Item type |
文献 / Documents(1) |
公開日 |
2025-03-25 |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版社版DOI |
|
|
|
関連識別子 |
https://doi.org/10.3390/electronics13163196 |
|
|
関連名称 |
10.3390/electronics13163196 |
出版タイプ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
タイトル |
|
|
タイトル |
A Multi-Local Search-Based SHADE for Wind Farm Layout Optimization |
著者 |
Yang, Yifei
Tao, Sichen
Li, Haotian
楊, 海川
Tang, Zheng
|
抄録 |
|
|
内容記述 |
Wind farm layout optimization (WFLO) is focused on utilizing algorithms to devise a more rational turbine layout, ultimately maximizing power generation efficiency. Traditionally, genetic algorithms have been frequently employed in WFLO due to the inherently discrete nature of the problem. However, in recent years, researchers have shifted towards enhancing continuous optimization algorithms and incorporating constraints to address WFLO challenges. This approach has shown remarkable promise, outperforming traditional genetic algorithms and gaining traction among researchers. To further elevate the performance of continuous optimization algorithms in the context of WFLO, we introduce a multi-local search-based SHADE, termed MS-SHADE. MS-SHADE is designed to fine-tune the trade-off between convergence speed and algorithmic diversity, reducing the likelihood of convergence stagnation in WFLO scenarios. To assess the effectiveness of MS-SHADE, we employed a more extensive and intricate wind condition model in our experiments. In a set of 16 problems, MS-SHADE’s average utilization efficiency improved by 0.14% compared to the best algorithm, while the optimal utilization efficiency increased by 0.3%. The results unequivocally demonstrate that MS-SHADE surpasses state-of-the-art WFLO algorithms by a significant margin. |
キーワード |
|
|
主題 |
differential evolution |
キーワード |
|
|
主題 |
green energy |
キーワード |
|
|
主題 |
wind farm layout optimization |
キーワード |
|
|
主題 |
large scale |
書誌情報 |
en : Electronics
巻 13,
号 16,
p. 3196,
発行日 2024-08-13
|
収録物ID |
|
|
収録物識別子タイプ |
EISSN |
|
収録物識別子 |
20799292 |
出版者 |
|
|
出版者 |
MDPI |
権利情報 |
|
|
権利情報 |
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
EID |
|
|
識別子 |
413923 |
言語 |
|
|
言語 |
eng |