||||||||||||||
資源タイプ | ||||||||||||||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||||||||||||||||
資源タイプ | journal article | |||||||||||||||||||||||||||||
出版社版DOI | ||||||||||||||||||||||||||||||
関連識別子 | https://doi.org/10.1016/j.jcmg.2019.02.024 | |||||||||||||||||||||||||||||
関連名称 | 10.1016/j.jcmg.2019.02.024 | |||||||||||||||||||||||||||||
出版タイプ | ||||||||||||||||||||||||||||||
出版タイプ | AM | |||||||||||||||||||||||||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||||||||||||||||||||||||||
タイトル | ||||||||||||||||||||||||||||||
タイトル | A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images | |||||||||||||||||||||||||||||
タイトル別表記 | ||||||||||||||||||||||||||||||
その他のタイトル | Deep Learning for Echocardiography | |||||||||||||||||||||||||||||
著者 |
楠瀬, 賢也
× 楠瀬, 賢也
WEKO
231
× 阿部, 考志× 芳賀, 昭弘× 福田, 大受× 山田, 博胤
WEKO
197
× 原田, 雅史
WEKO
1589
× 佐田, 政隆
WEKO
309
|
|||||||||||||||||||||||||||||
抄録 | ||||||||||||||||||||||||||||||
内容記述 | Objectives: The aim of this study was to evaluate whether a deep convolutional neural network (DCNN) could detect regional wall motion abnormalities (RWMAs) and differentiate groups of coronary infarction territories from conventional 2-dimensional echocardiographic images compared with cardiologist/sonographer or resident readers. Background: An effective intervention for reduction of misreading of RWMAs is needed. We hypothesized that a DCNN trained with echocardiographic images may provide improved detection of RWMAs in the clinical setting. Methods: A total of 300 patients with history of myocardial infarction were enrolled. In this cohort, 100 each had infarctions of the left anterior descending branch (LAD), left circumflex branch (LCX), and right coronary artery (RCA). The age-matched 100 control patients with normal wall motion were selected from our database. Each case contained cardiac ultrasound images from short axis views at end-diastolic, mid-systolic and end-systolic phases. After 100 steps of training, diagnostic accuracies were calculated on the test set. We independently trained 10 versions of the same model, and performed ensemble predictions with them. Results: For detection of the presence of wall motion abnormality, the area under the receiver-operating characteristic curve (AUC) by deep learning algorithm was similar to that by cardiologist/sonographer readers (0.99 vs. 0.98, p =0.15), and significantly higher than the AUC by resident readers (0.99 vs. 0.90, p =0.002). For detection of territories of wall motion abnormality, the AUC by the deep learning algorithm was similar to the AUC by cardiologist/sonographer readers (0.97 vs. 0.95, p =0.61) and significantly higher than the AUC by resident readers (0.97 vs. 0.83, p =0.003). In a validation group from an independent site (n=40), the AUC by the DL algorithm was 0.90. Conclusions: Our results support the possibility of DCNN use for automated diagnosis of RWMAs in the field of echocardiography. |
|||||||||||||||||||||||||||||
キーワード | ||||||||||||||||||||||||||||||
主題 | echocardiography | |||||||||||||||||||||||||||||
キーワード | ||||||||||||||||||||||||||||||
主題 | artificial intelligence | |||||||||||||||||||||||||||||
キーワード | ||||||||||||||||||||||||||||||
主題 | regional wall motion abnormality | |||||||||||||||||||||||||||||
キーワード | ||||||||||||||||||||||||||||||
主題 | diagnostic ability | |||||||||||||||||||||||||||||
書誌情報 |
en : JACC : Cardiovascular Imaging 巻 13, 号 2-1, p. 374-381, 発行日 2019-05-15 |
|||||||||||||||||||||||||||||
収録物ID | ||||||||||||||||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||||||||||||||||
収録物識別子 | 1936878X | |||||||||||||||||||||||||||||
収録物ID | ||||||||||||||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||||||||||||||
収録物識別子 | AA1234416X | |||||||||||||||||||||||||||||
収録物ID | ||||||||||||||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||||||||||||||
収録物識別子 | AA1279525X | |||||||||||||||||||||||||||||
出版者 | ||||||||||||||||||||||||||||||
出版者 | American College of Cardiology Foundation | |||||||||||||||||||||||||||||
出版者 | ||||||||||||||||||||||||||||||
出版者 | Elsevier | |||||||||||||||||||||||||||||
権利情報 | ||||||||||||||||||||||||||||||
権利情報 | © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | |||||||||||||||||||||||||||||
EID | ||||||||||||||||||||||||||||||
識別子 | 363957 | |||||||||||||||||||||||||||||
言語 | ||||||||||||||||||||||||||||||
言語 | eng |