WEKO3
アイテム
Supervised Machine Learning Approach Discovers Protective Sequence for Avoiding Sexual Victimization in Criminal Suit Documents
https://tokushima-u.repo.nii.ac.jp/records/2007256
https://tokushima-u.repo.nii.ac.jp/records/2007256dd180aeb-226e-4925-891d-e5e810559e49
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 文献 / Documents(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2020-03-05 | |||||||||||
アクセス権 | ||||||||||||
アクセス権 | open access | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
出版社版DOI | ||||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.1007/s11417-018-9273-1 | |||||||||||
言語 | ja | |||||||||||
関連名称 | 10.1007/s11417-018-9273-1 | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | AM | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||||||||
タイトル | ||||||||||||
タイトル | Supervised Machine Learning Approach Discovers Protective Sequence for Avoiding Sexual Victimization in Criminal Suit Documents | |||||||||||
言語 | en | |||||||||||
タイトル別表記 | ||||||||||||
その他のタイトル | MACHINE LEARNING APPROACH FOR AVOIDING RAPE | |||||||||||
言語 | en | |||||||||||
著者 |
横谷, 謙次
× 横谷, 謙次
WEKO
973
|
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | Effective self-protective behaviors, such as victim's physical resistance for avoiding sexual victimization have been studied. However, effective self-protective behavioral sequences, such as offender's physical violence followed by victim's physical resistance, have not been studied often. Our study aims to clarify these sequences through supervised machine learning approach. The samples consisted of 88 official documents on sexual crimes regarding women committed by male offenders incarcerated in a Japanese local prison. The crimes were classified as completed or attempted cases based on judges’ evaluation. All phrases in each crime description were also partitioned and coded according to the Japanese Penal Code. The Support Vector Machine learned the most likely sequences of behaviors to predict completed and attempted cases. Around 90% of cases were correctly predicted through the identification of sequences of behaviors. The sequence involving the offender’s violence followed by victim’s physical resistance predicted attempted sexual crime. However, the sequence involving victim’s general resistance followed by the offender’s violence predicted completed sexual crime. Timing of victim’s resistance and offender’s violence could affect potential avoidance of sexual victimization. | |||||||||||
言語 | en | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Criminal suit documents | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Supervised machine learning | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Binary classification | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Protective action | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Rape | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | Sexual coercion | |||||||||||
書誌情報 |
en : Asian Journal of Criminology 巻 13, 号 4, p. 329-346, 発行日 2018-07-27 |
|||||||||||
収録物ID | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 18710131 | |||||||||||
収録物ID | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1871014X | |||||||||||
収録物ID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA12248315 | |||||||||||
出版者 | ||||||||||||
出版者 | Springer Nature | |||||||||||
言語 | en | |||||||||||
備考 | ||||||||||||
言語 | ja | |||||||||||
値 | This is a post-peer-review, pre-copyedit version of an article published in Asian Journal of Criminology. The final authenticated version is available online at: https://doi.org/10.1007/s11417-018-9273-1. | |||||||||||
EID | ||||||||||||
識別子 | 352700 | |||||||||||
識別子タイプ | URI | |||||||||||
言語 | ||||||||||||
言語 | eng |